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Abstract: In model-driven development, architecture descriptions and their refinements are explicitly represented and manipulated as 
models. π-ADL and π-ARL are formal (executable) architecture description and refinement languages providing architecture-centric 
modelling constructs. When applied, refinement actions expressed in π-ARL refine architecture description models described in 
π-ADL outputting new refined models described in π-ADL. Enabling model-driven refinement of software architectures is a new 
challenge for the model-driven development of complex software systems. This paper gives an overview of π-ARL and illustrates the 
expressiveness and usefulness of model-driven refinement with π-ARL through a case study. 
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1 Introduction 
Software architecture has emerged as an important 
subdiscipline of software engineering. Enabling stepwise 
model-driven refinement of software architectures is a new 
challenge for the model-driven development of complex 
software systems. 
 All forms of engineering rely on models to build systems. 
Models are at the heart of the ArchWare1 approach. Indeed, 
ArchWare supports full model-driven development, i.e. the 
system models have sufficient detail to enable the generation of 
a full software application from the models themselves. Indeed, 
“the model is the code”, i.e. the focus is on modelling and code 
is mechanically generated from models. In ArchWare, models 
are architecture-centric (run-time) models. They are executable 
and support analysis and refinement. 
 In ArchWare model-driven development, architecture 
description and its stepwise refinement are explicitly 
represented and manipulated as models. In stepwise 
refinement, software architectures are designed such that: 
• the architecture description starts at a high level of 

abstraction, 
• subsequent refinement steps reveal further details, 
• each refinement step decreases underspecification, in the 

sense of “yet unfinished” parts, of the previous architecture 
description. 

An important feature of refinement languages in model-driven 
development is the integration of description and 
transformation constructs into the same framework, so that a 
smooth transition can be made from an abstract, 
platform-independent model, down to a concrete, 
platform-specific model of the system. Thus, an abstract – 
platform-independent – architecture description can be refined 
to a concrete – platform- specific – architecture description 
following a Model-Driven Architecture approach [4]. Figure 1 
depicts the ArchWare model-driven approach for describing 
and refining architectural models [16]. 

                                                           
1  The ArchWare European Project is partially funded by the 

Commission of the European Union under contract No. 
IST-2001-32360 in the IST-V Framework Program (2002-2005). 

 
Figure 1. Model-Driven Development in ArchWare 

In order to support model-driven architecture refinement, a 
formal language should be able to cope with underspecification 
and very high-level descriptions. During successive stages, it 
should be possible to complete and refine the initial model, 
until the intended system is precisely described. At each stage 
the intermediate model should be reified; in fact, the outcome 
of each refinement action should provide a guiding principle for 
the decisions in the next refinement action. 
 Formally, some refinement step carries a proof obligation, 
since it should be verified that the refined model does not 
introduce any behaviour that is excluded by the higher-level 
model. It is a proof obligation of each refinement action to 
formally verify that these assumptions hold. 
 In order to support model-driven refinement of software 
architectures, a novel architecture refinement language has 
been designed in ArchWare: π-ARL [14]. π-ARL is an 
executable model-driven architecture refinement language 
providing architecture-centric refinement primitives and 
constructs for their compositions. When applied, refinement 
actions expressed in π-ARL refine architecture description 
models described in π-ADL [13][15] outputting new refined 
models described in π-ADL. 
 This paper gives an overview of π-ARL (including a brief 
presentation of π-ADL), and then illustrates the expressiveness 
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and usefulness of model-driven refinement with π-ARL 
through a case study. The case study addresses the description 
and refinement of the software architecture of a login system. It 
covers a simple, yet frequent, model-driven architecture 
refinement that would be problematic for most other refinement 
techniques. Several refinement steps are performed, each 
dealing with a simple refinement, in order to achieve a more 
concrete architecture. The remainder of the paper is organised 
as follows. Section 2 briefly describes the ArchWare 
architectural languages π-ADL and π-ARL. Section 3 presents 
the case study. Section 4 compares π-ARL with related work 
and section 5 concludes this paper. 
 
