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Abstract: This paper introduces a simple speech recognition approach based on the convolution kernel compensation 

(CKC). The processing method is reveal in detail and applied to a specific vocabulary of 11 Slovenian words suitable 

to control a wheelchair. Experimental results are compared with the outcomes of two more sophisticated approaches, 

i.e. dynamic time warping (DTW) and neural networks (NN). The obtained recognition rates are 67.12 % for NN, 90 % 

for our CKC-based method and 97.72 % for DTW. 
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1   Introduction 

Speech processing is one of the most propulsive research 

fields of today. A variety of recognition and synthesis 

algorithms have been proposed. Recently, most of them 

try to solve problems of man-machine communication 

and automated language interpretation in as natural and 

thorough way as possible. 

An automated speech recognition procedure starts 

with the acoustic signal recording and preprocessing. In 

this stage, it is important to eliminate most of the 

background and measurement noise as well as all 

possible artefacts. Usually, a proper signal pre-

conditioning is achieved by the so-called voice activity 

detection (VAD) algorithms which look for the voiced 

segments of speech, i.e. more or less individual spoken 

words [1]. A well-known fact is that the speech signals 

show a lot of nonstationarity. This prevents a recognition 

based on the entire speech signal segments. The most 

spread technique to cope with speech nonstationarities is 

construction of Mel-frequency cepstral coefficients 

(MFCC) [2]. Computation of cepstral coefficients 

separates the transfer function of vocal tract from the 

excitations. Actually, the excitation is eliminated from 

further processing. As this is done by using a bank of 

Mel-frequency filters, the vocal tract transfer function, 

depicted by the cepstral coefficients, is featured at those 

frequencies only which are most characteristic in human 

speech.  

The obtained speech features do not correspond 

directly to, say, individual phonemes. They merely 

represent successive units of the analysed speech, so the 

sequences of those units form chains of speech states. 

Transition probabilities between the states comply with 

the so-called hidden Markov models [3]. 

Apart from the problem of general speech 

recognition, there are quite frequent situations where a 

limited vocabulary of just a few words satisfies. 

Imagine, for example, ordering goods from a slot-

machine or even verbally controlling a car drive. Very 

similar vocabulary can also be applied in the case of a 

speech-controlled wheelchair. The students in electrical 

engineering and computer science at the Faculty of 

Electrical Engineering and Computer Science, 

University of Maribor in Slovenia, completed such a 

wheelchair by successfully using a neural-network-based 

speech recognition algorithm capable of recognizing 11 

Slovenian words [4].  

Along with the wheelchair project, we also tested the 

efficacy of some widely used speech recognition 

methods experimenting with those 11 Slovenian words 

[5]. In parallel, we preliminary verified a simple 

statistical approach based on the convolution kernel 

compensation (CKC). This paper compares the results 

obtained by CKC with two other approaches, i.e. with 

dynamic time warping (DTW) and neural networks 

(NN). In Section 2, the basics of a novel, CKC-based 

source separation technique is explained. Section 3 

introduces a CKC-based speech recognition algorithm 

for limited vocabularies, while Section 4 uses it for the 

recognition of a corpus of 11 Slovenian words and 

compares the results with those obtained by two 

abovementioned more sophisticated methods. The paper 

is concluded with a discussion in Section 5. 

 

2   CKC-Based Source Separation 

Recapitulate briefly the CKC basics as implemented in 

[6] for pulse source reconstruction and separation. 

Consider the following data model: 
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where:  

[ ]TM nxnxn )(),...,()( 1=x  is a vector of M observations; 

[ ]TK nsnsn )(),...,()( 1=s  describes a vector of K sources 

which are mutually independent over certain period of 

time; 

H is an M×K mixing matrix which stands for the 

convolutive relationship but is otherwise unknown; 

[ ]TM nvnvn )(),...,()( 1=v  is an i.i.d noise vector 

independent from the sources. 

