
Combining Metaheuristics and Constraint Programming to Solve a
Scheduling Problem

NUNO GOMES, ZITA VALE, CARLOS RAMOS

GECAD – Knowledge Engineering and Decision Support Group,
Institute of Engineering – Polytechnic of Porto, PORTUGAL

Abstract: - In this paper we present a hybrid method, named Quasi Local Search, which combines Simulated
Annealing augmented with a type of Tabu List to guide the search globally with Constraint Programming to
search locally the optimal solution. The method can also be seen as an integration framework, once the Local
Search module is independent of the Constraint Programming one and either can be worked independently. The
method is used to solve a Generator Maintenance Scheduling Problem with promising results. We also present a
study about the se-lection of certain parameters and neighbourhood structure. The result allows us to conclude
about their influence on the method’s performance.

Key-Words: - Metaheuristics, Constraint Programming, Hybrid Schemes, Maintenance Scheduling

1 Introduction
From a real world point of view, one of the most appre-
ciated strengths of scheduling and planning tools is
flexibility. Particularly, planning and scheduling engi-
neers need tools capable of model the all problem in
order to obtain useful solutions. To develop this type of
“solving/decision support” tools, Constraint Logic Pro-
gramming (CLP) is a suitable approach. With CLP the
model problem and solving method can easily be devel-
oped as well as the corresponding computer program.
The latter are usually small and easy to maintain. Evi-
dence of these strengths is the huge number of practical
applications of CLP [1]. Despite these Strengths, CLP
has also some weaknesses. The most relevant one is
some lack of efficiency when solving large and/or few
constrained problems. One important reason for this
efficiency problem is related to the underlying search
mechanism. In fact, within CLP, problems are modelled
as a set of variables with domains and a set of con-
straints restricting the possible combinations of the vari-
ables values. Constraints are used actively in order to
prune the search space by removing inconsistency val-
ues from the variables domain. This action is achieved
by a propagation (or filtering) algorithm associated with
each constraint. Propagation algorithms are usually in-
complete: once propagation is finished, some inconsis-
tent values may remain in the variable domains. In order
to find a solution, we need a search method to instantiate
all the variables. In one of the most used search strate-
gies, for each variable a value is assigned incrementally
until a complete solution is found or a constraint is vio-
lated. If a constraint is violated, the last assignment is
undone and an alternative value is chosen (“enumera-
tion”). If no value assignment is consistent, the search
backtracks to a previously assigned variable, and so on.

The result is a depth-first tree search explored using
Chronological Backtracking.
Even with very efficient search methods and filtering
algorithms capable of pruning significantly the variables
domain, it is impractical to explore all the search tree of
a real world problem in a depth-first manner. This can
prevent the search to find the optimal, or even good
quality solutions. In the literature, we can find several
methods that try to overcome this problem. Some simply
explore the search tree in a different order, possibly
discarding some unpromising areas, hopefully in an
intelligent way. Other methods try to integrate different
techniques, from several areas in order to improve
search efficiency. This last type is actually one of the
successful research lines within CLP (see section 2). In
this work we present a hybrid method that falls in this
last research line. The method uses Simulated Annealing
(SA) augmented with a type of Tabu List to guide the
search globally and CLP to search locally the optimal
solution. Basically, CLP can be seen as a good tool to
explore the neighbourhood efficiently. We also test the
method with a Maintenance Scheduling Problem and
study the influence of CLP integration in the SA pa-
rameters. Results show that the hybrid method can im-
prove significantly a pure CLP approach.
2 Integration Approaches
The CLP framework allows the integration of techniques
from different areas. A recent and successful research
line, where this work belongs, is the integration of Local
Search (LS) based on methods with CLP. In analyzing
the literature we can classify the integration methods in
two big groups: CLP is used to find a partial or a com-
plete solution in certain points of the search. Then the
solution is completed or improved using some type of
LS based method; LS is used to guide the overall search.
Then CLP is used to explore the neighbourhood by se-

