
SystemC Co-Design for Image Compression: Fast Discrete Cosine
Transform using Distributed Arithmetic Method

Mildred C. Zabawa, Malek Adjouadi, and Naphtali Rishe
Department of Electrical & Computer Engineering, Florida International University, 10555 W. Flagler

Street, Miami FL 33174
http://www.cate.fiu.edu

Abstract
In this highly-technical, industrial driven market, companies are striving to sustain their competitive edge
by researching and implementing methodologies which reduce development time and introduce product-
lines to consumers quickly and cost effectively. From a Hardware Architect’s perspective, designing real-
time hardware involves various stages of modeling. A new, emerging hardware description language
(HDL) called SystemC is currently capturing industries attention since it introduces a broad range of
abstract level model techniques under one platform. SystemC is also an open-source language.
Consumers are capable of stimulating various levels of modeling from the transaction level (TL) to the
Register Transfer Level (RTL). Companies are investigating these potential strategic changes of
functional verification stages in order to compress development time. In order to meet future demand,
Hardware EDA Vendors such as Synopsys and Mentor Graphics have introduced new EDA tools that
support SystemC synthesis. This introduces a new paradigm for future change of the support and
functional verification stages of product development. In today’s market, co-hardware/software systems
are being developed to determine the best-fit location of these modules. With this research premise, this
study introduces a new implementation of a Hardware SystemC Register Transfer Level Model of a 2D-
Discrete Cosine Transform using Distributed Arithmetic Algorithm. This model is integrated into an
image and video compression system.
Key-words: Discrete Cosine Transform, SystemC, Distributed Arithmetic Algorithm

1. Introduction
Semiconductor companies are striving to reduce
cost by shortening functional hardware
verification development time for complex
integrated circuits. SystemC is one of the
leading trends. SystemC is an extension C++
class library designed to aid in hardware
modeling. Some of the key features of SystemC
is its ability to model concurrent processes,
timed events, and cycle-accurate events.
SystemC offers the system engineer the
opportunity to model hardware digital systems
with various levels of abstraction. Mixed modes
of abstraction levels can be incorporated into the
target hardware’s SystemC model. Some of the
levels of modeling are un-timed event,
transaction level, timed event, and register
transfer level modeling. Un-timed events
modeling is a style of hardware modeling not
depending on time events such as clock cycles.
This style of modeling is usually performed
during feasibility and performance studies of the
digital system. Transaction Level modeling is a

style of hardware modeling dependent on
transaction accuracies of events. System
Transaction Level modeling are designed in this
manner to model the transaction of how
individual modules interact with one another at
the interface levels. Timed events are functional
models of hardware modules that are dependent
on time events. Register Transfer Level
modeling is a style of modeling concurrent
process, timing events and interface input/output
precisions of hardware digital systems under
design consideration. After full-regression
testing has been performed on the various levels
of the target hardware model, it becomes
possible to proceed with synthesizing gates.
SystemC Modeling offers the system engineer
the potential to develop co-hardware/software
designs from transaction leveling to register
transfer level of the stage of the development
cycle and the verification approaches designed
to meet emerging changes for digital system
design. SystemC Modeling is being integrated in
semiconductor design industries to provide
immediate value for simulating real-time digital

systems. Modeling designs of digital systems
can be broken into individual modules of various
abstract levels. As individual modules become
more accurate these individual modules can be
refined into register transfer level models [1, 2].