To extend relationship (1) from convolutive to a 

multiplicative MIMO vector form, the vector )(nx  has to 

be augmented by Me delayed repetitions of each 

observation:  
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where Me is assumed to satisfy  
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and L stands for the length of the transmission channel 

responses, i.e. the constituent signal components. 

Extending the noise vector in the same manner, (1) 

can be rewritten in a vector form: 
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He in (4) contains the channel unit sample responses 

hij(l): 
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while the extended vector of sources )(nes takes the 

following form:   
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The correlation matrix of the extended observations 

can be computed as: 
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where 
es

R denotes the correlation matrix of sources and 

)(* nex  stands for the conjugate transpose of )(nex .  

 

2.1 Activity Index 

If the transmission channel responses, i.e. the signal 

components, differ, matrix H has full column rank 

)()( eMLKrank +=H . Then, a so-called activity index 

can be introduced (calculated as Mahalanobius distance):  
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where superscript 
1−
 denotes the matrix inverse and 

)(nv
en

 replaces the impact of all noise. In the noise-free 

case, activity index Ind(n) differs from zero only at those 

time instants where at least one source is active. Its value 

is proportional to the number of simultaneously active 

sources. 

 

2.2 Noise-Free Decomposition 

Suppose only the i-th source active at the time instant n0. 

According to (11), the entire pulse train of this source 

can be reconstructed as 
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where jir ,  denotes the (i,j)-th element of  1−
es

R . 

Once the instants of appearance of the signal 

components, i.e. the source pulse trains, are known, also 

the components themselves can be obtained from the 

given observations–for example, by using the spike-

triggered averaging approach. 

 

3 CKC-Based Speech Recognition 

In the previous section, we explained the basics of the 

CKC approach for blind source separation. It is base d 

on a MIMO model which supposes that the number of 

observations exceeds the number of sources. If this is 

true, the correlation matrix of observations has full 

column rank and, thus, it leads to a thorough source 

separation. Dealing with an underdetermined system, no 

ideal source separation is guaranteed any more. The 

activity index (Eq. (10)) and the decomposed pulse trains 

(Eq. (11)) do not depend only on the sources’ activities 

any more, because the influence of an incompletely 

compensated convolution kernel degrades their features. 

Empirical findings from [6] allude that a thorough 

decomposition is still possible as long as the number of 

sources stays below twice the number of observations. 

On the other hand, an upgraded nonlinear approach from 

[7] proves that even with a single observation, i.e. 

considering a MISO model, one can count on a 

successful blind source separation. 

In the majority of cases, speech signals are recorded 

with one microphone only. This means that just one 

observation is available. If the speech were stationary the 

decomposition method from [7] could be applied. 

Because it is not so, we tried to make use of the signal’s 



compound character and split its voiced segments into 

several intervals of, presumably, stationary activity. We 

followed the findings published elsewhere on the length 

of stationary epochs being about 25 to 30 ms. 

Considering such signal intervals as fundamental and 

independent components, the most natural MISO 

interpretation can be transformed in a MIMO model. 

This new, rather artificial point of view supposes a 

speech segment integrants, i.e. a sequence of stationary 

epochs, become the model outputs appearing at the same 

moment. Of course, the role of the input source 

excitations also changes in that the excitations of given 

consecutive stationary epochs become parallel and 

simultaneous. In the sequel, we are going to encompass 

this new image with an appropriate data model. 

First, assume in Eq. (1) only one noise-free 

observation. Consequently, the convolution kernel H 

shrinks into a convolution vector h1: 
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Now, split this observation into M parts of equal length: 
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To reformulate (12) accordingly, we have to think 

about a modification of h1 and s(n). The input sources 

sj(n); j = 1,…,K, as already defined in (1), reduce in 

number because all the sources that originally trigger at a 

time instant Mi
M

N
inn ,,1;)1(0 K=−+= , now concentra-

te in a single source which triggers at n0. 