lecting the right neighbour or removing the unpromising
ones. The first group is less common. However, we can
find some works on the literature. For example in [2] an
hybrid method is used to solve a Workforce Scheduling
Problem. For that, they use a CLP based method to pre-
schedule the complex tasks (long-duration tasks) and
then a SA algorithm is used to schedule the other tasks
starting from the pre-schedule. Similarly, in [3], it is
presented a new method to solve the Exam Timetabling.
The method consists of two phases. In the first phase
CLP is used to obtain an initial timetable satisfying all
the hard constraints. In the second phase Simulation
Annealing is used to improve the quality of the timeta-
ble, taking the soft constraints into account.
The second group is larger and different approaches can
be found in the literature which are included on it. For
example in [4] the authors present an integration frame-
work where they propose to use CLP to solve several
sub-problems with a reduced sub-search space. The sub
search-space of each sub-problem is selected using a
utility function that defines for each pair variable/value a
utility value based on the previous search results. With
the right utility function it is possible to find the optimal
or, at least, a good solution in shorter time. On the same
line in [5] the authors use a method named Path-Repair,
which merges a Tabu Search together with a filtering
technique and conflict-based heuristics to solve an Open
Shop Problem. Another example is that of [6] where the
authors use a LS method named Large Neighbourhood
Search to solving vehicle routing problems. The method
explores a large neighbourhood of the current solution
by selecting a number of visits to remove from the rout-
ing plan, and re-inserting these visits using a constraint-
based search.

3 The Integration Method
Due to the exponential complexity of many combinato-
rial optimization problems, the size of a complete search
tree is often intractable. In practice, a search algorithm is
only able to explore a small part of a real problem search
tree. In case of depth-first search, usually used by CLP
methods, only the left part is explored. This can be par-
ticularly serious if the first choices are wrong and the
search moved apart from the good solutions. Within LS
methods there is no exhaustive exploration of the search
tree. Alternatively, each solution is obtained interac-
tively through modifications of a previous solution (lo-
cal move), which can be seen as a jump in the search
tree. This mechanism can increase the search speed even
if some wrong decisions are made. However, the modi-
fication set is not usually unitary, which results in sev-
eral possible moves and an equal number of solutions.
Each of these solutions is called a neighbour, and the
whole set, a neighbourhood. Obviously, one crucial
aspect of all LS methods is the choice of the neighbour-
hood structure and its exploration. In real problems with
several types of constraints and for which large

neighbourhoods are important (see [7]), to validate and
to choose the right neighbour can constitute a hard prob-
lem itself. In fact it is necessary to model the problem
with all its constraints and then use the problem model
to determine the best neighbour. The basic idea of the
method presented in this paper consists of taking advan-
tage of modelling and pruning capabilities of CLP to
solve combinatorial problems, but at the same time us-
ing a type of LS method to avoid the exhaustive search
tree exploration underlying to the basic CLP search
method. From other point of view, the basic idea con-
sists of taking advantage of modelling and pruning ca-
pabilities of CLP to explore larger and more complex
neighbourhoods increasing the efficiency of traditional
LS methods.

Fig. 1. Integration Scheme

3.1 The General Integration Scheme
The method presented in this paper is based on two
modules, one responsible for guiding the global search
through the search space and the other responsible for
exploring selected search space areas. The first module
is based on a LS method and the second on a CLP
method. The interaction between the two modules can
be seen in figure 1. As we can see, initially the problem
model is developed in terms of domain variables and
constraints and passed to the CLP module. The CLP
module is built over a CLP system and comprises a cer-
tain search method, specifically a Refinement-based one
and a constrain store with the corresponding filtering
algorithms. On each iteration the CLP module is respon-
sible for finding the optimal solution of a given sub-
problem. The sub-problem considers all the global prob-
lem constraints plus a new set (of the LS responsibility),
that limits certain variables domains (reduce the search
space). The corresponding sub-search space can be seen
as a neighbourhood with valid and non valid solutions.
In this way, finding the optimal solution of the sub-
problem corresponds to find the best neighbour or to
prove that a better neighbour does not exist. Based on
the result returned by the CLP module the LS module
should define, on each iteration, a new neighbourhood
and the corresponding constraint set.
As stated in the previous section, from the CLP point of
view, the use of the LS component allows the explora-
tion of the search space in a non exhaustive way. In fact
the search is guided by the LS module from one point to
another where the CLP module performs a localized
exhaustive search. From the LS point of view, the CLP

