
A New Weight-Programming Structure
and Procedure for Pulse-Coupled Neural Networks

BO LIU JAMES FRENZEL
MRC Institute

University of Idaho
POB 441024, Moscow, ID USA 83844-1024

USA

http://www.uidaho.edu/∼jfrenzel

Abstract: This paper presents a new method for storing and programming digital weights in a hybrid
neural network. The network uses pulse-coupled communication between neurons, compatible with typi-
cal CMOS processes, and analog multiplication and addition for modeling neural behavior. Programming
of individual neurons is done using existing interconnect, eliminating the need for additional inputs or
wiring. Furthermore, the weight storage network supports direct addressing of synaptic weights, allowing
the implementation of adaptation and learning. Results from a 4-4-3 array, fabricated in a 1.5 micron
process, are presented.

Key-Words: artificial neural networks, pulse-coupled, spiking neurons, weight programming

1 Introduction

Implementation of artificial neural networks in
VLSI technology is an active area of research,
covering a wide range of approaches [1]. Pulse-
coupled neural networks (PCNN) are particularly
attractive, because of their ability to mimic biolog-
ical behaviors and the ease with which pulses can
be generated and distributed within an integrated
circuit [2, 3].

Our own work focuses on circuits which
can be completely configured using “all-digital”
weights [4]. Such circuits allow the network to be
treated as a programmable device, with the config-
uration restored or modified as needed. We have
shown that these networks are capable of solv-
ing a variety of classification problems, as well as
implementing Boolean logic expressions [5], and
open the possibility of designing recurrent pulse-
coupled neural networks using methods from finite
automata theory [6].

Configurable hardware implementations often
utilize some type of memory storage to store
synaptic weights [7, 8, 9]. Centralized memory
has the following drawbacks: (1) limited mem-
ory ports may prevent all neurons from access-

ing the weights simultaneously, affecting process-
ing speed; and (2) interconnect between the weight
memory and the neural array increases area and
reduces the number of neurons which can be im-
plemented. In this paper we present a distributed
SRAM structure which avoids both of these limi-
tations by storing the synaptic weights locally and
programming them via existing synaptic connec-
tions between neural layers. Addressability pro-
vides access to individual weights, allowing real-
time reconfiguration and adaptation.

The remainder of this paper is organized as fol-
lows. In Section 2 we present the neuron circuitry,
including the support for weight storage and pro-
gramming. Section 3 explains a programming al-
gorithm using an on-chip scan chain. Section 4
shows results from a neural array fabricated in a
1.5 µm CMOS process. Finally, our conclusions
and areas for future work are discussed in Sec-
tion 5.

2 Neuron Structure

The structure of the neuron cell is shown in Fig. 1.
Multiple synaptic inputs, when active, serve to

1



charge or discharge an internal capacitance, the
voltage on which represents the level of excita-
tion. When the voltage on the capacitor reaches
a certain value the output of the neuron switches
state. Depending upon the specific configuration,
this may turn on the feedback transistor and begin
discharging of the capacitor. A large NMOS tran-
sistor, connected to a global reset signal, is used
for initialization.

2.1 Synaptic Inputs

Each synaptic input consists of six transistors,
configured using four stored, binary weights, as
shown in Fig. 2. W3 determines whether an ac-
tive input will produce an excitatory or inhibitory
effect, while W2–W0 determine the “strength” of
the effect. The transistors controlled by W2–W0
are scaled exponentially and together with W3
produce sixteen specific values, corresponding to
a weight range of -7 to 7. This circuit represents
a 40% reduction in transistor count compared to
an earlier design [4], while maintaining the same
functionality and advantages of binary weights.

2.2 Output Generation

The voltage on the storage node is sampled using
a Schmitt trigger with complementary outputs as
a threshold circuit. The “true” output of the cir-
cuit drives a feedback transistor. This circuit con-
figuration allows for two types of neuron outputs,
“level” or “pulsed”, depending upon the size of the
feedback device.

If the feedback transistor is smaller than the
synaptic input transistors, then active excitatory
inputs can source more current than the feedback
transistor can sink and the output will remain high
as long as the inputs remain active. The time to
“fire” and the output high time duration are both
functions of the excitatory inputs and their asso-
ciated weights.

In contrast, if the feedback transistor is larger
than the synaptic input transistors, then once the
neuron output transitions high the feedback tran-
sistor will quickly discharge the storage capacitor
and return the output to zero. This, in turn, shuts
off the feedback transistor, allowing the excita-
tory inputs to re-charge the storage node. This
behavior represents a pulse-coupled output, with

the output frequency dependent upon the synaptic
inputs and their weights.