Denote these combined sources by uj(n); j = 1,…,Km, 

where Km stands for an unknown number of modified 

sources. On the other hand, the convolution vector h1 

combines into M vectors. Each of them comprises the 

contributions of all the system channel responses (due to 

the original MISO interpretation) that build up the 

corresponding segment of the original observation. So, 

yi(n0) needs all the samples from h1 which, according to 

s(n0), sum up in this very moment, n0. Denote this newly 

obtained convolution kernel of dimensions M×Km by Hm. 

Hence, we are back to a MIMO model which, in a noise-

free case, yields: 
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Eq. (14) may be considered formally the same as (1), 

therefore the decomposition hints derived in Section 2 

up to Eqs. (10) and (11) hold analogously in this new 

situation. 

How can Hm and u(n) be interpreted from a 

standpoint of speech segments, i.e. presumably spoken 

words? By splitting the recorded speech into intervals of 

a length characteristic for the stationary epochs, one can 

consider the rows in Hm contain the corresponding 

stationary speech components. At the same time, u(n) 

stands for the unified artificial sources that trigger all the 

speech components present at n in y(n). 

If the splitting applied in Eq. (13) generates such a 

constellation that M>Km, then a thorough decomposition 

may be foreseen using Eqs. (10) and (11). This 

decomposition is going to separate the artificial sources 

u(n), whereas the convolution kernel Hm would be 

compensated and, thus, its influence eliminated. 

However, a proper extension factor Me must be found 

referring to Eq. (3). 

Taking all this into account, how can a speech 

recognition procedure benefit out of it? Recall the initial 

assumption on a limited vocabulary. For every known 

reference word from this vocabulary a correlation matrix 

Rye can be constructed by combining the derivations 

from Eqs. (14) and (8). Moreover, a learning set of 

speech segments belonging to different classes of words 

may be used in such a way that several words from the 

same class, say the l-th one, contribute to the same 

correlation matrix, say Rye
(l)
. Using Eq. (10), activity 

indexes can be computed for any unknown word with all 

Rye
(l)
: Λ=−= ,,1,1,,0);(
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denotes the number of reference words. 

Empirically, we found out that the mean values of 

activity index Ind
(l)
(n); l = 1,…,Λ, calculated by (10), 

exhibit a minimum at that l which corresponds to the 

correct reference  for an unknown word. Owing to a 

rather high variability of recorded speech in real 

environment, this measure can sometimes give false 

positives with references which are also very close to the 

correct one. Actually, the mean values of activity 

indexes can sometimes be very close together. In such 

cases, we introduce another distinctive measure. Using 

all the reference correlation matrices whose indexes for 

an unknown word are close and under a preselected 

threshold Tm, also the pulse trains according to (1) are 

computed for them. Position n0 which extracts a pulse 

train is taken as a minimum-value sample index in the 

activity index with the lowest mean among all the 

compared activity indexes. Excluding the sample at 

position n0, the pulse train with the lowest variability 

(the smoothest one) is supposed to indicate the most 

thorough kernel compensation. And further, the 

convolution kernel of an unknown word is expected to 

be optimally compensated exactly by the correct 

reference. So, the smoothest pulse train, to our 

experience, sorts out the best kernel compensating 

reference, which means the final decision in our word 

recognition approach. 

 

3.1. Computational Algorithm 

The proposed CKC-based speech recognition method is 

compacted in the following computational steps. 



I. Construction of a base of reference words 

1. Obtain a single measurement of a speech signal. 

2. Filter out the most representative speech frequency 

spectrum (approx. 500 to 1500 Hz). 

3. Apply a VAD search and extract only active parts 

of the signal (presumably separate spoken words). 

4. Truncate the obtained signal segments to a 

preselected length N (say, of duration of 1 s) and 

concatenate them into a learning vector x1(n). 

5. Build a MIMO model using Eqs. (13) and (14)–

mote that the segment length, N, must be a divisible 

by the number of artificial observations, M, 

otherwise the segments must be padded by zeros to 

an appropriate length. 

6. Now, calculate the correlation matrices according 

to Eq. (8) for all the reference words (known 

speech segments) and save them for the recognition 

purposes.  

