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Abstract: In this paper, two kinds of uncertainties, in speech production and recognition, are introduced. It is 
shown that one class of these uncertainties can be best understood by the notion of probability while the other
could be described as fuzziness. Based on the given concepts, a new method of fuzzy smoothing is proposed.
The goal of this method is to make transition from one state to another gradual, so that contribution of each 
observation to the emission probability becomes fuzzy. In addition, an innovative implementation method is 
suggested. It is shown that adding a length normalized time dimension to the feature space can serve as fuzzy 
smoothing. Error rates in phoneme classification are compared on TIMIT database. Results show, a significant 
improvement in classification rate over the original HMM, while imposing no computational intricacy.
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1   Introduction
Hidden Markov Model (HMM) has shown 

successful in many applications including speech 
recognition and speaker identification for quite a 
long time. Nevertheless, it has never been claimed 
perfect for speech modeling. There are some 
drawbacks in HMM structure as well as its training 
methods. For one thing, it is unable to compare two 
non-equal-length observation sequences, since 
probability inherently lies between 0 and 1, and 
probability of observations given the model declines 
over the time. This problem reveals itself, in 
segmentation and verification while has no effect on
recognition and classification where one string, is 
scored by many HMMs. Second, using original 
Baum-Welch re-estimation method, one HMM’s 
Gaussians, are trained, without considering 
distribution functions of rival HMMs. In 
recognition, success criterion is not increasing score 
of observations given the model, but maximizing 
score distance between rival models. Finally (in the 
interests of brevity) the transition between the states, 
in HMM, although hidden, is sudden. As we will 
describe, it exhibits itself, incompatible with the 
utterance nature. 
The first problem, stated above, is not recognized 

as crucial and not explicitly discussed. The second 
problem is addressed in many papers, and the 
solution to the problem has formed a new class of 

models under the title of discriminative HMMs. 
Neural Networks [7] and Support Vector Machines
[4] are used, successfully in estimating emission 
probability in HMM, by classifying rival patterns
and using new criteria as it is done in MMI[2].
 The third problem is also addressed in some ways, 
under the name of smoothing or soft segmentation, 
but not in the context of HMM[3]. It seems that in 
HMM, the general assumption is that emission 
probability, and unclarity of state sequence, works 
for modeling the gradual transition from one state to 
another. We try to show that there are two types of 
uncertainty in speech production and they need to be 
handled by different means. The idea of smoothing, 
could be, best described by fuzzy concepts, while 
the traditional probabilistic framework of HMM is 
untouched.
HMM equations are reformulated by fuzzy 

concepts, replacing the notion of probability by
possibility in fuzzy logic realm and fuzzy HMMs 
are proposed in some papers[5,6]. Our approach is, 
quite different. We give a new description of the 
problem and show that the two types of uncertainties 
are different. Additionally, we suggest an innovative 
technique to implement the new model, with a little 
change in original HMM structure and re-estimation 
formula. We try to reconcile smoothing method, 
with hidden Markov model and test the new model 
on TIMIT database. It is also notable that this 



technique is length independent, and can alleviate 
the wrong duration modeling of HMM.

2 Fuzzy Hidden Markov Model
Pronouncing a phoneme, there is delay from the 

moment we intend to produce a sound, to the time 
we do it. It is different, in essence, from the concept 
of many states in HMM, which each state, is meant 
to correspond to a certain position of articulation. 
For example, we know from IPA chart that, 
pronouncing phoneme, ow, there is a transition from 
one manner and position of articulation to another. 
We can stay, in one state of articulation, for as much 
as needed (as singers do) but there is again a 
transition interval, from that state to the next. 

To clarify the problem, suppose that we want to 
work out the probability of an office worker being 
on the first floor of a three-story building during the 
day. We define the probability of being on the first 
floor, as the time spent on the first floor over the 
time spent on any floor. Also, imagine that our 
observations are scarce and most of the time the 
worker, is moving from one floor to another, so we 
often, see him in the staircase. While being on any 
floor is a probabilistic variable, it is a fuzzy one, as 
well. We aim at the probability of being at the first 
floor, but our observations that indicating being on 
the first floor, are mostly, fuzzily true. The question 
is that, what the probability of being on the first 
floor is, given that we know, the probability of being 
in the middle of the staircase. In other words, we 
want to know, how much the time, spent in the 
middle of the staircase, can contribute to the 
probability of being on the first floor.