module allows the exploration of larger and more com-
plex neighbourhoods which increase the chances of suc-
cess. Another important characteristic of our method is
that it is independent of the problem, as of the CLP
module or LS module. Naturally, the performance of
each of the modules individually is determinant for
global method performance

3.2 The CLP Module
As referred above, constraint propagation is not a com-
plete method, so a search scheme is needed in order to
instantiate all the variables and obtain a solution. We
also referred that it is possible to find several search
schemes of different complexity. The hybrid method, we
are presenting, is independent of the CLP module, so
any search scheme can be used.
For the problem instances presented in this paper we
have chosen a simple chronological backtracking algo-
rithm described in section 1, augmented with a type of
Branch-and-Bound suitable to CLP based optimization
which is well known among the CLP community. This
search scheme was already successfully tested on the
same problem instances we use in this work, so a com-
parison can be done (see [8]). On the rest of this paper
we will call this algorithm Basic Backtrack Search
(BBS). This algorithm contains primarily two choices,
namely variable selection and value selection. The order
in which variables and values are selected can have a
significant impact on search efficiency.
3.3 The LS Module
The main task of the LS Module is to guide the search
globally by defining, on each iteration, the neighbour-
hood to be explored. This guidance is based on an inter-
active improvement where only the best neighbours are
chosen, and neighbourhoods are created starting from
the best neighbours. However, this strategy can rapidly
lead the search to get trapped on a local minimum. To
avoid this problem we use Simulated Annealing (SA)
[9] and Tabu Search (TS) [10]. The main idea of the SA
algorithm consists of accepting solutions of worse qual-
ity than the current solution (uphill moves) in order to
escape from local minima. The algorithm starts from an
initial solution and a certain value of the so called tem-
perature parameter T. Then, on each iteration, the se-
lected solution is immediately accepted if its cost is bet-
ter than the cost of the previous solution, or is accepted
with a probability p which is generally computed fol-
lowing the Boltzmann distribution. In this case p can be
evaluated using expression (1)
where f(s) corresponds to the cost of the new solution
and f (so) to the cost of the previous solution. As the
search evolves the T parameter should decrease in order
to the search converge. The T value on each iteration is
given by the cooling schedule. In fact, theoretical results
on non homogeneous Markov chains [11] state that un-
der particular conditions on the cooling schedule, the
algorithm converges in probability to a global optimum.

Unfortunately, cooling schedules which guarantee the
convergence to a global optimum have no use in practi-
cal applications, because they are too slow.

() ()of s f s
Tp e

⎛ ⎞−
−⎜ ⎟⎜ ⎟
⎝ ⎠= (1)

3.3.1 SA Cooling Schedule
One of the important issues for the performance of the
SA algorithm is the cooling schedule. Although there
isn’t a perfect schedule for all the applications, a good
cooling schedule should guarantee a fair exploration of
the search space before cooling down. The difficulty is
to find the right trade off between diversification and
intensification [12]. In this work we use a cooling
schedule based on a geometric law: Tk+1=α.Tk where
α∈(0,1). With this type of cooling schedule the tempera-
ture decay is controlled by the α parameter. This simple
schedule has one problem: once it cools down, there is
now hypothesis of reheating again. This means that the
algorithm will have difficulties in overcome hills in the
search landscape. However since the search effort is
shared between the SA and CLP there is some guaran-
tees of a straighter search landscape from the SA point
of view.
Several works show that α should belong to the interval
(0.8,0.99). However, they also indicate that there is a
relation among α and the neighbourhood size. In fact, it
seems that with large neighbourhoods α cloud take
lower values. Note that α should guarantee a good ex-
ploration of the search space, nevertheless this objective
can also be accomplished with the consideration of large
neighbourhoods or with the executions of several itera-
tions at the same temperature. In this work we will pre-
sent some tests about this.