II. Recognition of unknown speech segments 

1. Record an unknown speech segment and preprocess 

it the same way as in the points I.2, I.3, and I.4 in 

that part talking about the truncation. 

2. Now, we have a speech segment of length N. First, 

calculate its activity indexes according to all known 

reference words (Eq. (10)). Leave out the starting 

and ending transition intervals of length K. 

3. If the mean values of several indexes differ for less 

than Tm, compute their pulse trains (Eq. (11)). The 

extraction position n0 is taken to be at the lowest 

value of the minimum-mean activity index. 

4. Recognise the word: 

• if point II.3 was applied, the pulse train with 

minimum variance decides the correct reference 

word; 

• if point II.3 was skipped, the minimum-mean 

activity index decides the correct reference 

word. 

 

4 Experimental results 

We experimented with a vocabulary of 11 Slovenian 

words, all spoken by the same male person in a real 

room environment, but with all acoustic disturbances 

kept as low as possible. The recordings were done by a 

non-professional, OC multimedia microphone, sampled 

with 11 kHz and 16-bit resolution. 

The recognition results of three different approaches 

will be compared in this paper. Two of them are well-

known methods based on DTW [8] and neural networks 

[9]. Because of limited space, we are not going to 

describe their implementation details which are revealed 

in [5]. In the first place, we are going to enlighten the 

implementation of the proposed CKC-based algorithm 

and show that, in spite of its simplicity, the obtained 

recognition rates are comparable with much more 

sophisticated procedures. 

All our experiments comprised the following words: 

“stop”, “levo” (left), “desno” (right), “naprej” (forward), 

“nazaj” (reverse), “ena” (one), “dva” (two), “tri” (three), 

“štiri” (four), “pet” (five); and “šest” (six). The CKC-

based recognition was performed using the following 

parameter values: 

• speech segment length N = 8000 samples; 

• number of artificially introduced observations (by 

splitting the recorded speech signal), M = 32; 

• extension factor Me = 20; 

• threshold for the similarity of activity indexes, Tm 

= 0.07. 

We recorded a population of 20 instances of each of 

the abovementioned words. The first 10 repetitions were 

used in the learning phase for a construction of the 

correlation matrices Rye
(l)
. The remaining 10 repetitions 

were included in the recognition process as unknown 

words. 

Fig. 1 depicts the truncated and aligned speech 

segments of the words “stop” (top), “nazaj” (middle), 

and “šest” (bottom). These “unknown” segments were 

compared with all reference words by computing their 

activity indexes. The results are depicted in Fig. 2. 

Separate subfigures belong to “stop” (2.a), “nazaj” (2.b), 

and “šest” (2.c). Every subfigure show 11 plots, for each 

reference word one. These plots belong to the 

corresponding activity indexes calculated according to 

Eq. (10). The index of the correct reference word is 

exposed by a dotted line in all cases. It is clearly visible 

that the activity indexes of correct references compute 

the minimum means for all thee given words. 

Fig. 1: Time-domain signals of three spoken words: “stop” 

(top), “nazaj” (middle), “šest” (bottom). 



Fig. 2.a: Activity indexes for an example of spoken word 

“stop”; the lowest dotted (red) line belongs to the 

correct reference word.   

Fig. 2.b: Activity indexes for an example of spoken word 

“nazaj”; the lowest dotted (red) line belongs to the 

correct reference word. 

Fig. 2.c: Activity indexes for an example of spoken word 

“šest”; the lowest dotted (red) line belongs to the 

correct reference word. 

 

The average recognition rates for the whole 

vocabulary under investigation are gathered in Table 1, 

the second column. Table 1 also depicts the recognition 

results for the DTW-based and NN-based approaches as 

reported in [5]. It is to be emphasised that the 

experiments in conjunction with [5] were conducted on 

larger populations of the 11 words under investigation. 

The corpus in the learning phase was 10 instances for 

each word when applying DTW, and from 20 to 80 

when applying neural networks. The subsequent 

recognition was carried out with 60 instances of each 

class of words.  

