
Model-Driven Refinement of Software Architectures with π-ARL

FLAVIO OQUENDO
University of South Brittany

VALORIA – BP 573 – 56017 Vannes Cedex
FRANCE

Abstract: In model-driven development, architecture descriptions and their refinements are explicitly represented and manipulated as
models. π-ADL and π-ARL are formal (executable) architecture description and refinement languages providing architecture-centric
modelling constructs. When applied, refinement actions expressed in π-ARL refine architecture description models described in
π-ADL outputting new refined models described in π-ADL. Enabling model-driven refinement of software architectures is a new
challenge for the model-driven development of complex software systems. This paper gives an overview of π-ARL and illustrates the
expressiveness and usefulness of model-driven refinement with π-ARL through a case study.

Key-Words: Stepwise Refinement, Model-Driven Development, Software Architectures

1 Introduction
Software architecture has emerged as an important
subdiscipline of software engineering. Enabling stepwise
model-driven refinement of software architectures is a new
challenge for the model-driven development of complex
software systems.
 All forms of engineering rely on models to build systems.
Models are at the heart of the ArchWare1 approach. Indeed,
ArchWare supports full model-driven development, i.e. the
system models have sufficient detail to enable the generation of
a full software application from the models themselves. Indeed,
“the model is the code”, i.e. the focus is on modelling and code
is mechanically generated from models. In ArchWare, models
are architecture-centric (run-time) models. They are executable
and support analysis and refinement.
 In ArchWare model-driven development, architecture
description and its stepwise refinement are explicitly
represented and manipulated as models. In stepwise
refinement, software architectures are designed such that:
• the architecture description starts at a high level of

abstraction,
• subsequent refinement steps reveal further details,
• each refinement step decreases underspecification, in the

sense of “yet unfinished” parts, of the previous architecture
description.

An important feature of refinement languages in model-driven
development is the integration of description and
transformation constructs into the same framework, so that a
smooth transition can be made from an abstract,
platform-independent model, down to a concrete,
platform-specific model of the system. Thus, an abstract –
platform-independent – architecture description can be refined
to a concrete – platform- specific – architecture description
following a Model-Driven Architecture approach [4]. Figure 1
depicts the ArchWare model-driven approach for describing
and refining architectural models [16].

1 The ArchWare European Project is partially funded by the

Commission of the European Union under contract No.
IST-2001-32360 in the IST-V Framework Program (2002-2005).

Figure 1. Model-Driven Development in ArchWare

In order to support model-driven architecture refinement, a
formal language should be able to cope with underspecification
and very high-level descriptions. During successive stages, it
should be possible to complete and refine the initial model,
until the intended system is precisely described. At each stage
the intermediate model should be reified; in fact, the outcome
of each refinement action should provide a guiding principle for
the decisions in the next refinement action.
 Formally, some refinement step carries a proof obligation,
since it should be verified that the refined model does not
introduce any behaviour that is excluded by the higher-level
model. It is a proof obligation of each refinement action to
formally verify that these assumptions hold.
 In order to support model-driven refinement of software
architectures, a novel architecture refinement language has
been designed in ArchWare: π-ARL [14]. π-ARL is an
executable model-driven architecture refinement language
providing architecture-centric refinement primitives and
constructs for their compositions. When applied, refinement
actions expressed in π-ARL refine architecture description
models described in π-ADL [13][15] outputting new refined
models described in π-ADL.
 This paper gives an overview of π-ARL (including a brief
presentation of π-ADL), and then illustrates the expressiveness

refine
architecture

Architecture
Description

refinement of

describe
architecture

 generated from

A pplication

and usefulness of model-driven refinement with π-ARL
through a case study. The case study addresses the description
and refinement of the software architecture of a login system. It
covers a simple, yet frequent, model-driven architecture
refinement that would be problematic for most other refinement
techniques. Several refinement steps are performed, each
dealing with a simple refinement, in order to achieve a more
concrete architecture. The remainder of the paper is organised
as follows. Section 2 briefly describes the ArchWare
architectural languages π-ADL and π-ARL. Section 3 presents
the case study. Section 4 compares π-ARL with related work
and section 5 concludes this paper.

