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Abstract:  The EWMA quality control chart, and its multivariate version (MEWMA), may be designed to 
efficiently detect small shifts in the mean vector of a set of p quality characteristics of a production process. 
However, this work presents a method for the optimal design of the parameters of the MEWMA and EWMA 
charts to control processes where it is not convenient to detect small magnitude shifts and, at the same time, 
powerful enough to detect shifts considered important. This problem can be considered as a multiobjective 
optimization where two regions of different performance are defined. The objective of this paper is to find the 
best MEWMA and EWMA quality control charts given the previous regions, where the requirements for each 
region has to be balanced to decide which solution is better. For this purpose, friendly Windows software has 
been developed to optimize this problem, using Genetic Algorithms. Results show that the design using our 
approach outperforms the other designs. 
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1   Introduction One of the most used methods in multiobjective 

optimization is minimizing weighted sums of 
functions.  Mathematically, this method is expressed 
as: 

Nowadays it begins to be common to face problems 
or applications where the mathematical modelling 
produces a optimization problem with several 
objectives. The multiobjective optimization consists 
of optimizing simultaneously several objective 
functions. In many cases, some of the objective 
functions represent more or less conflicting criteria. 
Obviously, in these cases no unique solution can be 
found because the entire objective functions cannot 
be optimized (maximized or minimized) without 
considering the effect of the experimental changes in 
the other response functions. 

Maximize z(x) =  ∑
=

p

k
kk xzw

1
)(

Subject to x∈F 
 
where  is the weight corresponding to 
objective z

0≥kw
k(x) and can be interpreted as the 

importance of objective k in comparison with the rest 
of objectives. Now the problem is reduced to find 
P(w) where w = (w1, w2, …, wp ). Hence, the 
multiobjective problem is now reduced to a unique 
optimization problem.  

In general terms, the optimization problem can be 
formulated as follows, being n the number of decision 
variables, xj, m restrictions and p objectives: 

The objective of this paper is to apply 
Evolutionary Multi-Criterion Optimization to the 
design of MEWMA and EWMA quality control 
charts.  

 
Find x (x1, x2, …, xn) that 
Maximize / minimize  Z = ( z1(x), z2(x), …, zn(x)) 
Subject to x∈F 

  
 With F⊂Rn, F feasible region of solutions space 

Rn and Z = z(F)  R⊂

,

p, Z feasible region of objectives 
space Rp. Many times the set F can be written as F={ 
x∈  Rn: gi(x)  x0≤ j } when g,0≤ ji,∀ i functions are 
the restrictions. In some cases, variables zk are called 
objective functions or objectives. 

2   EWMA and MEWMA Control 
Charts  
The statistical design of a quality control chart like 
EWMA o MEWMA consists of selecting three 
parameters. The performance of the chart (measured 



through ARL) depends on these parameters, sample 
size, n, position of control limits,  L, and a smoothing 
constant r.  

EWMA (Exponentially Weighted Moving-
Average) control charts were introduced by Roberts 
[3] as an alternative to Shewhart control charts for the 
detection of small shifts in the process. However, 
Shewhart control chart only takes into account the 
present information of the process and does not detect 
quickly changes smaller than 2σ . EWMA control 
charts take into account present and past information 
and therefore they are more efficient (fast) in 
detecting small shifts (Montgomery [4]). A widely 
used measurement of the efficiency of a process 
statistical control method is the ARL (Average Run 
Length). The ARL is the average number of samples 
to take (points in the chart) until an out-of-control-
signal appears. 

In the case of EWMA, the statistical data to chart 
Zi,  to be compared with control limits at instant i, is 
obtained as a weighted average value according to 
parameter r between the observed value iX   and the 
smoothed value Zi-1 , following the expression: 
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As it can be observed, weighting is done with 

parameter r so that the smaller the parameter is, the 
greater the influence of past observations as weight 
decreases geometrically in function of r. This is the 
reason why EWMA control charts are said to have 
“human memory” since they provide weights to data 
exponentially: assigning more weight to present data 
which decreases as data are far back in the past. 
When r = 1, then the average value is represented by 
the Shewhart control chart, and when r = 0, Zi  is a 
constant equal to 0µ . 

EWMA control chart sensitivity to detect changes 
in the process depends on the value of r. When r 
tends to 1 EWMA values will depend on the most 
recent observations and the behaviour of the control 
chart is similar to that of the Shewhart control chart. 
However, as r tends to 0, the historical behaviour of 
the process gets more weight, and then it approaches 
the behaviour of normal CUSUM charts. A 
recommended value for r is 0.2 (Hunter [5]). For Z0 
the value adopted is the nominal average value 0µ   
or the sampling average value in in-control processes. 
Some authors (Hunter [5], Crowder [6] and Lucas 
and Saccucci [7]) have studied the properties of this 
chart for the statistical control of industrial processes.  