2 Architectural Languages 
The ArchWare architectural languages comprise an 
architecture description language, the π-ADL, and an 
architecture refinement language, the π-ARL. A detailed 
description of π-ADL, illustrated with examples, is provided in 
[13] and a detailed description of π-ARL, also illustrated with 
examples, is provided in [14]. 

2.1 π-ADL Architecture Description Language 
π-ADL [13] supports description of software architectures from 
a runtime perspective. In π-ADL, an architecture is described in 
terms of components, connectors, and their composition. Figure 
2 depicts its main constituents2. 
 Components are described in terms of external ports and an 
internal behaviour. Their architectural role is to specify 
computational elements of a software system. The focus is on 
computation to deliver system functionalities. 
 Ports are described in terms of connections between a 
component and its environment. Their architectural role is to 
put together connections providing an interface between the 
component and its environment. Protocols may be enforced by 
ports and among ports. 
 Connections are basic interaction points. Their architectural 
role is to provide communication channels between two 
architectural elements. Connections may be unified to enable 
communication. 

<<component>>
<<connection>> <<connector>><<connection>>

<<unification>>

<<port>>
<<port>>

<<port>>

<<component>>

<<port>>

<<unification>>

Figure 2. Architectural concepts in π-ADL 
A component can send or receive values via connections. They 
can be declared as output connections (values can only be sent), 
input connections (values can only be received), or input-output 
connections (values can be sent or received). 

                                                           
2  The UML Profile for π-ADL is used for presenting diagrammatic 

models. 

 Connectors are special-purpose components. They are 
described as components in terms of external ports and an 
internal behaviour. However, their architectural role is to 
connect together components. They specify interactions among 
components. 
 Therefore, components provide the locus of computation, 
while connectors manage interaction among components. In 
order to have actual communication between two components, 
there must be a connector between them.  
 A connection provided by a port of a component is attached 
to a connection provided by a port of a connector by unification 
or value passing. Thereby, attached connections can transport 
values (that can be data, connections, or even architectural 
elements). 
 From a black-box perspective, only ports (with their 
connections) of components and connectors and values passing 
through connections are observable. From a white-box 
perspective, internal behaviours are also observable. 
 Components and connectors can be composed to construct 
composite elements, which may themselves be components or 
connectors.  Composite elements can be decomposed and 
recomposed in different ways or with different components in 
order to construct different compositions. 
 Composite components and connectors comprise external 
ports (i.e. observable from the outside) and a composition of 
internal architectural elements. These external ports receive 
values coming from either side, incoming or outgoing, and 
simply relay it to the other side keeping the mode of the 
connection. Ports can also be declared to be restricted. In that 
case, constituents of composite elements can use connections of 
restricted ports to interact with one another but not with 
external elements. 
 Architectures are composite elements representing systems. 
An architecture can itself be a composite component in another 
architecture, i.e. a sub-architecture. 

2.2 π-ARL Architecture Refinement Language  
Software applications are usually developed in several 
refinement steps. In π-ARL, the underlying approach for 
architectural refinement is underspecification. The decrease of 
this underspecification establishes a refinement relation for 
architectural elements. 
 The refinement relation in π-ARL, from an external or 
internal point of view, comprises four forms of refinement: 
behaviour, port, structure, and data refinements. The most 
fundamental notion of refinement in π-ARL is behaviour 
refinement. The other forms of refinement imply behaviour 
refinement modulo port, structure and data mappings. 
 In general, architectural refinement is a combination of the 
four forms of refinement. For instance, an architect can define 
an abstract architecture, then “data” refine that architecture in 
order to introduce base and constructed data types, then “port” 
refine the architecture to have ports with finer grain 
connections carrying data of different types, then “structure” 
refine its composite behaviour by adding new finer grain 
connectors, and so on. 
 π-ARL provides constructs for defining refinements of the 
four forms cited so far, according to external or internal points 
of view. Composite refinements can be defined in terms of 
refinement primitives and composite refinements themselves. 
Refinement primitives comprise: 
• adding, removing, replacing or transforming data type 

declarations of an architecture, 

 



• adding, removing, replacing or transforming ports of an 
architecture, 

• adding, removing, replacing or transforming output and 
input connections of ports of an architecture, 

• transforming the behaviour of an architecture or the 
behaviour of a component or connector in an architecture, 

• adding, removing, replacing or transforming components or 
connectors in an architecture, 

• exploding or imploding components or connectors in an 
architecture, 

• unifying or separating connections of ports in an 
architecture. 