An additional means of generating pulsed be-
havior is to feed the “true” output back to W3.
Under this configuration, active inputs will have
an excitatory effect until the neuron “fires,” at
which point the effect will switch to inhibitory.
The transistors in the synapse circuit are sized
such that the resultant waveform has a 50% duty
cycle.

Regardless of the circuit configuration, active
inhibitory inputs will serve to delay the time to
fire and reduce the output active time duration,
or prevent firing altogether.

2.3 Weight Storage Circuitry

Synaptic weights are stored in 5-transistor SRAM
cells, consisting of a write transistor and a pair
of cross-coupled inverters. The data input of
the SRAM cell is connected to the correspond-
ing synaptic input and the output is connected
directly to one of the four synaptic transistors,
controlled by W3–W0. A large NMOS transistor,
connected to a global reset signal, discharges the
storage node prior to weight programming. A mul-
tiplexer circuit is provided at the output of inter-
nal neurons to enable weight programming of hid-
den layers, described in the next section. Neurons
in the output layer omit this circuit, but may have
additional buffers for driving off-chip parasitics.
Table 1 provides transistor count and area for
the individual components that comprise a neu-
ron. These data correspond to a neuron with five
synaptic inputs and four weight bits per synaptic
input. The devices and storage capacitor repre-
sent 40% of the total neuron area, with weight
storage contributing 60%. The remaining neuron
area consists of wiring and open area.

3 Neuron Programming

A fully connected array of twelve neurons is shown
in Fig. 3, organized into three layers of four neu-
rons, each with four synaptic inputs and a weight
range of -7 to 7. Programming of a single SRAM
cell involves (a) forcing the corresponding synap-
tic input to the desired value and (b) asserting
the write enable signal. For neurons beyond the
input layer, synaptic inputs can be justified via

2



the preceding layer. Assertion of the global reset
signal discharges all storage nodes, forcing the Z
outputs to ‘0’ and Z’ outputs to ‘1.’ The neuron
select signals (SEL1–8), connected to the output
multiplexers, can then be used to produce the re-
quired value. In order to conserve input pins, the
values of the select signals are loaded serially into
a shift register. The write enable signal is formed
from the logical NOR of enable (EN0–EN3) and
row select signals (Row Sel0–Row Sel3), the com-
bination of which identifies a specific weight bit
in a specific row of the neural array. This allows
parallel configuration of neurons within a single
row.

The procedure is summarized as follows: (1) As-
sert reset to initiate programming; (2) Reset row
and enable counters; (3) Load select bits into shift
register; (4) Pulse enable and row select signals
low, generating the write enable signal, and load-
ing a single weight bit for each synaptic input in
the selected row; (5) Increment the enable counter
and repeat steps (3–4) for the remaining weight
bits; and (6) Increment row counter and repeat
steps (3–5) for the remaining rows.

Each neuron requires sixteen configuration bits,
four bits for each synaptic input. Because the
weights for all synaptic inputs to neurons in a sin-
gle row can be loaded in parallel, a single row will
be programmed four times, once for each weight
bit. However, each iteration may require a new set
of select values to be loaded serially, resulting in a
total of 128 clock cycles for programming the array
in Fig. 3. Parallel scan chains or multiplexed in-
put pins can be used to reduce programming time
for large arrays.

4 Results

A neural array, similar to Fig. 3, but with only
three neurons in the output layer, was fabricated
in the AMIS 1.5 µm CMOS process and is shown in
Fig. 4. The connected array consists of 11 neurons,
44 synaptic inputs, and 176 weight storage cells.
A stand-alone neuron was included for testing pur-
poses. The total chip area is 2159 × 2150 µm2.

Output firing behavior is dependent upon the
storage capacitance and the excitatory weights.
This array used a poly to poly capacitor with an
area of 35 µm × 35 µm and a capacitance of ap-
proximately 1 pF, resulting in an output frequency

range of 30–70 MHz. Fig. 5 shows two simulations
under different weight settings.

5 Conclusions

We present an improved neuron cell and network
structure for weight storage and programming. A
programming algorithm is provided, allowing a
neural array to be completely configured under ex-
ternal control or from off-chip memory. The design
supports multiple pulse-coupled output behaviors,
depending upon configuration. A fully connected
array of eleven neurons was fabricated in a 1.5 µm
CMOS process.

Future work includes circuit improvements to
reduce power consumption and the implementa-
tion of adaptation algorithms using supervised and
unsupervised learning.

Acknowledgment This work was supported by the
NSF-Idaho EPSCoR Program and the National Science
Foundation under award number EPS-0132626.