 
Table 1: Recognition rates for 11 Slovenian words comparing 

the recognition rates for the proposed CKC approach 

with NN- and DTW-based methods; CKC and DTW 

learnt on 10 instances of each reference word, while 

NNs used 80 instances. The recognition rates are 

reported for a corpus of 10 speech segments for each 

reference in the case of CKC, whereas DTW and 

NNs worked on 60 segments each. 

Spoken 

words 

Word 

recognition 

rate using 

CKC 

Word 

recognition 

rate using 

NNs 

Word 

recognition 

rate using 

DTW 

“stop” 100.00 78.33 93.33 

“levo” 100.00 83.33 100.00 

“desno” 80.00 81.66 98.33 

“naprej” 100.00 25.00 100.00 

“nazaj” 70.00 81.66 100.00 

“ena” 100.00 76.66 100.00 

“dva” 100.00 8.33 93.33 

“tri” 90.00 91.66 100.00 

“štiri” 100.00 70.00 100.00 

“pet” 50.00 78.33 90.00 

“šest” 100.00 70.00 100.00 

Average 

recognition 

rate 

90.00 67.12 97.72 

 

 

5 Discussion and Conclusions 

The three speech processing methods compared in this 

paper rely on a two-phase recognition: firstly, reference 

templates are built and, secondly, an unknown speech 

segment is mapped onto the space of those templates. 

Different distance measures in this space are used to find 

a minimum-distance template. Both processing phases 

must take care of the nonstationarity of the speech. 

In the case of a limited vocabulary, the reference 

templates correspond to the classes of the words from 

this dictionary. Our experiments dealt with 11 Slovenian 

words selected to control a wheelchair.  



DTW- and NN-based recognition commences with 

MFCC and generates sets of 13 cepstral coefficients 

(CC). These contain the most important speech 

information, i.e. the information on the vocal tract 

response and the pitch, obtained through consecutive 

speech epochs within the selected frequency bands, 

which evades the nonstationarities. The recognition 

phase is different for the two approaches. DTW tries to 

warp the unknown sets of CC along the corresponding 

sets of reference templates. The established minimum-

length path indicates the closest reference word. On the 

other hand, NN-based decision implements Kohonen’s 

self-organising maps (SOM) in order to decide the most 

probable reference word. 

Our CKC-based recognition algorithm does not enter 

the cepstral domain, but tries to align the stationary 

epochs of a speech segment into a multichannel signal 

structure. This is then treated by blind system 

identification based on the MIMO modelling. Firstly, the 

reference templates are built as the correlation matrices 

of aligned multiple speech-segment epochs. The 

recognition, however, is implemented by a new measure 

based on the CKC approach, explained in the previous 

sections. 

The proposed solution is rather simple, but in the 

case of a very limited vocabulary the obtained results are 

quite comparable to those obtained sophisticated 

recognition methods. DTW does somewhat better, which 

can be explained by its inherent adaptability to, and an 

optimal trade-off for, the variability inside and among 

the speech segments containing the same spoken word. 

Although the SOM training was done with 80 

instances of each word class, and the correlation 

matrices for our CKC-based approach were built only 

with 10 instances, CKC outperforms NNs. The obtained 

average recognition rate for NNs is at 67.12 %, while for 

CKC it yields 90.00 % (see Table 1). DTW surpasses 

other two approaches owing to the reasons already 

mentioned and achieves up to 97.72 % of recognised 

words, on average. 

Some interesting phenomena have been observed 

when developing the CKC-based recognition. The 

activity indexes, for example, have approximately the 

same value in all the cases when their calculation implies 

a correct reference. At the same time, they are also very 

smooth, with a minimum degree of variance. On the 

other hand, when the correlation matrix, i.e. the 

reference template, is not the correct one, the indexes 

tend to increase their average values up to several ten 

times and become much wavier (see Fig. 2). Further 

research will be aimed at a deeper understanding of 

those phenomena.  
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