Let's analyze the design of the chart. If the quality 
variable to control is distributed according to 

),( 00 σµN  in in-control processes and the 
observations are independent, therefore, the control 
limits of the EWMA control chart are calculated with 
the expression: 

 

      UCL = 0µ + L·
r

rn
−2

·0σ    

       LCL = 0µ   - L·
r
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−2
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where L and r are selected to get a given in-control 
ARL  and n is the size of the subgroup. A typical 
value of L is 3, following the criterion 3σ , of the 
Shewhart control chart. If we want to obtain an in-
control ARL, ARL0, of  370.4 (α= 0.0027), then we 
should fix the value of r = 0.25 and L = 2.898.  

The first reference on multivariate EWMA 
(MEWMA) control charts corresponds to Lowry, 
Woodall, Champ and Rigdon [1] who define 
MEWMA as an extension of the univariate EWMA. 
Hotelling's T2 multivariate control chart only takes 
into account current process data, whereas MEWMA 
chart also includes past data, thereby it being more 
powerful to detect small changes in the process.  

Univariate systems only controlled one quality 
variable or characteristic. In multivariate systems a 
set of p interrelated variables will be controlled. In 

this latter case, 1X , 2X ..., are run length vectors p 
which represent the sampling average values of the 

process. Let random vectors iX  be independent and 
equally distributed following a p-variate normal 

variable of vector µ  and covariance matrix Σ , iX   
iid ),( Σ≈ µpN

0

. The process will be under control if 

µµ =  and out of control in the opposite case. Vector 

iZ  is defined as    

             1)1( −−+= iii ZrXrZ  ,     i               (3) 1≥

The starting vector is 00 µ=Z , since the process is in 
control, 0)( µ=iZE   and covariance matrix of Zi is 

 whose expression is given here below.  
iZ∑ iX  is the 

vector of the sampling data and r is a scalar value 
between 0 and 1. If r =1 we will obtain Hotelling's T2 

control chart. The statistical data charted T  is 
defined as 

i
2
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where  is the inverse of the variance-covariance 

matrix of Zi

1−∑ iZ

. The covariance matrix of Zi is expressed 



  by: 
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Therefore, giving  A and B values and the number 
of variables to control simultaneously we desire to 

eters of EWMA and MEWMA control 
charts (r, L  and n) that satisfy the Woodall regions. 
In adittion, a minimum in-control ARL (ARL0) is 
spcefied and the ARL for d = A has to be equal to a 
given one, ARLA. 

Therefore, giving  A and B values and the number 
of variables to control simultaneously we desire to 
find the parameters of EWMA and MEWMA control 
charts (r, L  and n) that satisfy the Woodall regions. 
In adittion, a minimum in-control ARL (ARL0) is 
spcefied and the ARL for d = A has to be equal to a 
given one, ARLA. 

The measurement of vector shift (or distance 
between two vectors) used in multivariate analysis is 
Mahalanobis’ distance. In our case, the distance 
between the original mean vector and the new mean 
vector is d . The ARL 
performance of the MEWMA chart depends only on 
the noncentrality parameter 

i i= − ∑ −−( ) ('µ µ µ µ0
1

0 )

λ = nd 2, where n is sample 
size (Lowry, Woodall, Champ and Rigdon [1]  and 
Lowry and Montgomery [8]). 

This value ARLA is a restriction that will help to make 
comparisons against 
This value ARLA is a restriction that will help to make 
comparisons against X  chart Hotelling’s T2 control 
chart, as shown in figure 1. 
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For the design of the MEWMA control chart, the 
asymptotic covariance matrix can be used, given by: 
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similarly to what happened in univariate systems for 
individual observations. For sample size other than 1, 
equation (6) corrected by n  will be obtained (Rigdon 
[9]) 
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The chart displays an out-of-control signal when 
 > h, where hTi

2  is the control limit selected to obtain a 
given value of ARL for in-control processes (ARL0). ). 

 

Fig. 1. ARL curve. 
The comparison of the ARLs (obtained through 

simulation) presented in Rigdon's work shows that 
MEWMA, using the exact covariance matrix given 
by equation (5), is somewhat higher than MCUSUM, 
specially when the average value vector presents 
great changes. 