References

[1] Murray A., Del Corso D., and Tarassenko L. Pulse-
Stream VLSI Neural Networks Mixing Analog and
Digital Techniques. IEEE Trans. Neural Networks,
vol. 2(2), March 1991, pp. 193–204.

[2] Johnson J. and Padgett M. PCNN models
and applications. IEEE Trans. Neural Networks,
vol. 10(3), May 1999, pp. 480–498.

[3] Reyneri L. Theoretical and implementation as-
pects of pulse streams: an overview. In Proc. Mi-
croNeuro’99, Oct. 1999, pp. 78–89.

[4] Liu B. and Frenzel J.F. A CMOS neuron for VLSI
circuit implementation of pulsed neural networks.
In Proc. IEEE IECON 2002, vol. 4. Seville, Spain,
Nov. 2002, pp. 3182–3185.

[5] Konduri S. and Frenzel J.F. Non-linearly Sep-
arable Cluster Classification: An Application for
a Pulse-Coded CMOS Neuron. In Proc. ANNIE
2003, vol. 13, Nov. 2003, pp. 63–67.

[6] Konduri S., Frenzel J., and Wells R. Towards a
Paradigm for Adaptation in Pulse-Coupled Neural
Networks. In Proc. WSEAS ISPRA’05. Salzburg,
Austria, Feb. 2005. (to appear).

[7] Han G. and Sánchez-Sinencio E. A Flexible and
Expendable Neuroimage Processor Architecture.
IEEE Trans. Circuits Syst. I, vol. 49(9), Sep 1999,
pp. 1055–1063.

3



Table 1: Neuron Components

Component Devices Area (µm2)

Synaptic Inputs 6 5(50 × 45)
Weight Storage 20 5(4(40 × 39))
Schmitt Trigger 7 40 × 67
Output Mux 6 40 × 37
Storage Capacitor 0 35 × 35
Reset & Feedback 2 40 × 20
NOR gates 16 4(28 × 40)

Total (5 inputs) 161 310 × 440

Synapse

Weights

Synapse

Weights

Synapse

Weights

MuxThreshold

Reset
Z

Z’

Sel

Out

IN0

IN1

IN_n

Storage
Node

Figure 1: Block diagram of a single neuron with multiple
synaptic inputs. Additional signals (not shown) are used
for programming the weights, as described in Section 2.3.

[8] Ayala J. et al. Design of a pipelined hardware ar-
chitecture for real-time neural network computa-
tions. In Proc. IEEE MWSCAS-2002, Aug. 2002,
pp. 419–422.

[9] Bracco M. et al. Digital implementation of hier-
archical vector quantization. IEEE Trans. Neural
Networks, vol. 14(5), Sep 2003, pp. 1072–1084.

W1

W0W3
Storage
Node

IN

W2

Figure 2: A single synaptic input. Stored weight, W3,
controls whether the effect is excitatory or inhibitory, while
W2–W0 control the significance of the effect.

Neuron1

RST

Row_Sel0
EN[0:3]
IN[0:3]

SEL1

Neuron2

RST

Row_Sel1
EN[0:3]
IN[0:3]

SEL2

Neuron3

RST

Row_Sel2
EN[0:3]
IN[0:3]

SEL3

Neuron4

RST

Row_Sel3
EN[0:3]
IN[0:3]

SEL4

IN[0:3]

SEL6

Neuron6

RST

Row_Sel1
EN[0:3]
IN[0:3]

SEL7

SEL8

Neuron8

RST

Row_Sel3
EN[0:3]
IN[0:3]

Neuron7

RST

Row_Sel2
EN[0:3]
IN[0:3]

Neuron12

RST

Row_Sel3
EN[0:3]
IN[0:3]

Neuron11

RST

Row_Sel2
EN[0:3]
IN[0:3]

Neuron10

RST

Row_Sel1
EN[0:3]
IN[0:3]

Neuron9

RST

Row_Sel0
EN[0:3]
IN[0:3]

SEL5

Neuron5

RST

Row_Sel0
EN[0:3]

Figure 3: Neural network array. A neuron in one layer
connects to every neuron in the next layer. Individual select
lines are used to force output values during programming
and are not needed in the output layer. Writing of the
weight storage is done using a combination of the Row Sel
and EN signals.

Figure 4: An eleven neuron array, arranged as a 4-4-3
network, fabricated in a 1.5 µm CMOS process.

Figure 5: Simulated pulse-coupled output under two
weight settings, resulting in an output frequency of 25 or
44 MHz.

4