2 Architectural Languages
The ArchWare architectural languages comprise an
architecture description language, the π-ADL, and an
architecture refinement language, the π-ARL. A detailed
description of π-ADL, illustrated with examples, is provided in
[13] and a detailed description of π-ARL, also illustrated with
examples, is provided in [14].

2.1 π-ADL Architecture Description Language
π-ADL [13] supports description of software architectures from
a runtime perspective. In π-ADL, an architecture is described in
terms of components, connectors, and their composition. Figure
2 depicts its main constituents2.
 Components are described in terms of external ports and an
internal behaviour. Their architectural role is to specify
computational elements of a software system. The focus is on
computation to deliver system functionalities.
 Ports are described in terms of connections between a
component and its environment. Their architectural role is to
put together connections providing an interface between the
component and its environment. Protocols may be enforced by
ports and among ports.
 Connections are basic interaction points. Their architectural
role is to provide communication channels between two
architectural elements. Connections may be unified to enable
communication.

<<component>>
<<connection>> <<connector>><<connection>>

<<unification>>

<<port>>
<<port>>

<<port>>

<<component>>

<<port>>

<<unification>>

Figure 2. Architectural concepts in π-ADL
A component can send or receive values via connections. They
can be declared as output connections (values can only be sent),
input connections (values can only be received), or input-output
connections (values can be sent or received).

2 The UML Profile for π-ADL is used for presenting diagrammatic

models.

 Connectors are special-purpose components. They are
described as components in terms of external ports and an
internal behaviour. However, their architectural role is to
connect together components. They specify interactions among
components.
 Therefore, components provide the locus of computation,
while connectors manage interaction among components. In
order to have actual communication between two components,
there must be a connector between them.
 A connection provided by a port of a component is attached
to a connection provided by a port of a connector by unification
or value passing. Thereby, attached connections can transport
values (that can be data, connections, or even architectural
elements).
 From a black-box perspective, only ports (with their
connections) of components and connectors and values passing
through connections are observable. From a white-box
perspective, internal behaviours are also observable.
 Components and connectors can be composed to construct
composite elements, which may themselves be components or
connectors. Composite elements can be decomposed and
recomposed in different ways or with different components in
order to construct different compositions.
 Composite components and connectors comprise external
ports (i.e. observable from the outside) and a composition of
internal architectural elements. These external ports receive
values coming from either side, incoming or outgoing, and
simply relay it to the other side keeping the mode of the
connection. Ports can also be declared to be restricted. In that
case, constituents of composite elements can use connections of
restricted ports to interact with one another but not with
external elements.
 Architectures are composite elements representing systems.
An architecture can itself be a composite component in another
architecture, i.e. a sub-architecture.

2.2 π-ARL Architecture Refinement Language
Software applications are usually developed in several
refinement steps. In π-ARL, the underlying approach for
architectural refinement is underspecification. The decrease of
this underspecification establishes a refinement relation for
architectural elements.
 The refinement relation in π-ARL, from an external or
internal point of view, comprises four forms of refinement:
behaviour, port, structure, and data refinements. The most
fundamental notion of refinement in π-ARL is behaviour
refinement. The other forms of refinement imply behaviour
refinement modulo port, structure and data mappings.
 In general, architectural refinement is a combination of the
four forms of refinement. For instance, an architect can define
an abstract architecture, then “data” refine that architecture in
order to introduce base and constructed data types, then “port”
refine the architecture to have ports with finer grain
connections carrying data of different types, then “structure”
refine its composite behaviour by adding new finer grain
connectors, and so on.
 π-ARL provides constructs for defining refinements of the
four forms cited so far, according to external or internal points
of view. Composite refinements can be defined in terms of
refinement primitives and composite refinements themselves.
Refinement primitives comprise:
• adding, removing, replacing or transforming data type

declarations of an architecture,

• adding, removing, replacing or transforming ports of an
architecture,

• adding, removing, replacing or transforming output and
input connections of ports of an architecture,

• transforming the behaviour of an architecture or the
behaviour of a component or connector in an architecture,

• adding, removing, replacing or transforming components or
connectors in an architecture,

• exploding or imploding components or connectors in an
architecture,

• unifying or separating connections of ports in an
architecture.