The comparison of the ARLs (obtained through 
simulation) presented in Rigdon's work shows that 
MEWMA, using the exact covariance matrix given 
by equation (5), is somewhat higher than MCUSUM, 
specially when the average value vector presents 
great changes. 

 
In this work, the additive utility function method 

has been employed. This procedure converts the 
multiobjective problem into a optimization problem 
with only one objective. This method is based on 
defining a function that combines the different 
objectives, using weights that show the relative 
importance of each objective for the user. Once this 
function is obtained, the uni-objective problem is 
solved. 

Woodall [2] studied the statistical design of 
control charts and recommended choosing the 
magnitude of the shift that it is important to detect as 
a design criterion for control charts. For this purpose, 
he suggested defining three regions: in-control, 
indifferent, and out-of-control. These regions will be 
limited by two values (A and B), as follows: 

Woodall [2] studied the statistical design of 
control charts and recommended choosing the 
magnitude of the shift that it is important to detect as 
a design criterion for control charts. For this purpose, 
he suggested defining three regions: in-control, 
indifferent, and out-of-control. These regions will be 
limited by two values (A and B), as follows: 

 
 

a) In-control region [0, A]. This region 
corresponds to a state equivalent to one in-control 
and is made up of a shift change that ranges from d = 
0 to d = A. No shift detection is required in this 
region. A maximum ARL is needed. If the chart 
shows an out-of-control sign, this is regarded as a 
false alarm. 

a) In-control region [0, A]. This region 
corresponds to a state equivalent to one in-control 
and is made up of a shift change that ranges from d = 
0 to d = A. No shift detection is required in this 
region. A maximum ARL is needed. If the chart 
shows an out-of-control sign, this is regarded as a 
false alarm. 

In this case we have two objectives (p = 2) to 
optimize: 

 
)(1 xz = minARLARLo−   and z = −  )(2 x BARL

where is a objective  to maximize, as it is 
desired to have control charts that satisfy 

and  has a negative values 
because has to be minimum. Finally, our 
optimization problem is: 

)(1 xz

minARL
ARL

ARLo ≥ )(2 xz

B

b) Out-of-control region [B, ∞[, corresponding to 
the shift value d > B. Maximum detection power is 
required from this area. A minimum ARL is needed. 

b) Out-of-control region [B, ∞[, corresponding to 
the shift value d > B. Maximum detection power is 
required from this area. A minimum ARL is needed. 

c) Indifferent region, ]B, A[ , covering d > A and d 
< B. This region is indifferent if the process shift is 
detected or not. 

c) Indifferent region, ]B, A[ , covering d > A and d 
< B. This region is indifferent if the process shift is 
detected or not. 
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Subject to 

and  minARL
 
where ARL0 is the in-control ARL for d = 0, ARLB 

is the ARL for point B, ARLA is the real ARL for 
point A, ARLPA is the ARL desired (user input) in 
point A, ARLmin is the desired minimum ARL for d = 
0 and w1, w2 are the weights. In our case we have 
employed the weights w1 = 1 and w2 = 50.  

 
 

3 Searching the Optimum Using 
Genetics Algorithms 
 Genetic Algorithms (GA) are optimization 
algorithms based on the natural evolution of the 
species (Holland [10], Goldberg [11]). The search for 
the global optimum value in an optimization problem 
is carried out when an initial population (generation) 
of individuals passes to a new population (next 
generation) through the application of genetic 
operators. In the original population, each individual 
represents a possible solution to the optimization 
problem, that is, a population of individuals consists 
of a set of possible solutions to the problem to 
optimize. The principles, implementation and 
applications of GA can be followed in Bäck [12], 
Chambers [13] and Michalewicz [14] . 
       The assessment function, referred to as fitness 
function, assigns to each individual of the population 
(set of possible solutions to the problem to optimize) 
the fitness value, which indicates the fitness of that 
individual with respect to the other individuals of the 
population. The “fitness” value is a quality value of 
the individual and the only data processed by GA to 
search for the best solution to the problem. Its correct 
definition allows for a better operation of the 
algorithm since to find the global optimum value the 
search is exclusively guided by the “fitness” value of 
the possible solutions. 