2. Image/Video Compression
In the embedded systems conference of San
Francisco, a performance estimation approach of
MPEG 4 algorithms on ARM based designs
using co-verification was introduced. In 2000, a
study by Ming-Hau Lee [3] designed and
implemented a high-performance low-power
MorphoSys Reconfigurable Processor for data-
parallel applications in the area of video
compression. In 2003, the European IST-2001-
34410 Camellia project involved the design of
image core applications for smart cameras
applications which integrate the application with
video compression architecture. As the years
progress, it is anticipated that the number of
image and video compression projects linked to
wireless multimedia applications would increase
significantly. The overall goal of all these
projects is the design of efficient compression
architectures. Now, a new era is being
introduced in the design of co-simulation
environments using SystemC. Dan Crisu, [4]
introduced a hardware/software co-simulation
environment for graphics accelerator
development in ARM-based SOCS. Sayinta et
al.[5] introduce a mixed abstraction level co-
simulation case study using SystemC for System
on Chip Verification. Other research has been
performed by Microsoft to incorporate SystemC
with multimedia applications. The image/video
compression system integrates the above
concepts to introduce a new product line towards
functional verification flow for SystemC
Image/Video Compression Architectures.
3. Co-design System
The proposed design consists of a SystemC
Image Encoder/Decoder whose architecture is
shown in Figure 1.

Figure 1: Image Encoder/Decoder System

In this architecture, a still image or a Planar 420
Video Frame is broken into 8x8 macroblocks.
These individual macroblocks are then
processed to be encoded in the following order:
2D-DCT – converts spatial data into transform
coefficients in the transform domain. Quantizer
– Reduces coefficients into a domain
representing strength in image importance.
Reorder – reorders the 8x8 quantized
coefficients into a single array form in a zig-zag
pattern. Encoder Entropy – encodes using
Huffman Entropy Encoding process based on
run-length data and DC/AC look-up tables
coefficients. 2D-IDCT – converts transform
coefficients into spatial data coefficients.
Inverse Quantizer – Rescales coefficients into
DCT coefficients. Inverse Reorder – reorders the
single array to 8x8 quantized coefficients.
Decoder Entropy – decodes using Huffman
Entropy Decoding process based on run-length
data and DC/AC look-up tables coefficients. The
image encoder (IE) and image decoder (ID) will
be used as modules for our video
encoder/decoder system as shown in Figure 2:

Figure 2: Video Encoder/Decoder System

In reference to Figure 2, the current frame (CF)
and previous frame (PF) are processed through
the Prediction Module(PM). The PM outputs
are sent to the Adder/Subtractor (AS) Module.
The AS module adds or subtracts the given input
frames. The output result from the AS module is
sent into the image encoder system. Likewise, a
similar process is done to decode the video
frame. Within the scope of this article, we will
only focus on the architecture of the 2D-DCT
component. Future articles will describe in detail
the overall codec (encoder/decoder) systems.

4. 2D-DCT SystemC Architecture
The 2D Forward Discrete Cosine Transform
(DCT) is one of the major components in image
and video compression architectures. It has
proven to be one of the most efficient
compression algorithms in today’s multimedia

IE ID CF ASM ASM CF

PM PM

PF PF

 Quant.

Reorder

2D-
DCT

Encoder
Entropy

 Inverse
 Quant.

Inverse
Reorder

2D-
IDCT

Decoder
Entropy

applications such as JPEG, MPEG1, MPEG2,
and MPEG4. It converts spatial data into
transform coefficients. This transform is
reversible, symmetric, and orthogonal. These
key components aid in its efficient
implementation in co hardware/software
systems. This transform is designed to de-
correlate the transform coefficients into various
level of frequencies where the 'peak' energy area
(low frequencies) is located in the top-left
corner. The strength in energy is decreased at its
high-frequency coefficients. The DCT transform
coefficients can be de-correlated where the
smaller peak of energy areas (high frequencies)
can be discarded without impacting the quality
of the image being reconstructed. In the
proposed SystemC implementation, design
constraints had to be imposed on the image
height and width directions to be module of 8
thus making it capable of being broken down
into 8x8 macroblocks. In our case scenario, we
will discuss the process for a grayscale still
image, "lena", that is 256 x 256. This image is
broken down to 32 macroblocks in each
direction. This is depicted in Figure 3:

Figure 3: Lenna Grayscale Image 256x256
Image broken into 32x32 Macroblock

Each individual macroblock is 8x8 in
dimensions. The 2-D Forward DCT Transform
(FDCT) is performed on each 8x8 macroblock.
The 2D-Forward Discrete Cosine Transform is
based on the following well-known formula:

() ()






 +







 +

= ∑∑
= = 16

12cos
16
12cos

4
)()(7

0

7

0
,,

ππ yjxifyCxCF
i j

jiyx
 (1)

Where







≠

=
=

0,1

0,
2

1
)(

n

n
nC

In order to perform an efficient hardware
implementation using SystemC, the above is
rewritten into separable 1-D transforms where
Fx,y are the DCT coefficients:

()






 +

= ∑
= 16

12cos
2

)(7

0
,

πyjFyCF
j

xyx
 (2)

Where ()






 +

= ∑
= 16

12cos
2

)(7

0

πxifxCF
i

ix

Thus, Fx (i = 0, 1, …,7) are the eight
coefficients, and fi are the input samples for the
corresponding 1x8 row in the 8x8 macroblock.
Thus, the separability property as used in this
equation is one of highly desirable features of
the DCT since it enables us to implement the
real-time hardware architecture for a 2D-DCT in
a more efficient manner. Therefore, two 1D-
DCT algorithms are used for hardware
simplicity. This enables us to implement the
individual 1D-DCT algorithms in a distributed
arithmetic approach.

5. Distributed Arithmetic: 1D-DCT
The basis of the Distributed Arithmetic
Algorithm is to manipulate for the design under
test mathematical equations to use only logical
arithmetic operations. In our case, we re-
formulate the 2D-DCT equations into two
individual 1D Forward Discrete Cosine
Transforms based on separability. Therefore, we
are able to write this 1D-DCT as

()






 +

==∑
= 16

12cos
2

)(7

0
,,

πxixCCwherefCF
i

xiixix
 (3)

The following Table 1 illustrates the
corresponding coefficients for Ci,x where A =
0.353553, B=0.490393, C = 0.415735, D = 0.277785,
E = 0.097545, F = 0.461940, and G = 0.191342.

Table 1: Ci,x Coefficients

 i=0 i=1 i=2 i=3 I=4 i=5 I=6 I=7
Ci,0 A A A A A A A A
Ci,1 B C D E -E -D -C -B
Ci,2 F G -G -F -F -G G F
Ci,3 C -E -B -D D B E -C
Ci,4 A -A -A A A -A -A A
Ci,5 D -B E C -C -E B -D
Ci,6 G -F F -G -G F -F G
Ci,7 E -D C -B B -C D -E

Note the symmetry property of the DCT.
Equation 3 we can thus expand it as follows:

xxxxxxxxox CfCfCfCfCfCfCfCfF ,77,66,55,44,33,22,11,0 +++++++= (4)

With the results in Table 1 and the expanded
equation above the following symmetry can be
revealed:
C0,x = C7,x C1,x = C6,x C2,x = C5,x C3,x = C4,x
when x = 0, 2, 4, 6 and C0,x = -C7,x C1,x = -C6,x
C2,x = -C5,x C3,x = -C4,x when x = 1, 3, 5, 7

32 MacroBlocks Wide 32 M
acroB

locks H
igh 256x256 Image

Therefore, Equation 4 can be rewritten for even
symmetry of x (x=0,2,4,6) as:

xxxxox CffCffCffCffF ,343,252,161,70)()()()(+++++++= (5)
yielding:

xxxxox CuCuCuCuF ,33,22,11,0 +++= (6)

Similarly for odd symmetry of x (x=1,3,5,7) :
xxxxox CffCffCffCffF ,343,252,161,70)()()()(−+−+−+−= (7)

yielding:

xxxxox CvCvCvCvF ,33,22,11,0 +++= (8)

The ui and vi components can be expressed in
terms of the input samples sample f0 … f7 as:

iii ffu −+= 7 and)3,2,1,0(7 =−= − iforffv iii (9)
The 1D-DCT equations can now be written as
follows:

∑
=

==
3

0
,)6,4,2,0(

i
ixix xuCF (10)

