
Issues with Representing Software Architectures in the Unified
Modeling Language

SASA BASKARADA

School of Computer and Information Science
University of South Australia

Mawson Lakes SA 5095
AUSTRALIA

Abstract: - This paper shows how the Unified Modeling Language (UML) can be used to model software
architectures effectively. Software architectures represent high-level views of systems and therefore allow
developers to concentrate on the big picture rather than on low-level details [13]. They are also one of the best
approaches to consider non-functional requirements early in the development process [1]. However, there is no
standard definition of software architecture [17]. There is no agreement yet on how they should be modeled
either. Therefore, software architectures are often described informally (using arrows, lines and boxes).
Standardizing the notation, by using UML as a modeling tool, would reduce the ambiguity and make software
architecture modeling easier for practitioners. A number of Architecture Description Languages (ADLs)
already exist, which can be used to model software architectures. However, the software architecture
community does not yet agree on what features should be present in an ADL, or precisely what these features
should model [6]. Furthermore, there exists no common definition of the term Architecture Description
Language either [17]. A large number of ADLs have been proposed as well and each of them takes a particular
approach to the modeling of architectures [14]. This is one more reason why a standard modeling notation is
needed. UML is already widely used for software analysis & design and it could also be a very useful tool for
software architecture modeling. By modeling the CommPOS software architecture in UML, the paper shows
how UML can be used to model component-based software architectures. However, further research into using
UML for modeling of software architecture behaviors and dynamic software architectures is needed.

Key-Words: - Software Architecture, Software Design, Software Engineering, Unified Modeling Language
(UML), Architecture Description Language (ADL)

1 Introduction
The Unified Modeling Language (UML) is an object
oriented analysis and design language. It is a family
of notations that has become a standard for
developing software artifacts. It has also found
application in modeling non-software artifacts, such
as business processes, human workflows, and non-
code development artifacts [9]. It is widely used in
the software engineering community and there are
many Computer-Aided Software Engineering
(CASE) tools available that support UML modeling.
Rational Rose, a popular graphical software
modeling tool, uses the Unified Modeling Language
(UML) as its primary notation [7].

Every system has an architecture and Clements and
Northrop state that the term “software architecture”
is mostly used to describe structural aspects of a
software system [5]. They describe software
architecture as an extremely important part of
system design because it represents the earliest set

of design decisions, which makes software
architectures difficult to get right and hard to change
[5]. Software architectures represent high-level
views of systems and therefore allow developers to
concentrate on the big picture rather than on low-
level details [13]. They are also one of the best
approaches to consider non-functional requirements
early in the development process [1]. As the size and
complexity of software systems grow, modeling
software architectures is becoming ever more
important. Unfortunately, there is no agreement yet
on what software architectures exactly are or how to
model them. Therefore, software architectures are
often described informally (using arrows, lines,
boxes, etc.), which can make them open to
interpretation and hard to understand.

In an effort to standardize modeling of software
architectures, a number of Architecture Description
Languages (ADLs) have been developed (ACME,
C2, Rapide, Wright, etc.). These languages were

developed by a wide range of researchers and
therefore there is no standard modeling language
[6]. Furthermore, each ADL takes its own approach
to modeling of software architectures. There is also
no agreement yet on how exactly ADLs should
model software architectures but there is a
consensus that they should be able to at least model
software architecture components, connectors and
configurations. ADLs endeavor to make models of
software architectures more understandable and
enable a greater degree of analysis although some
ADLs are more generic then others (some are
specialized to particular domains).

UML has also been used to model software
architectures, but it was originally designed to
model object oriented analysis/design and therefore
it may not be suitable for modeling all aspects of
software architectures [11]. If UML was adapted to
model software architectures, developers could use
UML as a standard language for modeling software
architectures as well as software analysis/design.
Using UML would help visualizing, documenting
and modeling of software architectures. This paper
shows how UML could be used to model software
architectures effectively.