These primitives, applied step by step, allow the incremental
transformation of an architecture description. These
transformations are enforced to be refinements if preconditions
of refinement primitives are satisfied and proof obligations
discarded. A refinement engine based on rewriting logics runs
the refinement descriptions expressed in π-ARL generating
further refined architectures. Code is generated from refined
(concrete) architectures.

3 Case Study
In order to illustrate how π-ARL can be used to formally
support the model-driven refinement of a software architecture,
we present in this section a case study on the stepwise
refinement of the abstract architecture of a login system. First
we will present the abstract architecture description of the login
system with π-ADL. Then we will refine the abstract
architecture with π-ARL in order to obtain a more concrete
architecture.

3.1 Describing the Architecture with π-ADL
To start, let us present the abstract architecture description of
the login system. We will present a black-box description of the
architecture focusing on interface (i.e. ports and their
connections) of components and connectors. Then we will
present, as an example, the internal behaviour of a connector.
Finally the encompassing structure (i.e. binding among
components and connectors using connection unifications) is
described.
 The login system supports the creation of new logins by
receiving a new user identification (userId) and a password to
be stored under this userId. Concurrently, it supports checking
of existing logins by answering requests for the password of a
certain existing userId by sending the password stored under
this userId.
 Using π-ADL, the login system, seen as a whole, can be
formally described as follows.

architecture LoginManager is abstraction() {
 type UserId is Any. type Password is Any.
 type Login is tuple[UserId, Password].
 port update is { connection in is in(Login) }.
 port request is { connection userId is in(UserId).
 connection password is out(Password)
 } assuming {
 protocol is { (via userId receive any. true*.
 via password send any)* }
 }.
 …
}

In this interface description of the login system, it is represented
as a composite component, named LoginManager, having
ports3 update and request. These ports represent the interaction
of the LoginManager system with its environment. Type
UserId is the set of all possible userIds and type Password is the
set of all possible passwords. Login is the tuple type
tuple[UserId, Password], i.e. the set of all possible logins
associating userId and password. Two ports are declared:
update that comprises the connection in for receiving new login
entries and request that comprises the connections userId and
password for answering requests. The protocol enforced by this
port is that requests for the password of a certain userId, which
are received via the connection userId, are answered by sending
(after processing) a password via the connection password. For
each userId received there must be a password sent before
accepting the next userId.
 The login system is composed of a login user interface (UI)
and a login database manager. The login UI acts as a client of
the database manager that acts as a server managing the login
data. A new login entry received from the environment first
undergoes some processing in the login UI and is then
forwarded to the remote database manager that stores its data.
Figure 3 outlines the abstract architecture of the system in terms
of its components and connectors.

update

LoginManager

request

outgoing incomingincoming

NewLoginUI
Link

LoginDB

selectoutgoing incoming

Figure 3: Outline of the abstract architecture
The architecture consists of a login UI component
NewLoginUI, a database manager component LoginDB, and a
connector Link to connect them together. These components
and connector can be formally described in π-ADL as follows.

component NewLoginUI is abstraction() {
 type UserId is Any. type Password is Any.
 type Login is tuple[UserId, Password].
 port incoming is { connection in is in(Login) }.
 port outgoing is { connection toLink is out(Login) }.
 …
} assuming {
 protocol is { (via incoming::in receive any. true*.
 via outgoing::toLink send any)* }
}

In component NewLoginUI, two ports are declared: incoming
that comprises the connection in for receiving new login entries
and outgoing that comprises the connection toLink for
forwarding these logins. The protocol enforced by the two ports
is that a value received via the connection in is (after
processing) forward by sending it via the connection toLink.
For each new login entry received there must be a login sent
before accepting the next new login.