 ∑
=

==
3

0
,)7,5,3,1(

i
ixix xvCF

In this particular study, the implementation
involved the distributed arithmetic method based
on Richardson’s depiction for 1D-DCT[6]. This
is where the modified input samples ui and vi
are written in a B-bit two complement number.
Thus, the previous equation 10 can be expressed
in the following form:

∑ ∑
=

−

=

−









+−=

3

0

1

1

0
, 2

i

B

j

j
i

j
ixix uuCF when x = 0,2, 4, 6 (11)

∑ ∑ 







+−=

−
−

3 1
0

, 2
i

j
i

B

j

j
ixix vvCF when x = 1, 3, 5, 7

These Fx equations for x even and odd can be
combined to yield:

∑ ∑∑
= =

−

=

−+−=
3

0

3

0
,

1

1

0
, 2

i i

j
ixi

B

j

j
ixix uCuCF (12)

By defining a new Dx term as:

∑
=

=
3

0
,)(

i

j
ixi

j
x uCuD

and by substituting into equation 12, the
following equation is derived:

∑
−

=

− −=
1

1

0)()(2
B

j
x

j
x

j
x uDuDF for x = 0,2, 4, 6 (13)

Similar reasoning can be used with regards to
each Dx(vj) components and odd Fx. These
equations are used to formulate the concept
known as the distributed arithmetic method. The
coefficients of each Dx(uj) and Dx(vj) are pre-
calculated and stored in the ROM look-up table
for each x value. In our case, we will have 8

ROM Lookup Tables depicting the following
arrays:
even rows: D0(uj), D2(uj), D4(uj), D6(uj)
odd rows: D1(vj), D3(vj), D5(vj), D7(vj)

For example, D0(uj) is written in a 4.11 float-to-
fix representation of 15 bits. The upper 4 bits
represent the integer component and lower 11
bits represent the fractional component. The
upper four bits are the signed integer portion of
the number and the lower bits are the fractional
portion. After pre-calculations of the ROM
lookup table coefficients, SC_MODULE
constructor for each individual Dx(uj) is
designed. Each SC_MODULE depicts the
individual modules constructor, sensitivity list,
and interface input/output (I/O) streams in the
header file. The following is an excerpt of how
D0(uj) is calculated based on equation (12):

u(int) u(binary) D0(float) D0(hex)
(0) 0000 0.000000 0x0000
(1) 0001 0.707107 0x05a8
(2) 0010 0.707107 0x05a8
(3) 0011 1.414214 0x0b50
(4) 0100 0.707107 0x05a8
(5) 0101 1.414214 0x05a8
… …. …. ….
(15) 1111 2.828427 0x16a0

Figure 4 depicts the SystemC RTL of the ROM0
header file:

#include "systemc.h"
SC_MODULE(rom0){
 sc_in<sc_uint<4> > addr;
 sc_out<sc_uint<15> > data;
 void prc_rom0();
 SC_CTOR(rom0){
 SC_METHOD(prc_rom0);
 sensitive << addr;
 }
};

Figure 4: SystemC RTL ROM0 Header File

The member functions of the SC_MODULE are
written in a separate source code file. Note that
the bit precision of the interface input/output
streams can be depicted using SystemC interface
sc_in and sc_out connections. In this case, the
member function prc_rom0 is a process function
sensitive to the change of the address input port
as shown in Figure 5. The lookup table is setup
for accessing 16 different ROM0 coefficients
depicting uj. The pre-calculated float-to-fix
numbers are set to 15 bits of precision. The

interface addr is read and output data is
retrieved from the ROM0 lookup table.