3.3.2 Search Cycles and Tabu List
Usually, on combinatorial search problems, the
neighbourhoods are symmetrical. In this case the occur-
rence of cycles in the search is possible. This means
being x’∈N(x) and x∈N(x’), where N(x) represents the
neighbourhood of x, then the generation sequence x->x’-
>x could happen in three successive iterations. In the
conventional SA the generation probability has a uni-
form distribution and the probability is inversely propor-
tional to the neighbourhood size. Being n the neighbour-
hood size, then the generation probability PG of each
neighbour can be determined by the expression (2).

1() , ()GP i i N jn= ∀ ∈ (2)
Considering (2) we can calculate the generation PT

G and
acceptation PT

A probability of j after i respectively using
expressions (3) and (4).

2
1() () , (), ()T T

G AP j i P i i N j j N i
n

− > = ⋅ ∀ ∈ ∀ ∈ (3)

2
1() () () , (), ()T T T

A A AP j i P i P j i N j j N i
n

− > = ⋅ ⋅ ∀ ∈ ∀ ∈ (4)

Where T is the control parameter which in our case is
the temperature. Note that the acceptation probability of
SA is given by (5).

() ()

() ,
f i f s

tT
AP i e i S

−⎛ ⎞
−⎜ ⎟⎜ ⎟
⎝ ⎠= ∀ ∈ (5)

Following we can determine the probability of occurring
a cycle in three consecutives iterations.

()2
3

1() () () , (), ()T T T
A A AP i j i P i P j i N j j N i

n
− > − > = ⋅ ⋅ ∀ ∈ ∀ ∈ (6)

In our method the neighbour returned by the CLP mod-
ule is always the same and the optimal, considering that
the underlying search scheme is deterministic and com-
plete. The generation probability in this case is given by
the expression (7).

() () () () ()
() () () ()

1 , , ,
0 | , ,G

j N k f i f j i N k i j
P i

j N k f j f i i N k i j
⎧ ∀ ∈ ≤ ∈ ≠⎪= ⎨ ∃ ∈ ≤ ∈ ≠⎪⎩

 (7)

Considering (6) and (7) we can determine the probabil-
ity of occurring a cycle in three consecutives iterations
for our method.

() ()2
() () (), (), ()T Min T T

A j A AP i j i P i P i P j i N j j N i− > − > = ⋅ ⋅ ∀ ∈ ∀ ∈ (8)

Where Pj
Min(i) corresponds to the probability of i being

the best neighbour of j. Following the same reasoning it
is possible to generalize expression (6) and (8) to cycles
with any size. This means that, comparing (6) and (8),
considering n a big number and that Pj

Min(i)>>1/n we
can conclude that the probability of occurring cycles in
our method is much higher than in conventional SA.
This was verified in our tests. In order to overcome this
problem, the QLS method includes a type of short term
memory analog to the one of the Tabu Search method
[10]. The memory mechanism is implemented through a
Tabu List. This list keeps the last selected neighbours
(solutions) as tabu. On each iteration the tabu
neighbours are passed as constraints to the CLP module
avoiding their reselection, and consequently cycles.
Naturally, the size of the avoided cycles is related to the
size of the tabu list. Considering all the above we can
finally present the QLS algorithm in Fig. 2.

4 QLS applied to the Generation
maintenance scheduling
In order to test the QLS method, we have used a set of
the Power Systems Generator Maintenance Scheduling
problem (GMS) instances. This problem consists of
determining, for each predicted maintenance task, a
specific start time in the scheduling horizon (e.g. one
year), while satisfying the system constraints and main-
taining system reliability. This objective should be ac-
complished while some criteria are optimized (e.g. the
sum of operation and maintenance costs is minimized).
The GMS can be a complex problem. Usually it has
associated a large and complex set of problem con-
straints. In this work we consider the following ones:
Resources; Time; Precedence; Capacity; Demand.
A real GMS problem has more than one solution. If we
consider an objective function (cost function) f, then

there are one or more solutions for which the value of
the function is maximal (or minimal for a minimization
problem). In most works, the GMS problem objective
function is a sum of cost terms that shall be minimized.
These terms are usually the total Production Costs (PC)
and total Maintenance Cost (MC) for the schedule hori-
zon.