3 By syntactic convention, ports that are not explicitly

declared as restricted are external free ports.

component LoginDB is abstraction() {
 type UserId is Any. type Password is Any.
 type Login is tuple[UserId, Password].
 port select is { connection userId is in(UserId).
 connection password is out(Password)
 } assuming {
 protocol is { (via userId receive any. true*.
 via password send any)* }
 }.
 port incoming is { connection fromLink is in(Login) }.
 …
}

In component LoginDB, two ports are declared: select that
comprises the connection userId for receiving userId values and
the connection password for sending the password value stored
under this userId, and incoming for receiving new login entries
to be stored.

connector Link is abstraction() {
 type UserId is Any. type Password is Any.
 type Login is tuple[UserId, Password].
 port incoming is { connection toLink is in(Login) }.
 port outgoing is { connection fromLink is out(Login) }.
 …
} assuming {
 protocol is { (via incoming::toLink receive login : Login.
 via outgoing::fromLink send login)* }
}

In connector Link, two ports are declared: incoming that
comprises the connection toLink for receiving login entries and
outgoing that comprises the connection fromLink for
forwarding these entries. The protocol enforced by the two
ports is that login entries received via the connection toLink are
immediately forward by sending it via the connection fromLink.
 This black-box description of the LoginManager
architecture can be further detailed to achieve a white-box
description of the architecture that encompasses interface,
behavioural and structural aspects. For instance, the behaviour
of the connector Link can be formally described in π-ADL as
follows.

connector Link is abstraction() {
 …
 behaviour is {
 via incoming::toLink receive login : Login.
 via outgoing::fromLink send login.
 behaviour()
 }
} assuming { … }

In connector Link, the behaviour specifies that login entries
received via the connection toLink are immediately forward by
sending it via the connection fromLink. The behaviour is
recursively defined. Once a login entry is handled, it continues
with the same (recursive) behaviour for the next entry.
 Using the components NewLoginUI and LoginDB and the
connector Link, the abstract architecture LoginManager can be
composed in π-ADL as shown below, thereby providing the
structure of the architecture in terms of attached components
and connector.

architecture LoginManager is abstraction() {
 …
 behaviour is compose { ui is NewLoginUI()
 and lk is Link()
 and db is LoginDB()
} where { ui::incoming relays update
 and ui::outgoing unifies lk::incoming
 and lk::outgoing unifies db::incoming
 and request relays db::select
 }
}

In the architecture, the component instances ui and db are
connected using the connector lk. In order to actually connect
them, connections must be unified4. Connection toLink of port
outgoing of component UI is unified with connection toLink of
port incoming of connector lk. Connection fromLink of port
outgoing of connector lk is unified with connection fromLink of
port incoming of component db.
 Besides connecting component instances together, the
architecture must express the binding between external ports
and ports of components. This binding is expressed by
connection relay. Connection in of external port update is
relayed to connection in of port incoming of component UI.
Connection userId of external port request is relayed to
connection userId of port select of component db. Connection
password of port select of component db is relayed to
connection password of external port request.