These primitives, applied step by step, allow the incremental 
transformation of an architecture description. These 
transformations are enforced to be refinements if preconditions 
of refinement primitives are satisfied and proof obligations 
discarded. A refinement engine based on rewriting logics runs 
the refinement descriptions expressed in π-ARL generating 
further refined architectures. Code is generated from refined 
(concrete) architectures. 
 
3 Case Study 
In order to illustrate how π-ARL can be used to formally 
support the model-driven refinement of a software architecture, 
we present in this section a case study on the stepwise 
refinement of the abstract architecture of a login system. First 
we will present the abstract architecture description of the login 
system with π-ADL. Then we will refine the abstract 
architecture with π-ARL in order to obtain a more concrete 
architecture. 

3.1 Describing the Architecture with π-ADL 
To start, let us present the abstract architecture description of 
the login system. We will present a black-box description of the 
architecture focusing on interface (i.e. ports and their 
connections) of components and connectors. Then we will 
present, as an example, the internal behaviour of a connector. 
Finally the encompassing structure (i.e. binding among 
components and connectors using connection unifications) is 
described. 
 The login system supports the creation of new logins by 
receiving a new user identification (userId) and a password to 
be stored under this userId. Concurrently, it supports checking 
of existing logins by answering requests for the password of a 
certain existing userId by sending the password stored under 
this userId. 
 Using π-ADL, the login system, seen as a whole, can be 
formally described as follows.  

 
architecture LoginManager is abstraction() { 
 type UserId is Any. type Password is Any. 
 type Login is tuple[UserId, Password]. 
 port update is {  connection in is in(Login) }. 
 port request is { connection userId is in(UserId). 
                               connection password is out(Password) 
 }   assuming {  
  protocol is { (  via userId receive any. true*.  
     via password send any )* }  
 }. 
 … 
} 

   

In this interface description of the login system, it is represented 
as a composite component, named LoginManager, having 
ports3 update and request. These ports represent the interaction 
of the LoginManager system with its environment. Type 
UserId is the set of all possible userIds and type Password is the 
set of all possible passwords. Login is the tuple type 
tuple[UserId, Password], i.e. the set of all possible logins 
associating userId and password. Two ports are declared: 
update that comprises the connection in for receiving new login 
entries and request that comprises the connections userId and 
password for answering requests. The protocol enforced by this 
port is that requests for the password of a certain userId, which 
are received via the connection userId, are answered by sending 
(after processing) a password via the connection password. For 
each userId received there must be a password sent before 
accepting the next userId. 
 The login system is composed of a login user interface (UI) 
and a login database manager. The login UI acts as a client of 
the database manager that acts as a server managing the login 
data. A new login entry received from the environment first 
undergoes some processing in the login UI and is then 
forwarded to the remote database manager that stores its data. 
Figure 3 outlines the abstract architecture of the system in terms 
of its components and connectors. 

update

LoginManager

request

outgoing incomingincoming

NewLoginUI
Link

LoginDB

selectoutgoing incoming

Figure 3: Outline of the abstract architecture 
The architecture consists of a login UI component 
NewLoginUI, a database manager component LoginDB, and a 
connector Link to connect them together. These components 
and connector can be formally described in π-ADL as follows. 

component NewLoginUI is abstraction() { 
 type UserId is Any. type Password is Any.  
 type Login is tuple[UserId, Password]. 
 port incoming is { connection in is in(Login) }. 
 port outgoing is { connection toLink is out(Login) }. 
 … 
}  assuming {  
 protocol is { (  via incoming::in receive any. true*.  
   via outgoing::toLink send any )* }  
} 

 
 

In component NewLoginUI, two ports are declared: incoming 
that comprises the connection in for receiving new login entries 
and outgoing that comprises the connection toLink for 
forwarding these logins. The protocol enforced by the two ports 
is that a value received via the connection in is (after 
processing) forward by sending it via the connection toLink. 
For each new login entry received there must be a login sent 
before accepting the next new login. 