Fig. 1. QLS Algorithm

4.1 General Problem Model
The problem variables are: Si wich corresponds to the
starting maintenance period of unit I; Pit which corre-
sponds to power production of unit i in period t (0 if the
unit is in maintenance) A valid maintenance schedule
must meet the following constraints or domain require-
ments, which naturally arise from the problem defini-
tion:

1 i iS r T≤ − ≤ i U∀ ∈ (9)

i i ie S l≤ ≤ i U∀ ∈ (10)

it iP k≤ ,i U t T∀ ∈ ∀ ∈ (11)

it t
i

P d≥∑ t T∀ ∈ (12)

it t
i

E ar≤∑ t T∀ ∈ (13)

i i j j j iS r S S r S+ ≤ ∨ + ≤ (),i j I∈ (14)

i i jS r S+ ≤ (), ri j P∈ (15)
Where T and U are respectively the available mainte-
nance periods and units. art the maximum number of
units which can be maintained simultaneously in period
t. ki Maximum power production capacity of unit i and dt
the demand in period t. I Set of pairs of units which can-
not be maintained simultaneously, and Pr set of pairs
that have precedence requirements Considering con-
straint classification from the previous section, we can
say that: (9) and (10) are time constraints defining the
valid maintenance period; (11) is the demand constraint;
(12) is the capacity constraint; Finally, (13), (14) and
(15) are resource constraints. Our objective function is
given by expression (16) where the goal is to minimize
the total maintenance and production costs.

Develop the problem model in terms of domain variables
and constraints (suitable to a CLP system)
Determine the initial solution using the CLP module
without optimization
Set the cooling schedule (initial temperature T and
number of iterations per temperature NI)
Initialize Tabu List
while stop criteria not reached

while NI>0
Impose the needed constraints in order to restrict
the variables domains according to the neighbour-
hood defined by the respective neighbourhood func-
tion.
Impose the needed constraints to avoid the tabu
solutions
Call the CLP module to find the best neighbour s
If f(s) better than f(s

0
) then

s
0
=s

else
s

0
=s with probability p=e-(f(s)-f(so))/T

update the tabu list if s accepted
end while
update T according the cooling function

end while

min it it i
i t i

c P Mc⎛ ⎞× +⎜ ⎟
⎝ ⎠
∑∑ ∑ (16)

4.2 Implementation Issues
As referred in section 2.3 we will use the BBS algorithm
of Erro! A origem da referência não foi encontrada.
augmented with a type of Branch-and-Bound as the
search algorithm for the CLP module. More efficient
methods could be used, as for example that of [13], but
for our purposes a complex method could mislead the
evaluation of the QLS method. The algorithm perform-
ance strongly depends on the variable and value selec-
tion strategies, so care should be taken on their choice.
In our test we use the Smallest variable selection (SVA)
heuristic and Smallest value (SVU) selection heuristic
has defined in [8]. Where SVA selects the maintenance
cost variable (Mci) with the smallest value in the do-
main, and SVU selects the smallest value in the domain
of the variable (smallest maintenance cost). Obviously,
branching is made over the Mci variables.
Besides the cooling schedule parameters, another impor-
tant issue of the LS module is the neighbourhood struc-
ture. The GMS problem is globally a scheduling prob-
lem. This way, similar neighbourhood structures can be
used. One common neighbourhood consists on the per-
mutation of two tasks, although it can be generalized to
any number of tasks. Other neighbourhood consists of
shifting in time one or more tasks. Within CLP all these
neighbourhoods can be easily implemented and possibly
more than one at the same time. For example, to imple-
ment a structure that shifts the scheduling period to the
right, we just need to constraint each variable domain to
a set that includes the current solution value and the
value plus one. Note, however, that with such variables
domain (two values for each variable domain) other
neighbourhoods are explored at the same time. One that
is tested is task pair permutation. In our tests, some of
this neighbourhoods are implemented using a simple
strategy which restricts the domain of n-nfv (n is the
total number of variables and nvf is a number to define)
variables to a single value that corresponds to the value
of the last solution.