2 Unified Modeling Language (UML)
UML is a language used for modeling object
oriented analysis and design. It is a very large
language which is defined by the Object
Management Group (www.omg.org). The current
UML specification document (version 1.5) has more
than 700 pages. UML is a family of notations that
includes use cases, use case diagrams, class
diagrams, object diagrams, interaction diagrams,
package diagrams, activity diagrams, statechart
diagrams, component diagrams, and deployment
diagrams. There are many Computer-Aided
Software Engineering (CASE) tools available,
which make it easy to draw UML diagrams
(ArgoUML, Enterprise Architect, MagicDraw UML,
Rational Rose, etc.). UML has become a standard
language used for object oriented analysis and
design. It is widely accepted in the software
engineering community and having it as a standard
language for the modeling of software architectures
would make software architecture modeling easier
for practitioners. UML notation is also a lot easier to
understand than ADL notations.

3 Software Architectures
Software architectures are a key area in the software
engineering discipline, because every system has an
architecture. However, Rumpe et al state that there
exists no common definition of the term software
architecture [17]. There is no agreement yet on how
exactly to model them either. The architecture
depends on the requirements and the design
decisions made to satisfy those requirements. A
software engineer has to decide on the architecture
of a software system in a similar way as a building
architect decides on a particular architecture when
building a house. The architecture can be newly
developed or reused from similar existing systems.
Certain types of applications have unique
characteristics and share similar structure.
Therefore, they might conform to the same
architecture. In order to speed up development,
reduce production cost, control the complexity,
elevate abstraction levels, achieve separation of
concerns and facilitate software reuse, certain
software architectures have been developed for
certain types of applications. Therefore, developing
applications affirming to particular software
architectures potentially increases productivity and
reliability. Software architectures provide a template
for design and also allow the management to better
estimate the costs involved in the project.
Unfortunately, software architectures are often
described informally (using arrows, lines, boxes,
etc.), which can make them open to interpretation
and hard to understand. Software architectures aid in
building a system by structuring large collections of
components (clients, servers, databases, etc). They
focus on the system structure and interaction
between different components. This is one of the
most important aspects of large system design.
Bachman et al state that, one cannot hope to build an
acceptable system unless the architecture is
appropriate and effectively communicated [3]. There
is still little consensus on software architecture
terminology, representation and methodology [5],
which makes the modeling more difficult. The term
itself “Software Architecture” seems to be overused
at the moment (it is a buzz word). Therefore, it is
used to describe various things, many of which are
not software architectures at all. Clements &
Northrop also describe software architecture as a
vehicle for stakeholder communication, because it
provides a common ground for discussing concerns
among different stakeholders [5]. Garlan states that
software architecture plays an important role in the
understanding, reuse, construction, evolution,
analysis and management of software systems [8].

There are two basic approaches to architecting
software systems. The top-down approach divides a
large problem into a number of sub-problems, which
can then be newly implemented or solved by reusing
existing components. The second approach is
bottom-up. This approach requires implementing
new components or reusing existing ones to
compose a system. Real life situations require the
use of both of these approaches. This is important
because software architectures can be seen as being
composed of components, connectors and
configuration. We can get those by decomposing the
system (or we can use the bottom-up approach to
compose a system out of existing components,
connectors and configurations). This paper shall
therefore also investigate if any UML diagrams
(class diagrams, collaboration diagrams, etc.) could
be used to represent software architectures by
modeling components, connectors and
configurations.

3.2 Architectural Views
Clements et al state that modern software
architecture practice embraces the concept of
architectural views, and Bachmann et al state that
documenting software architecture is primarily
about documenting the relevant views [4], [3].
Views are essentially abstractions, each with respect
to different criteria [5]. Many different views can be
used to model software architectures, but Kruchten
describes the “four plus one” approach [10]. He
identifies four main views of software architecture
plus a fifth view that ties the other four together.
Bachmann et al describe these views as the logical
view (behavioral requirements, and the services the
system should provide to its end users), process
view (performance, system availability,
concurrency, distribution, system integrity and fault
tolerance), development view (the actual software
models), and physical view (system availability,
reliability, performance and scalability) [3].

3.2.1 The Layered View
One of the most commonly used views in software
architectures is the layered view [3]. Bachmann et al
also describe a layer as a collection of software units
such as programs or modules that may be invoked or
accessed [3]. It is mostly represented as vertically
arranged rectangles. Layering divides the software
structure into discrete units (presentation layer,
application layer, data layer, etc.). Each layer
provides functionality, which is independent from
any other layers. Therefore, a layer can be
considered a component in software architecture
modeling. Each layer also has an interface, which

can be used by other layers. Bachmann et al defines
an interface as a boundary across which two
independent entities meet, interact, or communicate
with each other [2]. Therefore, as long as layer’s
interface is not changed, a layer can be modified
without affecting any other layers. Bachmann et al
also state that UML has no built in primitive
corresponding to a software architecture layer, but
layers could be defined as a stereotype of a UML
package [3].