                                                           
3  By syntactic convention, ports that are not explicitly 

declared as restricted are external free ports. 

 



 
component LoginDB is abstraction() { 
 type UserId is Any. type Password is Any.  
 type Login is tuple[UserId, Password]. 
 port select is {  connection userId is in(UserId).  
   connection password is out(Password) 
 }  assuming {  
  protocol is { (  via userId receive any. true*.  
     via password send any )* }  
 }. 
 port incoming is { connection fromLink is in(Login) }. 
 … 
} 

 
 

In component LoginDB, two ports are declared: select that 
comprises the connection userId for receiving userId values and 
the connection password for sending the password value stored 
under this userId, and incoming for receiving new login entries 
to be stored. 

 

connector Link is abstraction() { 
 type UserId is Any. type Password is Any.  
 type Login is tuple[UserId, Password]. 
 port incoming is { connection toLink is in(Login) }. 
 port outgoing is { connection fromLink is out(Login) }. 
 … 
}  assuming { 
 protocol is { (  via incoming::toLink receive login : Login.  
    via outgoing::fromLink send login )* }  
} 

 
 

In connector Link, two ports are declared: incoming that 
comprises the connection toLink for receiving login entries and 
outgoing that comprises the connection fromLink for 
forwarding these entries. The protocol enforced by the two 
ports is that login entries received via the connection toLink are 
immediately forward by sending it via the connection fromLink. 
 This black-box description of the LoginManager 
architecture can be further detailed to achieve a white-box 
description of the architecture that encompasses interface, 
behavioural and structural aspects. For instance, the behaviour 
of the connector Link can be formally described in π-ADL as 
follows. 

 

connector Link is abstraction() { 
 … 
 behaviour is { 
  via incoming::toLink receive login : Login.  
  via outgoing::fromLink send login.  
  behaviour() 
 } 
} assuming { … }  

 
 

In connector Link, the behaviour specifies that login entries 
received via the connection toLink are immediately forward by 
sending it via the connection fromLink. The behaviour is 
recursively defined. Once a login entry is handled, it continues 
with the same (recursive) behaviour for the next entry. 
 Using the components NewLoginUI and LoginDB and the 
connector Link, the abstract architecture LoginManager can be 
composed in π-ADL as shown below, thereby providing the 
structure of the architecture in terms of attached components 
and connector. 

architecture LoginManager is abstraction() { 
 … 
 behaviour is  compose { ui is NewLoginUI()  
   and  lk is Link() 
   and db is LoginDB() 
}  where {  ui::incoming relays update 
 and  ui::outgoing unifies lk::incoming 
 and lk::outgoing unifies db::incoming 
 and  request relays db::select 
 } 
} 

 
 

In the architecture, the component instances ui and db are 
connected using the connector lk. In order to actually connect 
them, connections must be unified4. Connection toLink of port 
outgoing of component UI is unified with connection toLink of 
port incoming of connector lk. Connection fromLink of port 
outgoing of connector lk is unified with connection fromLink of 
port incoming of component db. 
 Besides connecting component instances together, the 
architecture must express the binding between external ports 
and ports of components. This binding is expressed by 
connection relay. Connection in of external port update is 
relayed to connection in of port incoming of component UI. 
Connection userId of external port request is relayed to 
connection userId of port select of component db. Connection 
password of port select of component db is relayed to 
connection password of external port request. 

3.2 Refining the Architecture with π-ARL 
The software architect can refine the previously described 
abstract architecture to obtain a more concrete architecture 
where, for instance, security is improved. This could be 
achieved by encrypting the passwords that are transmitted: for 
each new login entry, the NewLoginUI will encrypt the 
password to transmit and the LoginDB will decrypt it to store in 
the database. 
 The architect is not interested in the algorithmic aspects of 
the password encryption. S/he just consider that the encrypted 
password is itself an element of Password, and that there is a 
function encrypt : Password → Password that handles the 
encryption for a single password in the login UI. Another 
function decrypt : Password → Password decrypts the 
passwords.  S/he can assume that for all password: 
decrypt(encrypt(password)) = password. 
 In order to refine the architecture, the following actions 
could be carried out. The NewLoginUI could be extended with 
an encrypting component. For each new login entry the 
password related to a userId is encrypted and forwarded. The 
LoginDB could be extended with a decrypting component to 
decrypt passwords received. 
 One possible architectural refinement to achieve this 
architecture is to introduce two components, Encryptor and 
Decryptor, that encrypts and decrypts passwords, respectively. 
 In the sequel, we present how this model-driven refinement 
can be carried out with π-ARL by a software architect. 
 