4.3 Computational Results
In order to evaluate the QLS method performance, well
as the influence of each one of its parameters, we real-
ized a large number of tests over several GMS instances.
Each instance distinguishes by its size or by the number
and complexity of its constraints. The terminology to
identify the instance is GMS_NT_NU_T, where: NT is
the number of scheduling periods; NU is the number of
units to be schedule; and T the problem class. If NT and
NU are self explanatory and define the instance size, T
is less obvious. T defines the problem class and can take
5 different values, from a to e. Each value indicates a
problem type with different number and complexity of
constraints, being class a the easier and e the difficult to

solve. The idea of having different classes of problems
is to test the capabilities of the QLS method to solve
problems with different difficulty levels relative to the
complexity of the constraints. Note that CLP methods
are very useful to solve problems with few solutions by
opposition to LS methods that perform better in large
search spaces with a lot of solutions. All the tests were
made in 1,8 MHz Pentium PC, with 512Mb of memory,
running Windows XP. Due to the stochastic component
of the method all the presented results correspond to the
average of 10 runs.

4.3.1 Cooling schedule parameters
As referred in section 2.4.1 we use a cooling schedule
based on a geometric function of type Tk+1=α.Tk . This
schedule requires the definition of the initial temperature
T0 and of the cooling rate α. Furthermore, in our case, as
in most of the cases, we use a fast cooling rate but con-
siderer several iterations (NI) at the same temperature.
Naturally, the number of iterations is related to the cool-
ing rate and if one increases the other should decrease
according.
Fig. 3 shows the results obtained with different parame-
ters values for 6 different instances. Each bar graph cor-
responds to best solution cost found in a limited period
of time. However, in order to facilitate the comparison
the cost is given in percentage of the worst cost. This
means that the worst solution found receives 100% and
the others are given in accordance. Note that each colour
corresponds to a different cooling rate α and that NI
corresponds to the number of iterations at the same tem-
perature. The initial temperature was determined ex-
perimentally so that the initial acceptance probability
could be near 1. For the remaining parameters we used a
tabu list of size 10 and the neighbourhood presented in
section 4.2 with nvf equal to 1. In analyzing the results
we can say that the best cooling rate is around 0.95 for
all the tested instances. Furthermore, for values within
the interval [0.93,0.97] we can expect a variation infe-
rior to 20% in the results. As expected, the NI value is
determinant for the performance and should increase
with the size of the instance. Similarly to α a deviation
of NI from the best value inferior to 50% produce a
variation of the results inferior to 20%. Due to space
restrictions we do not show in this paper neither the
results for the other tested instances neither for different
Tabu List sizes.

4.3.2 Neighbourhood Size
As referred in section 4.2 the neighbourhood, used on
these tests, is created by restricting the domain of, n-nvf
randomly selected Mci variables, to a single value that
corresponds to the value each variable had in the last
solution. Note that in case the LS module rejects a
neighbour an alternative neighbourhood can be created
by selecting other nvf variables.

The neighbourhood size is directly related with the nvf
value. In order to test the influence of the neighbour-
hood size we have made some tests with nvf values
varying from 1 to 5. The results were similar for nvf=1
and nvf=2 being the bests among all. For higher nvf val-
ues the results are degraded. We believe that a different
neighbourhood structure could produce different results
with the respect to the nvf value. This issue remains for
future work.