3.2 Refining the Architecture with π-ARL
The software architect can refine the previously described
abstract architecture to obtain a more concrete architecture
where, for instance, security is improved. This could be
achieved by encrypting the passwords that are transmitted: for
each new login entry, the NewLoginUI will encrypt the
password to transmit and the LoginDB will decrypt it to store in
the database.
 The architect is not interested in the algorithmic aspects of
the password encryption. S/he just consider that the encrypted
password is itself an element of Password, and that there is a
function encrypt : Password → Password that handles the
encryption for a single password in the login UI. Another
function decrypt : Password → Password decrypts the
passwords. S/he can assume that for all password:
decrypt(encrypt(password)) = password.
 In order to refine the architecture, the following actions
could be carried out. The NewLoginUI could be extended with
an encrypting component. For each new login entry the
password related to a userId is encrypted and forwarded. The
LoginDB could be extended with a decrypting component to
decrypt passwords received.
 One possible architectural refinement to achieve this
architecture is to introduce two components, Encryptor and
Decryptor, that encrypts and decrypts passwords, respectively.
 In the sequel, we present how this model-driven refinement
can be carried out with π-ARL by a software architect.

4 If connections have the same names in different ports,

identifying ports is enough to express unifications (if
connection names are different, then they must be
explicitly unified).

1st step: adding components
As first step, the architect could introduce the two new empty
components, Encryptor and Decryptor. They should not be
connected to any other component in the architecture.
 In π-ARL, this refinement could be expressed as follows.

architecture LoginManagerRef1 refines LoginManager using {
 components includes { Encryptor is abstraction() { deferred } }.
 components includes { Decryptor is abstraction() { deferred } }
}

Note that the behaviours of the components that have been
added are completely undefined. It is worth noting that these
refinement actions do not change the behaviour of the
architecture.
2nd step: adding output and input connections
The architect could now add a typed output connection
toCoLink to Encryptor, a typed output connection toDLLink to
Decryptor, and an output connection toENLink to NewLoginUI.
S/he could also add an input connection fromENLink to
Encryptor, an input connection fromCoLink to Decryptor, and
input connection fromDLLink to LoginDB.
 In π-ARL, this refinement could be expressed as follows.

architecture LoginManagerRef2 refines LoginManagerRef1 using {
 Encryptor::types includes { UserId is Any. Password is Any.
 Login is tuple[UserId, Password] }.
 Decryptor::types includes { UserId is Any. Password is Any.
 Login is tuple[UserId, Password] }.
 Encryptor::connections includes
 { toCoLink is out(Login). fromENLink is in(Login) }.
 Decryptor::connections includes
 { toDLLink is out(Login). fromCoLink is in(Login) }.
 NewLoginUI::connections includes {
 outgoing::toENLink is out(Login) }.

 LoginDB::incoming::connections includes {

 fromDLLink is in(Login) }
}

The behaviour of the system itself is unchanged, since the new
connections are not yet used in the architecture.
3rd step: adding and connecting connectors
The architect could now add connectors CoLink to connect the
Encryptor and the Decryptor, ENLink to connect the Encryptor
and the NewLoginUI, and DLLink to connect the Decryptor and
the LoginDB.
 Of course, the addition of connectors could, as they are
first-class citizens as components, follow the same basic steps:
addition of connectors without connections, addition of output
connections, and addition of input connections.
 The behaviour of the system itself is unchanged, since the
connections toENLink and fromDLLink added to the
NewLoginUI and the LoginDB respectively are not yet used by
their behaviours in the architecture.
 In π-ARL, this refinement could be expressed as follows.

architecture LoginManagerRef3 refines LoginManagerRef2 using {
 connectors includes {
 CoLink is abstraction() {
 connection toCoLink is in(Any).
 connection fromCoLink is out(Any).
 behaviour is { deferred }
 }.
 ENLink is abstraction() {
 connection toENLink is in(Any).
 connection fromENLink is out(Any).
 behaviour is { deferred }
 }.
 DLLink is abstraction() {
 connection toDLLink is in(Any).
 connection fromDLLink is out(Any).
 behaviour is { deferred }
 }.
connections unifies { CoLink::toCoLink with Encryptor::toCoLink.
 CoLink::fromCoLink with Decryptor::fromENLink.
 ENLink::toENLink with NewLoginUI::outgoing::toENLink.
 ENLink::fromENLink with Encryptor::fromENLink.
 DLLink::toDLLink with Decryptor::toDLLink.
 DLLink::fromDLLink with LoginDB::incoming::fromDLLink }
}