                                                           
4  If connections have the same names in different ports, 

identifying ports is enough to express unifications (if 
connection names are different, then they must be 
explicitly unified). 

 



1st step: adding components 
As first step, the architect could introduce the two new empty 
components, Encryptor and Decryptor. They should not be 
connected to any other component in the architecture.  
 In π-ARL, this refinement could be expressed as follows. 
 

architecture LoginManagerRef1 refines LoginManager using { 
 components includes { Encryptor is abstraction() { deferred }  }. 
 components includes { Decryptor is abstraction() { deferred }  } 
} 

 
 

Note that the behaviours of the components that have been 
added are completely undefined. It is worth noting that these 
refinement actions do not change the behaviour of the 
architecture. 
2nd step: adding output and input connections 
The architect could now add a typed output connection 
toCoLink to Encryptor, a typed output connection toDLLink to 
Decryptor, and an output connection toENLink to NewLoginUI. 
S/he could also add an input connection fromENLink to 
Encryptor, an input connection fromCoLink to Decryptor, and 
input connection fromDLLink to LoginDB.  
 In π-ARL, this refinement could be expressed as follows. 
 

architecture LoginManagerRef2 refines LoginManagerRef1 using { 
 Encryptor::types includes { UserId is Any. Password is Any.  
  Login is tuple[UserId, Password] }. 
 Decryptor::types includes { UserId is Any. Password is Any.  
  Login is tuple[UserId, Password] }. 
 Encryptor::connections includes  
  { toCoLink is out(Login). fromENLink is in(Login) }. 
 Decryptor::connections includes  
  { toDLLink is out(Login).  fromCoLink is in(Login) }. 
 NewLoginUI::connections includes {  
  outgoing::toENLink is out(Login) }. 

 LoginDB::incoming::connections includes  {  

  fromDLLink is in(Login) } 
} 

 
 

The behaviour of the system itself is unchanged, since the new 
connections are not yet used in the architecture. 
3rd step: adding and connecting connectors 
The architect could now add connectors CoLink to connect the 
Encryptor and the Decryptor, ENLink to connect the Encryptor 
and the NewLoginUI, and DLLink to connect the Decryptor and 
the LoginDB.  
 Of course, the addition of connectors could, as they are 
first-class citizens as components, follow the same basic steps: 
addition of connectors without connections, addition of output 
connections, and addition of input connections. 
 The behaviour of the system itself is unchanged, since the 
connections toENLink and fromDLLink added to the 
NewLoginUI and the LoginDB respectively are not yet used by 
their behaviours in the architecture.  
 In π-ARL, this refinement could be expressed as follows. 

architecture LoginManagerRef3 refines LoginManagerRef2 using { 
 connectors includes { 
  CoLink is abstraction() { 
   connection toCoLink is in(Any). 
   connection fromCoLink is out(Any). 
   behaviour is { deferred } 
  }. 
  ENLink is abstraction() { 
   connection toENLink is in(Any). 
   connection fromENLink is out(Any). 
   behaviour is { deferred } 
  }. 
  DLLink is abstraction() { 
   connection toDLLink is in(Any). 
   connection fromDLLink is out(Any). 
   behaviour is { deferred } 
  }. 
connections unifies { CoLink::toCoLink with Encryptor::toCoLink.  
 CoLink::fromCoLink with Decryptor::fromENLink.  
 ENLink::toENLink with NewLoginUI::outgoing::toENLink.  
 ENLink::fromENLink with Encryptor::fromENLink.  
 DLLink::toDLLink with Decryptor::toDLLink.       
 DLLink::fromDLLink with LoginDB::incoming::fromDLLink } 
} 