3.3 Components
Software architectures are also often described as
models of components and interconnections among
these components. Medvidovic & Taylor describe a
component in an architecture as a unit of
computation or a data store (a familiar example is a
Unix process) [12]. They can vary greatly in size
and even a software architecture layer can be
considered as a component. Egyed & Kruchten
suggest the use of UML class diagrams for modeling
of component based architecture [7]. However, other
UML diagrams could be used as well. Components
maintain state, perform operations and exchange
messages with other components [11].

3.4 Connectors
Connectors model component interactions and the
rules governing those interactions. They transmit
messages between components. Simple interactions
can be achieved through method calls and global
variables. More complex interactions include
database access and client-server applications.
Egyed & Kruchten suggest the use of UML
aggregations, associations, dependencies and
generalization as connectors [7]. These UML
connectors could have stereotypes or constraints
associated with them as well.

3.5 Configurations
Configurations are instances of components and
connectors. Medvidovic & Taylor describe
configurations as connected graphs of components
and connectors that describe architectural structure
[12]. They describe semantics of a software
architecture and place constraints on component
interaction.

4 Architecture Description
Languages (ADLs)
ADLs are not programming languages, but rather
languages used to model software architectures.
Rumpe et al state that there exists no common

definition of the term architecture description
language (ADL) and that there is no standard ADL
[17]. Some of the ADLs include ACME, Aesop,
ArTek, C2, Darwin, LILEANNA, MetaH, Rapide,
SADL, UniCon, Weaves, Wright, etc. ADLs attempt
to formalize modeling of software architectures and
they are formal notations for modeling the structure
and behavior. Tools are also available, for many
ADLs, which support visual representation and
analysis.

There is a large number of ADLs and there is no
standard notation yet. Furthermore, each ADL takes
a particular approach to modeling (each ADL
addresses a particular problem domain), which
means that most ADLs can only be used to model a
particular set of architectures. Dashofy et al state
that research and experimentation in software
architectures have resulted in an overabundance of
ADLs [6]. These ADLs are mostly developed and
used in academic circles and they haven’t yet gained
much acceptance in practitioners’ community.
ADLs are not used to a large extent by the
developers mostly because there is a no standard
ADL and the syntax is also fairly complex. There is
also no agreement on which exact features an ADL
must support, but there is an acceptance that they
have to provide notations for modeling software
architecture components, connectors and
configurations.

5 UML as an ADL
I have highlighted the problem that there is still
extensive disagreement about what software
architecture really is and how to model it. There is
also no agreement yet on what precisely an ADL is
either. Each ADL takes a particular approach to
modeling of software architectures and there is a
broad variety of ADLs (there is no standard
language). One of the solutions to these problems is
to use UML as an ADL. If UML is to be used as an
ADL, UML would have to take its own approach to
the modeling of software architectures. It would not
make sense to try to imitate all the features of
existing ADLs, but to select the features which are
considered as absolutely necessary in an ADL.
There seems to be consensus in the research
community that an ADL has to be able to at least
model components, connectors and configurations.
Therefore, if UML is to be used as an ADL, it would
have to be able to model these successfully.

Various UML diagrams could be used to model
software architecture components; however UML
explicitly provides Component diagrams for
component modeling. UML Component diagrams
describe the organization of components in the
system. Use cases can be used to describe the
components in more detail and to specify the
component functionality. Various other diagrams
(class diagrams, interaction diagrams, component
diagrams, etc.) could also be used to represent
components visually. UML state diagrams can be
used to represent component states and package
diagrams can be used to represent groupings of
components (packages can also be used to model
architectural layers by grouping various
components). UML interfaces, which are collections
of operations, can be used to specifically model
component interfaces. UML realizations,
associations or dependencies can be used to model
connectors. The choice would depend on the type of
the connector and on the diagram used to represent
software architecture components. As this paper is
concentrating on the use of component diagrams for
representation of components, dependencies are
going to be used to model software architecture
connectors. UML constraints could be used to
specify constraints on component interaction. These
constraints would preferably be specified in the
Object Constraint Language (OCL). Pre and post
conditions could be specified in OCL as well.