Fig. 2. QLS results for 6 different GMS instances

4.3.3 Comparison with other methods
Table 1 shows the time needed to find the optimal solu-
tion of 5 GMS instances by a pure CLP approach and
the QLS method. The pure CLP corresponds to BBS
method augmented with the Branch and Bound as used
in the CLP module. In fact the QLS method can be a
pure CLP approach if none restriction is made to the
variables domains (the neighbourhood corresponds to
the all search space). As we can see the QLS method
improves significantly the pure CLP approach. Four
some approaches the computation time is reduced by
almost 50%. We believe that the results can even be
better for instances with larger size.
Table 1. Time needed in CPU seconds to find the optimal solution
by the BBS and the QLS method for 5 GMS instances

Instance BBS QLS
GMS_10_24_a 35,3 33,2
GMS_10_24_b 153,2 127,1
GMS_10_24_c 242,1 172,0
GMS_10_24_d 260,0 134,3
GMS_10_24_e 93,2 68,7

5 Conclusions and Future Work
In this paper we presented a hybrid method, named
Quasi Local Search, which uses Simulated Annealing
(SA) augmented with a type of Tabu List to guide the
search globally and CLP to search locally the optimal
solution. The method can also be seen as an integration
framework, once the LS module is independent of the
CLP one and either can be worked independently. Re-
sults of the application of the QLS method to some Gen-
erator Scheduling Maintenance instances show that the
method can improve significantly a pure CLP approach.

As other SA based methods, the QLS requires the set of
certain parameters, namely that of the Cooling Schedule.
Results shown that the empirical indications found in the
literature can also be used to set the QLS parameters.
This conclusion suggests that more successful cooling
schedules can be used for the LS module. This remains
an open issue for future work. Another important issue
of any Local Search based method is the neighbourhood
structure. The QLS method allows the simultaneous
exploration of several traditional problem specific
neighbourhoods. In this work we have shown the results
for a simple neighbourhood creation mechanism that
consist of restricting the domain of all the variables,
except a certain number, to a single value that corre-
sponds to the value the variable had in the last solution.
Results show that with this mechanism, the useful
neighbourhood size is limited. For future work we want
to try other mechanisms. Some work has been done over
this issue with promising results.

References:
 [1] Francesca R. et al., "Constraint Logic Program-
ming," ERCIM Net workshop on constraints, 2000.
[2] Voudouris C., et. al., Solving Large Industrial Prob-
lems using Heuristic Search and Constraint Program-
ming, UNICOM Seminar on Modern Heuristics for De-
cision Support, 1998.
[3] Duong T. and Lam K., Combining Constraint Pro-
gramming and Simulated Annealing on University
Exam Timetabling, RIVF'04, pp. 205-210, 2004.
[4] Gomes N., Vale Z., and Ramos C., "Reduce and
Assign: A CLP and Local Search Integration Framework
to Solve Combinatorial Search Programs," Principles
and Practice of Constraint Programming, 2003.
[5] Jussien N., L. O., Local Search with Constraint
Propagation and Conflict-Based Heuristics, AAAI, 2000.
[6] Shaw P., Using Constraint Programming and Local
Search Methods to Solve Vehicle Routing Problems,"
Principles and Practice of Const. Programming, 1998.
[7] Waterman M., Neighborhood size in the Simulated
Annealing Algorithm, American Journal of Mathemati-
cal and Management Sciences, vol. 8, 1998.
[8] Gomes N., Vale Z., Constraint Based Maintenance
Scheduling of Electric Power Units , 7th IASTED Con-
ference on Power and Energy Systems, pp.55-61, 2003.
[9] Kirkpatrick S. et. al., Optimization by Simulated
Annealing, Science, vol. 220, no. 4598, 1983.
[10] Glover Fred, Tabu Search, part I ORSA Journal on
Computing, vol. 1, pp. 190-206, 1989.
[11] Aarts E., et. al., Simulated Annealing, Local Search
in Combinatorial Optimization, John Wiley, 1997.
[12] Abramson D. and Dang H., Simulated Annealing
Cooling Schedules for the School Timetabling Problem,
Asia-Pacific Journal of OR, vol. 16, 1999.
[13] Gomes N., et. al., "Hybrid Methods for the
Maintenance Scheduling of Generating Units Problems,"
ICKEDS´04, Porto, Portugal , 2004.