 
 

4th step: refining the behaviour of added components 
The architect could now refine the behaviour of added 
components in π-ARL. The Encryptor and Decryptor 
components could be refined as follows. 

architecture LoginManagerRef4 refines LoginManagerRef3 using { 
 Encryptor::behaviour becomes abstraction() { 
  encrypt is function(p : Password) : Password { deferred }. 
  replicate   
   via fromENLink receive log : Login.  
   via toCoLink send tuple(log::userId, encrypt(log::password))  
 }. 
 Decryptor::behaviour becomes abstraction() { 
  decrypt is function(p : Password) : Password { deferred }. 
  replicate   
   via fromCoLink receive log : Login.  
   via toDLLink send tuple(log::userId, decrypt(log::password))  
 } 
} 

 
 

The Encryptor applies the encryption function to the password 
received from its input connection to send the encrypted 
password via its output connection. The Decryptor applies the 
decryption function to the encrypted password received from its 
input connection to send the decrypted password via its output 
connection.  
 As the behaviour of these components were unspecified, 
that is their specifications were deferred until now, this 
refinement is obviously correct. The structure of the system 
remains unchanged. 
5th step: refining the behaviour of added connectors 
The architect could now refine the behaviour of added 
connectors to carry the login entries by ENLink, the encrypted 
login entries by CoLink and the decrypted login entries by 

 



DLLink. This is accomplished by refining the behaviour of 
these connectors as follows. 
 

architecture LoginManagerRef5 refines LoginManagerRef4 using { 
 ENLink::behaviour becomes abstraction() 
  replicate  via toENLink receive log : Lo
    via fromENLink send log 
 }. 
 CoLink::behaviour becomes abstraction() { 
  replicate  via toCoLink receive log : Logi
    via fromCoLink send log 
 }. 
 DLLink::behaviour becomes abstraction() { 
  replicate  via toDLLink receive log : Logi
    via fromDLLink send log 
 } 
} 

 

{ 
gin. 

n. 

n. 

 

6th step: refining the behaviour of existing 
components 
The architect could now refine the behaviour of existing 
components of the abstract architecture in order to take into 
account the new introduced components and connectors. This is 
accomplished by refining the behaviour of the NewLoginUI and 
LoginDB as follows. 
 

architecture LoginManagerRef6 refines LoginManageRef5 using { 
 component NewLoginUIRef1 refines NewLoginUI using { 
  connections replaces outgoing::toLink by outgoing::toENLink 
 }. 
 component LoginDBRef1 refines LoginDB using { 
  connections replaces incoming::fromLink  
  by incoming::fromDLLink 
 } 
}  assuming { 
 property passwordIntegrity is  
           { forall p : Password | decrypt(encrypt(p)) = p } 
} 

 
 

The architect assumes that encrypting and decrypting the 
password via CoLink yields the same password as that 
transmitted through Link. Formally: 

∀ p : Password • decrypt(encrypt(p)) = p 
That is, in order to guarantee that the value-passing behaviour 
of the new architecture refines the value-passing behaviour of 
the abstract architecture, the architect assumes that this 
property will hold in the system. In fact, it becomes a proof 
obligation. Thereby, if the assumption holds, the refinement is 
guaranteed. 
7th step: removing disconnected connectors 
After this refinement, the connector Link is no more used and 
can therefore be discarded by the architect. 
 

architecture LoginManagerRef7 refines LoginManagerRef6 using { 
 connectors excludes Link  
} 

 
 

The following figure depicts the resulting architecture. 
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Figure 4. More concrete architecture 

8th step: imploding sub-architectures as components 
In the last refinement step, in order to get a concrete 
architecture that is better structured, the architect could implode 
the NewLoginUI and the Encryptor as one component and the 
LoginDB and the Decryptor as another. Figure 4 depicted the 
architecture before this refinement step. Imploding 
sub-architectures as components yielding a composite 
CoNewLoginUI and a composite CoLoginDB can be expressed 
in π-ARL as follows. 

architecture CoLoginManager refines LoginManagerRef7 using { 
 components implodes { NewLoginUIRef1  
  and ENLink and Encryptor } as CoNewLoginUI. 