Prior to the application of the genetic algorithm 
we have to code the solutions, that is, it is necessary 
to define how to better represent each possible 
solution to the problem, an aspect that is essential for 
the design and efficiency of the GA. The genetic 
algorithm operates on a coded representation of the 
solutions, equivalent to the genetic material of an 
individual, and not directly on the solutions. These 
parameters known as genes, form chains referred to 
as chromosomes. In this paper the following 
crossover mechanisms has been employed to these 
chromosomes: 1 point, 2 points and uniform (Bäck 
[12], Beasley et al [15, 16]), obtaining the best results 

with the 2 points operator.  
During the last years, many researchers have paid 

attention to the problems involved with 
multiobjective optimization (Schaffer [17], 
Tabucanon [18], Fonseca and Fleming [19], Zitzler et 
al. [20], Coello et al. [21]). The fisrt multiobjective 
GA was the named Vector Evaluated Genetic 
Algorithm  (VEGA), Schaffer [17]. Recently,  more 
prefectioned GA has been proposed,. The most 
importants are: the Multiobjetive Genetic Algorithm 
(MOGA), Fonseca and Fleming, [22], the Niche 
Pareto Genetic Algorithm (NPGA), Horn et al. [23], 
the Nondominated Sorting Genetic Algorithm 
(NSGA), Srinivas and Deb [24], the Strength Pareto 
Evolutionary  Algorithm (SPEA), Zitzler and Thiele 
[25] and the Pareto-Archivied Evolutionary  Strategy 
(PAES), Knowles and Corne [26]. 

To solve this multiobjective optimization friendly 
Windows software has been developed. 

 
 
4 Results. Example of application 
We will now move on to the optimum design of the 
EWMA control chart, with a sample size not fixed 
previously, by using the software developed. We call 
the EWMA chart found by the software developed in 
this work “EWMA-Regions”. We wish to compare 
the chart obtained with an X  chart for the ARL in-
control (d = 0) of 500, presenting an ARL in d = A = 
0.25 of 373.88. 

The programme entry data are: minimum 
desirable ARL0 of 1500, and ARLPA of 373.88. Once 
the programme has been run we obtain the “EWMA-
Regions” optimum control chart (r = 0.91, L = 3.4, n 
= 5). 
In Figure 2, the ARL values for the chart "EWMA-
Regions" is compared to the ARL for the X  chart. 
Also we include the EWMA control chart optimum to 
detect a shift of size d = B = 1.5. This EWMA chart is 
called “EWMA-Point”, because it is optimum for 
only this point. Running the software developed by 
Aparisi and García-Díaz [27] the "EWMA-point" 
control chart is characterised by the parameters L = 
3.09 and r = 0. 85 for n = 5 and an ARLo = 500. A 
copy of this software can be downloaded at 
http://ttt.upv.es/~faparisi.  

It can be seen how the “EWMA-Region” and X  
control charts have the same ARL in point A. This 
defines the region of shifts we are not interested in 
detecting (d < 0.25). As we commented in Section 3,  

 
 



Fig. 2. ARL comparison. 

the best control scheme would be one where the 
region d < 0.25 has the largest ARL value (lowest 
power), and presents the smallest ARL value 
(maximum power) for shift magnitudes d > 1.5. 

Compared to the “EWMA-Point”, the “EWMA-
Regions” chart offers the advantage of producing 
lower probability of false alarms. This is because its 
ARL is much higher in the region of shifts not to be 
detected, d < 0.25. On the other hand, it can be seen 
that for shifts that are genuinely important to detect, d 
> 1.5, both EWMA charts show very similar powers, 
although the EWMA-point is slightly more powerful. 
In the indifferent region, 0.25 < d < 1.5, the optimum 
EWMA is more powerful in d = 1.5, although, as it 
was discussed before, the ARLs in this region are not 
important. 

The final conclusion to be drawn is that the 
EWMA chart obtained using the software developed 
in this paper practically have the same power for 
detecting genuinely important shifts than the EWMA 
chart that is more efficient at detecting   

shifts in d = 1.5. However, the “EWMA-Regions” 
charts has a very low probability of false alarm in the 
in-control region.  

 
 

5  Conclusions 
In view of the results discussed in this work, we may 
draw the following conclusions. The genetic 
algorithms technique has proved to be a suitable 
method for the optimisation of the EWMA and 
MEWMA control charts using the regions defined by 
Woodall [2]. An easy-to-use software programme has 
been developed in a Windows environment, enabling 
the optimum parameters of these charts to be 
obtained. These are used for controlling processes 
where minimum power is required for detecting 
extremely small shifts, and maximum power for 
detecting genuinely important ones. 

It is possible to design EWMA and MEWMA 
charts that may reveal a very low false alarm 

probability and that are, at the same time, genuinely 
powerful in detecting shifts considered important. 
The use of these charts would represent an extremely 
significant control tool in both practical situations as 
well as capable processes, processes hard to adjust, or 
whose cost of adjustment is high. 
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