2.1 Smoothing by Fuzzy Probability 
In original HMM formulation, the goal of EM 

method is to increase the probability of all 
observation sequences given the model, where
probability of an observation sequence given the 
model and one explicit path on HMM is:
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Oj is a sequence of observations, oi , with the 
length T. in other words, },....,{ 1 T

j ooO = .
a is transition probability and a0i is the prior 

probability of state i (probability of starting from 
state i) and q0=0. Q is the path or sequence of states 
on HMM starting from q1  and ending in qT.

 Probability of observations given the model, 
P(O|M) is sum of this probability over all possible 
sequences of states(Q).
 In Expectation-Maximization re-estimation, the 
goal is to maximize the value of:
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where Oself is the set of independent same-class 
observations, for example, all instances of a 
phoneme. Oj is an observation sequence, which may 
be, feature frames of one instance of pronounced 
phonemes. 
 
In traditional HMM the probability of a frame of 

observation given a state is defined as emission 
probability:

)|()( jj ssoOPob === (3)
We suggest that this concept is as fuzzy as 

probabilistic. There is no need to replace one 
concept for another. Two types of observation could 
be imagined of: Intended and Uttered. Intended 
observation is that, shapes the base characteristics of 
the state; i.e. the perfect representation of the state. 
It is, at the same time, probabilistic and can have a 
distribution function. Uttered observation, relates to 
the Intended observation with a fuzzy membership 
function. The goal of re-estimation should be raising 
the probability of Intended observations given the 
model. In this view, the observations, with lower 
fuzziness, contribute less to form the Intended 
observation distribution function of states. We can 
ask what the probability of Intended observation is, 
given that we know the probability of Uttered 
observation, and fuzziness of Uttered observation. It 
is similar to asking: We know, how much, ‘being in 
the middle of the staircase’, is, ‘being on the first 
floor’ and we know, what the probability or time of 
being in the middle of the staircase is, during the day 
and we want to know how much this, can participate 
in the probability of being on the first floor. There 
are many ways to define fuzzy probability. We 
propose two ways and believe that both are 
reasonable. As one definition we can write:

)().()( UtteredFUtteredPIntendedP Int= (4)
Where, )(UtteredFInt is the fuzziness of Uttered, 
based on Intended or Intended-ness of Uttered.

Another way to define fuzzy probability is:
)int(/1)()( UtteredFUtteredPIntendedP = (5)



Note that, probability is a value between zero and 
one, so when the fuzziness goes down, the 
probability, decreases. Both definitions are 
defendable. Using (5) we get closer to the smoothing 
and soft segmentation [3] where the membership 
appears in power. We opt to use equation (4) 
because, as we show later, there is a straightforward 
computation method for that, based on HMM 
equations.

We try to maximize the probability of Intended 
observations given the model, having the probability 
of Uttered observation given the model. In 
recognition, with the same process we work out the 
probability of Intended observations, given different 
models, and select the best one.  To maximize:
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Utteredio _  is uttered (seen) observation at time t.
We should re-estimate both membership functions 
(F), and model parameters using EM. As it could be 
noted, we have defined membership function of 
each state, as a function of time. 

2.2 Membership Functions
The membership functions(MFs) may be chosen 

from any form.

(a) Trapezoidal MFs

(b) Gaussian MFs
Fig 1: Membership functions for three states

Fuzziness of an Uttered observation can be 
defined as its distance from Intended observation or 
it could be defined over the time (as we choose). 
The center and width or variance of each MF should 
be re-estimated in EM iterations. 
One option is to keep the center and width of MFs, 

constant. It forces, the state centers to move to that 
constant position, through different EM iterations. 