5.1 Extensions to UML based on ADLs
Medvidovic et al suggest some lightweight
extensions to UML based on C2, Rapide and Wright
[11]. The UML extensions suggested by the authors
attempt to provide UML with all the features that
these ADLs support. Extending UML based on their
work essentially creates a new ADL, which contains
all the features of C2, Rapide and Wright combined.
Having all these extensions may not be necessary,
because each one of these ADLs takes different
approach to the modeling of software architectures.
C2, Rapide and Wright are essentially not
compatible with each other in the first place and if
UML is to be used as an ADL, UML would not have
to be compatible with all of them either. Pérez-
Martínez states that the only solution to modeling
the C3 architectural style (C3 is derived from C2) in
UML is to extend the UML meta-model [16]. In
reality extending the UML meta-model would not be
practical because the resulting language would not
be compatible with existing CASE tools. Therefore,
this paper suggests lightweight extensions
(stereotypes, constraints and tagged values) to UML
for representation of software architectures.

6 CommPOS Software Architecture
in UML
In order to investigate UML’s ability to model
software architectures, I have used UML to model
the software architecture of the Commercial Point
Of Sale System (CommPOS v2.0). CommPOS is a
point of sale system developed by myself, Damien
Presser and Matthew Bauerochse. It is a large
system with a non trivial software architecture and I
have successfully modeled it in UML (by modeling
components, connectors and configurations). UML
Component elements have been used to represent
various system components and UML Interfaces
have been used to specify the interfaces of these
components. Stereotypes were used to further
specialize the meaning of individual components
and OCL was used to specify any constraints on
component communication. UML dependencies
were used to model connectors. Since CommPOS
already existed (the system was already developed),
in order to model its architecture, the system needed
to be decomposed into components. These
components were then used to model the software
architecture of CommPOS. Since components can
vary in size (depending on the granularity level),
there was not only one correct way to model
CommPOS architecture. However, by examining the
system I could, among others, identify following
components: JBoss (Java application server), Data
(Enterprise Java Beans), Ordering (Java Servlet used
for web access), GUI (the presentation layer), and
Store (the physical store). Component interfaces
were specified in a UML class diagram (Fig.1).

Fig.1 Component Interfaces (partial diagram).

Next, I modeled the components and connectors
using a UML Component diagram (Fig.2).
Dependencies were used to represent Connectors.

Fig.2 Components and Connectors (partial diagram).

Finally, I used OCL to specify constraints as well as
pre conditions and post conditions.

7 Conclusion
There is no consensus in the research community on
what software architectures really are and how to
represent them. Software architectures are often
represented informally by using boxes, lines and
arrows. They are also often represented by using
views (an example is the layered view). ADLs take
the approach to the representation of software
architectures by modeling components, connectors
and configurations (although many ADLs provide
many other features as well).

Many researchers try to tackle these issues by
making their own definitions and creating their own
ADLs for representation of software architectures.
That has resulted in a large number of different
ADLs, each taking a different approach to the
modeling of software architectures and each having
a different syntax and semantics. There is no
standard ADL yet and therefore ADLs haven’t
gained much acceptance in the developers’
community. Medvidovic et al and Pérez-Martínez
have done research in using UML to model software
architectures, but their research concentrates on
using UML to mimic the features of existing ADLs
[11], [16]. Existing ADLs are not compatible with
each other in the first place and if UML is going to
be used as an ADL, it wouldn’t have to be
compatible with other ADLs either. This paper has
presented an approach to modeling software

architectures in UML by modeling components,
connectors and configurations.

8 Future Work
This paper did not specifically address behavioral
aspects of software architectures found in many
ADLs. Even though UML state diagrams could be
used to represent states of individual components,
they may not suffice for modeling of inter-
component behaviors. Various other diagrams,
object diagrams, activity diagrams, sequence
diagrams and communication diagrams could
possibly also be used to model architecture
behavior. Another area requiring further research is
the representation of dynamic software architectures
in UML. Some ADLs (Rapide for example) allow
for the modeling of software architectures in which
the number of components, connectors and
configurations may vary over time.