components implodes { LoginDBRef1  
 and DLLink and Decryptor } as CoLoginDB 

} 
 

 

The following figure shows the architecture after that 
refinement step, comprising composite components. 
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Figure 5. Imploding sub-architectures as components 

After the application of all these refinement steps, the 
transformations yield a more concrete architecture, encrypting 
and decrypting passwords that are passed between NewLoginUI 
and LoginDB. The architecture that is obtained by refinement is 
behaviourally equivalent to the initial abstract architecture, but 
is more detailed with respect to security-related features. 
Composing refinement actions for reuse 
A composite refinement action can then be defined in π-ARL 
by combining these different refinement steps in order to 
capitalize this refinement expertise. This composite refinement 
action can then be applied on different abstract architectures 
yielding the same kind of transformations. 

 



4 Related Work 
Enabling stepwise architecture refinement is a new challenge 
for the architecture-centric model-driven development of 
complex software systems. With the exception of a variant of 
FOCUS [19], i.e. FOCUS/DFA [17], RAPIDE [9] and SADL 
[12], there is no proposal for a rigorous calculus based on 
architectural terms as there are rigorous calculus for refinement 
of programs [2][3]. In the case of SADL the refinement is only 
structural. In the case of RAPIDE it is only behavioural 
(supported by simulations). In both cases, clear architectural 
primitives for refining architectures are not provided and the 
refinement supported is only partial. π-ARL like the B [1] and Z 
[7] formal methods, provides operations to transform 
specifications. However, unlike FOCUS, B and Z, π-ARL has 
been specially designed to deal with architectural elements of 
any architectural style. 
 
5 Concluding Remarks 
π-ARL provides a novel language that on the one side has been 
specifically designed for architectural refinement taking into 
account refinement of behaviour, port, structure, and data from 
an architectural perspective and on the other side is based on 
preservation of properties. The core of π-ARL is a set of 
architecture transformation primitives that support refinement 
of architecture descriptions. Transformations are refinements 
when they preserve properties of the more abstract architecture. 
Core properties are built-in. Architectural style-specific or 
architecture-specific properties are user defined. The 
underlying foundation for architected behaviours [5][6] is 
based on the higher-order typed π-calculus [11] [18]. 
 Refinement actions are defined in π-ARL (using a textual 
notation – presented in this paper – or a visual notation – under 
development). These actions can be combined to carry out 
complex refinements. Assumptions made during refinement are 
proof obligations to guarantee the correctness of the 
refinements. They can be mechanically checked using the 
π-ARL toolset [10] that includes a refinement engine 
interpreting π-ARL and orchestrating a model checker, a prover 
and specific evaluators. 
 π-ARL provides the required key features for supporting 
formal architecture-centric model-driven development. Thus, 
an abstract – platform independent – architecture can be refined 
to a concrete – platform specific – architecture following a 
Model-Driven Architecture approach [4]. 
 By addressing software development as a set of 
architecture-centric model refinements, the refinements 
between models become first class elements of the software 
engineering process. This is significant because a great deal of 
work takes places in defining these refinements, often requiring 
specialized knowledge on source and target abstraction levels, 
for instance knowledge on the source application logics and on 
the targeted implementation platforms. Efficiency and quality 
of software systems can be improved by capturing these 
refinements explicitly and reusing them consistently across 
developments. Thereby, user-defined refinement steps can be 
consistently defined, applied, validated, and mechanically 
automated with π-ARL. 
 Both π-ADL and π-ARL have been applied in several 
industrial case studies and pilot projects at Thésame (France) 
and Engineering Ingegneria Informatica (Italy). The pilot 
project at Thésame aimed to architecting and refining agile 
integrated business process systems. The pilot project at 

Engineering Ingegneria Informatica aimed to architecting and 
refining federated knowledge management systems. 
 Future work is mainly related with the formal development 
of an architecture-centric formal method. This formal method, 
called the π-Method, like formal methods such as B, FOCUS, 
VDM [8], and Z, aims to provide full support for formal 
development. Unlike these formal methods that do not provide 
any architectural support, the π-Method has been built from 
scratch to support architecture-centric model-driven 
development. 
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