Another is to set centers of MF for states q, as
weighted mean of time of observations belonging to 
state q:
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for Gaussian membership functions, Variance, is 
estimated by the following equation:
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2.3 Training Formula
There is just one deviation from original HMM 

formulations, in our proposed, smoothing method. 
We avoid rewriting all forward-backward and EM 
formula, for briefness. The only change to all the
original HMM formula in [1] is that )( iq ob

i
will be 

replaced by )()( _,_ UtterediiqUtterediq oFob
ii

. In EM 
iterations, first, model parameters (Priors, Transition 
Probabilities and Emission Probabilities) are 
estimated and based on these values, using (7) and 
(8), membership functions are approximated

2.4 Realization Method
We noted that there is a shorter route to 

estimation of fuzzy membership functions and 
model parameters, all together.  In order to keep 
away from unnecessary complication, first we 
assume that each state has only one Gaussian 
function. We add one dimension to the 
observation space. This new dimension is
normalized time, from 1/T to 1 added to each 
observation sequence, },....,{ 1 T

j ooO = . We 
name this new sequence X where X=[Oj;Tm]
and Tm denotes a row containing values from 
1/T to 1. Each column contains a frame of 
observation and Oj  is an observation sequence. 
‘;’ symbolizes next row.
Since diagonal Gaussians are separable, for 
state q, we can write:
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It is clear that the first term on the right side of (9) 
is )( _Utterediq ob

i
and the second one, is MF for state 

q. When more than one Gaussian functions are used 
to estimate distribution probability of each state, we 
can think of, second term as fuzziness of observation 
according to state q and mixture m. 



3   Phoneme Classification Results
   In this section, we report the results of phoneme 
recognition, using above mentioned, training 
method. We use all phonemes of male speakers of 
first dialect in TIMIT database, Train set, and test 
our HMMs on the Test set of the same dialect, male 
speakers. Traditional HMM results are mentioned 
along with our suggested HMM’s results. We had 
observed that, the big number of some phonemes, 
with high recognition rate, affects the error rate 
significantly. To avoid this, as in our previous 
works, we test min(50, number of phoneme 
instances) phonemes in the test database. The total 
number of phonemes, tested, is 1626 in all the 
experiments. Phoneme classification error is wrong 
detection of phoneme class. 60 phonemes are 
classified into 39 phoneme classes. MFCC features 
are used, with delta, delta delta coefficients and log 
energy (40 features). A pre-emphasis filter is used as 
usual before feature extraction (1-0.95z-1). Number 
of iterations in training all HMMs is 12. All HMMs 
are left to right with prior probability of first state, 1, 
and the rest 0.
By adding more than one ‘normalized time row’ to 

the end of our observation sequence, we are 
weighting results from fuzzy part over probability 
part. In table 1, tr, denotes number of time rows 
added to the observation sequence. Q is the number 
of states and M, shows number of mixtures. T-HMM
marks, Traditional HMM and F-HMM is our 
proposed fuzzy HMM. notrans means, taking out 
transition probability from HMM equations and 
making transition to self or another state, equally 
likely.

Experiment Q M Errors %PER
T-HMM 3 5 570 35.06
F-HMM tr=1 3 5 554 34.07
F-HMM tr=4 3 5 507 31.18
F-HMM tr=7 3 5 496 30.50
F-HMM tr=8 3 5 497 30.57
F-HMM tr=12 3 5 506 31.12
F-HMM tr=24 3 5 527 32.41
T-HMM notrans 3 5 595 36.59
F-HMM notrans tr=8 3 5 493 30.32
T-HMM 1 5 653 40.16
F-HMM  tr=8 3 1 648 39.85
F-HMM  tr=8 1 5 597 36.72

Table 1 : Phoneme Classification Error Rate

It is noteworthy that, in this method, transition
probabilities do not play an important role and could 
be eliminated (Table 1, compare Rows 6, 10).

  Removing transition probabilities, gives one 
advantage, and that is making length normalization 
easier by dividing the results by the length of 
observation sequence. It would be helpful in the 
applications, where two non-equal length 
observations should be compared with one HMM. 
Two of those applications are automatic phonetic 
transcription and verification. Investigating and 
comparing the effect of such normalizations needs 
separate research and discussion.

4   Conclusion
In this paper, we formulated a smoothing technique 

with fuzzy ideas. Soft Segmentation and smoothing
techniques, had been examined before, with some 
variations such as keeping the smoothing function 
center constant or moving, but our approach was 
inherently different. We put to use fuzzy notion, in 
addition to probability to explain the same fact. 
Instead of using smoothing factor, in power, we 
practiced this factor as a multiplying coefficient, and 
showed briefly that adding a normalized time feature 
to the feature space, can serve as a fuzzy smoothing 
method. We tested this idea on TIMIT database and 
showed that the results are significantly improved, 
compared to those of traditional HMM.
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