References:
[1] Andersson, J, ‘Issues in Dynamic Software

Architectures’, in Proceedings of the 4th
International Software Architecture Workshop
ISAW-4, Limerick, Ireland, 2000, pp. 111-114.

[2] Bachmann, F, Bass, L, Clements, P, Garlan, D,
Ivers, J, Little, R, Nord, R & Stafford, J,
‘Documenting Software Architecture:
Documenting Interfaces’, CMU/SEI-2002-TN-
015, Software Engineering Institute, Carnegie
Mellon University, 2002.

[3] Bachmann, F, Bass, L, Carriere, J, Clements, P,
Garlan, D, Ivers, J, Nord, R & Little R,
‘Software Architecture Documentation in
Practice: Documenting Architectural Layers’,
CMU/SEI-2000-SR-004, Software Engineering
Institute, Carnegie Mellon University, 2000.

[4] Clements, P, Garlan, D, Little, R, Nord, R &
Stafford J, ‘Documenting software architectures:
views and beyond’, in Proceedings of the 25th
International Conference on Software
Engineering, Portland, Oregon, United States,
2003, pp. 740-741.

[5] Clements, PC & Northrop, LM, ‘Software
Architecture: An Executive Overview’,
CMU/SEI-96-TR-003, ESC-TR-96-003,
Software Engineering Institute, Carnegie Mellon
University, 1996.

 [6] Dashofy, EM, Hoek, A & Taylor, RN, ‘An
infrastructure for the rapid development of
XML-based architecture description languages’,
in Proceedings of the 24th International

Conference on Software Engineering, Orlando,
Florida, USA, 2002, pp. 266-276.

[7] Egyed, A & Kruchten, PB, ‘Rose/Architect: A
Tool to Visualize Architecture’, in Proceedings
of the 32nd Annual Hawaii Conference on
Systems Sciences, vol. 8, 1999, p. 8066.

[8] Garlan, D, ‘Software architecture: a roadmap’,
in Proceedings of the 22nd international
Conference on Software Engineering, The
Future of Software Engineering ICSE2000,
Limerick, Ireland, 2000, pp. 91-101.

[9] Kruchten, P, Kozaczynski, W & Selic, B, ‘ICSE
2001 workshop on describing software
architecture with UML’, ACM SIGSOFT
Software Engineering Notes, vol. 26, no. 6,
2001, pp. 78-79.

 [10] Kruchten, P, ‘The 4 + 1 View Model of
Architecture’, IEEE Software, vol. 12, no. 6,
1995, pp. 42-52.

[11] Medvidovic, N, Rosenblum, DS, Redmiles, DF
& Robbins, JE, ‘Modeling software architectures
in the Unified Modeling Language’, ACM
Transactions on Software Engineering and
Methodology (TOSEM), vol. 11, no. 1, 2002, pp.
2-57.

[12] Medvidovic, N & Taylor, RN, ‘A
Classification and Comparison Framework for
Software Architecture Description Languages’,
IEEE Transactions on Software Engineering,
vol. 26, no. 1, 2000, pp. 70-93.

[13] Medvidovic, N, Rosenblum, DS & Taylor, RN,
‘A Language and Environment for Architecture-
Based Software Development and Evolution’, in
Proceedings of the 21st International
Conference on Software Engineering, Los
Angeles, CA, USA, 1999, pp. 44-53.

[14] Medvidovic, N & Rosenblum, D, ‘Domains of
Concern in Software Architectures and
Architecture Description Languages’, in
Proceedings of the 1997 USENIX Conference on
Domain-Specific Languages, Santa Barbara,
California, 1997.

 [15] Object Management Group, viewed 20
September 2004, <http://www.omg.org>.

 [16] Pérez-Martínez, JE, ‘Heavyweight extensions
to the UML metamodel to describe the C3
architectural style’, ACM SIGSOFT Software
Engineering Notes, vol. 23, no. 3, 2003, p. 5.

[17] Rumpe, B, Schoenmakers, M, Radermacher, A
& Schurr, A, ‘UML+ROOM as a standard
ADL?’, in Proceedings of the 5th IEEE
International Conference on Engineering of
Complex Computer Systems ICECCS '99, Las
Vegas, Nevada, United States, 1999, pp. 43-53.