4th step: refining the behaviour of added components
The architect could now refine the behaviour of added
components in π-ARL. The Encryptor and Decryptor
components could be refined as follows.

architecture LoginManagerRef4 refines LoginManagerRef3 using {
 Encryptor::behaviour becomes abstraction() {
 encrypt is function(p : Password) : Password { deferred }.
 replicate
 via fromENLink receive log : Login.
 via toCoLink send tuple(log::userId, encrypt(log::password))
 }.
 Decryptor::behaviour becomes abstraction() {
 decrypt is function(p : Password) : Password { deferred }.
 replicate
 via fromCoLink receive log : Login.
 via toDLLink send tuple(log::userId, decrypt(log::password))
 }
}

The Encryptor applies the encryption function to the password
received from its input connection to send the encrypted
password via its output connection. The Decryptor applies the
decryption function to the encrypted password received from its
input connection to send the decrypted password via its output
connection.
 As the behaviour of these components were unspecified,
that is their specifications were deferred until now, this
refinement is obviously correct. The structure of the system
remains unchanged.
5th step: refining the behaviour of added connectors
The architect could now refine the behaviour of added
connectors to carry the login entries by ENLink, the encrypted
login entries by CoLink and the decrypted login entries by

DLLink. This is accomplished by refining the behaviour of
these connectors as follows.

architecture LoginManagerRef5 refines LoginManagerRef4 using {
 ENLink::behaviour becomes abstraction()
 replicate via toENLink receive log : Lo
 via fromENLink send log
 }.
 CoLink::behaviour becomes abstraction() {
 replicate via toCoLink receive log : Logi
 via fromCoLink send log
 }.
 DLLink::behaviour becomes abstraction() {
 replicate via toDLLink receive log : Logi
 via fromDLLink send log
 }
}

{
gin.

n.

n.

6th step: refining the behaviour of existing
components
The architect could now refine the behaviour of existing
components of the abstract architecture in order to take into
account the new introduced components and connectors. This is
accomplished by refining the behaviour of the NewLoginUI and
LoginDB as follows.

architecture LoginManagerRef6 refines LoginManageRef5 using {
 component NewLoginUIRef1 refines NewLoginUI using {
 connections replaces outgoing::toLink by outgoing::toENLink
 }.
 component LoginDBRef1 refines LoginDB using {
 connections replaces incoming::fromLink
 by incoming::fromDLLink
 }
} assuming {
 property passwordIntegrity is
 { forall p : Password | decrypt(encrypt(p)) = p }
}

The architect assumes that encrypting and decrypting the
password via CoLink yields the same password as that
transmitted through Link. Formally:

∀ p : Password • decrypt(encrypt(p)) = p
That is, in order to guarantee that the value-passing behaviour
of the new architecture refines the value-passing behaviour of
the abstract architecture, the architect assumes that this
property will hold in the system. In fact, it becomes a proof
obligation. Thereby, if the assumption holds, the refinement is
guaranteed.
7th step: removing disconnected connectors
After this refinement, the connector Link is no more used and
can therefore be discarded by the architect.

architecture LoginManagerRef7 refines LoginManagerRef6 using {
 connectors excludes Link
}

The following figure depicts the resulting architecture.

in

toCoLink toCoLink

CoLink
fromCoLink fromCoLink

userId

passwordNewLoginUI

ENLink

Encryptor Decryptor

DLLink

LoginDB

toENLink

toENLink

fromENLink

fromENLink

fromDLLink

fromDLLink

toDLLink

toDLLink

Figure 4. More concrete architecture

8th step: imploding sub-architectures as components
In the last refinement step, in order to get a concrete
architecture that is better structured, the architect could implode
the NewLoginUI and the Encryptor as one component and the
LoginDB and the Decryptor as another. Figure 4 depicted the
architecture before this refinement step. Imploding
sub-architectures as components yielding a composite
CoNewLoginUI and a composite CoLoginDB can be expressed
in π-ARL as follows.

architecture CoLoginManager refines LoginManagerRef7 using {
 components implodes { NewLoginUIRef1
 and ENLink and Encryptor } as CoNewLoginUI.

components implodes { LoginDBRef1
 and DLLink and Decryptor } as CoLoginDB

}

The following figure shows the architecture after that
refinement step, comprising composite components.

in

CoNewLoginUI

toCoLink toCoLink

CoLink
fromCoLink fromCoLink

userId

CoLoginDB password

Figure 5. Imploding sub-architectures as components

After the application of all these refinement steps, the
transformations yield a more concrete architecture, encrypting
and decrypting passwords that are passed between NewLoginUI
and LoginDB. The architecture that is obtained by refinement is
behaviourally equivalent to the initial abstract architecture, but
is more detailed with respect to security-related features.
Composing refinement actions for reuse
A composite refinement action can then be defined in π-ARL
by combining these different refinement steps in order to
capitalize this refinement expertise. This composite refinement
action can then be applied on different abstract architectures
yielding the same kind of transformations.

4 Related Work
Enabling stepwise architecture refinement is a new challenge
for the architecture-centric model-driven development of
complex software systems. With the exception of a variant of
FOCUS [19], i.e. FOCUS/DFA [17], RAPIDE [9] and SADL
[12], there is no proposal for a rigorous calculus based on
architectural terms as there are rigorous calculus for refinement
of programs [2][3]. In the case of SADL the refinement is only
structural. In the case of RAPIDE it is only behavioural
(supported by simulations). In both cases, clear architectural
primitives for refining architectures are not provided and the
refinement supported is only partial. π-ARL like the B [1] and Z
[7] formal methods, provides operations to transform
specifications. However, unlike FOCUS, B and Z, π-ARL has
been specially designed to deal with architectural elements of
any architectural style.

5 Concluding Remarks
π-ARL provides a novel language that on the one side has been
specifically designed for architectural refinement taking into
account refinement of behaviour, port, structure, and data from
an architectural perspective and on the other side is based on
preservation of properties. The core of π-ARL is a set of
architecture transformation primitives that support refinement
of architecture descriptions. Transformations are refinements
when they preserve properties of the more abstract architecture.
Core properties are built-in. Architectural style-specific or
architecture-specific properties are user defined. The
underlying foundation for architected behaviours [5][6] is
based on the higher-order typed π-calculus [11] [18].
 Refinement actions are defined in π-ARL (using a textual
notation – presented in this paper – or a visual notation – under
development). These actions can be combined to carry out
complex refinements. Assumptions made during refinement are
proof obligations to guarantee the correctness of the
refinements. They can be mechanically checked using the
π-ARL toolset [10] that includes a refinement engine
interpreting π-ARL and orchestrating a model checker, a prover
and specific evaluators.
 π-ARL provides the required key features for supporting
formal architecture-centric model-driven development. Thus,
an abstract – platform independent – architecture can be refined
to a concrete – platform specific – architecture following a
Model-Driven Architecture approach [4].
 By addressing software development as a set of
architecture-centric model refinements, the refinements
between models become first class elements of the software
engineering process. This is significant because a great deal of
work takes places in defining these refinements, often requiring
specialized knowledge on source and target abstraction levels,
for instance knowledge on the source application logics and on
the targeted implementation platforms. Efficiency and quality
of software systems can be improved by capturing these
refinements explicitly and reusing them consistently across
developments. Thereby, user-defined refinement steps can be
consistently defined, applied, validated, and mechanically
automated with π-ARL.
 Both π-ADL and π-ARL have been applied in several
industrial case studies and pilot projects at Thésame (France)
and Engineering Ingegneria Informatica (Italy). The pilot
project at Thésame aimed to architecting and refining agile
integrated business process systems. The pilot project at

Engineering Ingegneria Informatica aimed to architecting and
refining federated knowledge management systems.
 Future work is mainly related with the formal development
of an architecture-centric formal method. This formal method,
called the π-Method, like formal methods such as B, FOCUS,
VDM [8], and Z, aims to provide full support for formal
development. Unlike these formal methods that do not provide
any architectural support, the π-Method has been built from
scratch to support architecture-centric model-driven
development.

References
[1] Abrial J.-R.: The B-Book: Assigning Programs to Meanings.

Cambridge University Press, 1996.
[2] Back, R-J.: Refinement Calculus, Part II: Parallel and Reactive

Programs. Stepwise Refinement of Distributed Systems:
Models, Formalisms, Correctness. Springer, 1990.

[3] Back, R-J., von Wright, J.: Refinement Calculus, Part I:
Sequential Nondeterministic Programs. Proceedings of REX
Workshop: Refinement of Distributed Systems. Springer, 1989.

[4] Brown A.W.: Model Driven Architecture: MDA and Today’s
Systems. The Rational Edge, February 2004.

[5] Chaudet C., Greenwood M., Oquendo F., Warboys B.:
Architecture-Driven Software Engineering: Specifying,
Generating, and Evolving Component-Based Software Systems.
IEE Software Engineering Journal, Vol. 147, No. 6, UK, 2000.

[6] Chaudet C., Oquendo F.: A Formal Architecture Description
Language Based on Process Algebra for Evolving Software
Systems. Proceedings of the 15th IEEE International Conference
on Automated Software Engineering (ASE’00). IEEE Computer
Society, Grenoble, September 2000.

[7] Davies J., Woodcock J.: Using Z: Specification, Refinement and
Proof. Prentice Hall Series in Computer Science, 1996.

[8] Fitzgerald J., Larsen P.: Modelling Systems: Practical Tools and
Techniques for Software Development. Cambridge University
Press, 1998.

[9] Luckham D.C., Kenney J.J., Augustin L.M., Vera J., Bryan D.,
Mann W.: Specification and Analysis of System Architecture
Using RAPIDE. IEEE Transactions on Software Engineering,
Vol. 21, No. 4, April 1995.

[10] Megzari K., Oquendo F.: The ArchWare Architecture
Refinement Toolset. Deliverable D6.3, ArchWare European
RTD Project, IST-2001-32360, April 2004.

[11] Milner R.: Communicating and Mobile Systems: The
π-Calculus. Cambridge University Press, 1999.

[12] Moriconi M., Qian X., Riemenschneider R.A.: Correct
Architecture Refinement. IEEE Transactions on Software
Engineering, Vol. 21, No. 4, April 1995.

[13] Oquendo F.: π-ADL: An Architecture Description Language
based on the Higher Order Typed π-Calculus for Specifying
Dynamic and Mobile Software Architectures. ACM Software
Engineering Notes, Vol. 29, No. 3, May 2004.

[14] Oquendo F.: π-ARL: An Architecture Refinement Language for
Formally Modelling the Stepwise Refinement of Software
Architectures. ACM Software Engineering Notes, Vol. 29, No.
5, September 2004.

[15] Oquendo F.: Formally Describing Dynamic Software
Architectures with π-ADL. WSEAS Transactions on Systems,
Vol. 3, No. 8, October 2004.

[16] Oquendo F. et al.: ArchWare: Architecting Evolvable Software.
Proceedings of the 1st European Workshop on Software
Architecture, LNCS 3047, Springer, St Andrews,UK, May 2004.

[17] Philipps J., Rumpe B.: Refinement of Pipe and Filter
Architectures. Proceedings FM’99, Springer, LNCS 1708, 1999.

[18] Sangiorgi D., Walker D.: The π-Calculus: A Theory of Mobile
Processes. Cambridge University Press, 2001.

[19] Stolen K., Broy M.: Specification and Development of
Interactive Systems. Springer Verlag, 2001.