#include "rom0.h"
void rom0::prc_rom0()
{

sc_uint<15> rom0[16];
 rom0[0] = (sc_uint<15>)0x0000;
 rom0[1] = (sc_uint<15>)0x05a8;
 rom0[2] = (sc_uint<15>)0x05a8;
 rom0[3] = (sc_uint<15>)0x0b50;
 rom0[4] = (sc_uint<15>)0x05a8;
 rom0[5] = (sc_uint<15>)0x0b50;
 rom0[6] = (sc_uint<15>)0x0b50;
 rom0[7] = (sc_uint<15>)0x10f8;
 rom0[8] = (sc_uint<15>)0x05a8;
 rom0[9] = (sc_uint<15>)0x0b50;
 rom0[10] = (sc_uint<15>)0x0b50;
 rom0[11] = (sc_uint<15>)0x10f8;
 rom0[12] = (sc_uint<15>)0x0b50;
 rom0[13] = (sc_uint<15>)0x10f8;
 rom0[14] = (sc_uint<15>)0x10f8;
 rom0[15] = (sc_uint<15>)0x16a0;
 data.write(rom0[(int)addr.read()]);
}

Figure 5: ROM0 RTL Source Code

These ROM modules are connected to the Shift-
Accumulator units. Based on the number of B-
bits being processed the corresponding
coefficient is read from the ROM loop-up table.
A shift and add is performed to generate an
accumulated stored data. As a result, there will
be 8 ROM modules in parallel, shift-
accumulator modules, and a bit slice data
module (controls B-bits). Each of the internal
modules in the top-level DCT (parent module)
are considered child modules which are declared
as follows:

ROMs
u0_rom_ptr = new rom0 ("u0_rom");
v1_rom_ptr = new rom1 ("v1_rom");
…
v7_rom_ptr = new rom7 ("v7_rom");
Shift-Accumulator Modules
u0shifter_ptr = new shifter("u0Shifter");
prev_u0data_ptr = new reg1("prev_u0data");
u0data_reg_ptr = new reg2("u0data_reg");
final_u0data_ptr = new buffer("final_u0data");
…
v7shifter_ptr = new shifter("v7Shifter");
prev_v7data_ptr = new reg1("prev_v7data");
v7data_reg_ptr = new reg2("v7data_reg");
final_v7data_ptr = new buffer("final_v7data");

Bit Slice Modules
ubit_slice_data_ptr=new bit_slice_data
("ubit_slice_data");
vbit_slice_data_ptr=new bit_slice_data
("vbit_slice_data");

The internal and external signals are not
depicted in the above example but connected to
the interface modules. The hardware architecture
for this rom-shift-accumulator module [6] is
illustrated in Figure 6.

The following is an excerpt of the top-level 1D-
DCT Module in SystemC RTL. The header file
is shown in Figure 7.

SC_MODULE(dct){
 sc_in<bool> reset;
 sc_in<bool> clk;
 sc_in<bool> start;
 sc_in<sc_uint<15> > fx0;
 sc_in<sc_uint<15> > fx1;
 …
 sc_in<sc_uint<15> > fx7;
 sc_out <bool> done;
 sc_out <sc_uint<15> > final_u0data;

Accum0

Delay
Unit

F0
4 Bits of u inputs

Add or Subtract

ROM0

Accum1

Delay
Unit

F1

4 Bits of v inputs

ROM1

Accum2

Delay
Unit

F2ROM2

Accum3

Delay
Unit

F3ROM3

Accum4

Delay
Unit

ROM4

Accum5

Delay
Unit

ROM5

Accum6

Delay
Unit

F6ROM6

Accum7

Delay
Unit

F7ROM7

F4

F5

Figure 6.0: ROM-Shift-Accumulator Module

 sc_out <sc_uint<15> > final_v1data;
 …
 sc_out <sc_uint<15> > final_u6data;
 sc_out <sc_uint<15> > final_v7data;
 …
 SC_CTOR(dct){
 …
 }
 ~dct(){
 …
 }
};

Figure 7: Top-Level 1D-DCT SystemC RTL

6. Hardware Design: 2D-DCT
Our hardware implementation is based on
Richardson’s depiction of a hardware
implementation of 2D-DCT as shown Figure 8.

Figure 8: 2D-DCT Hardware Block Diagram

The hardware implementation of 1D-DCT is
performed on each row of the 8x8 macroblock
being processed. These intermediate coefficients
are then stored in the 8x8 tranposition RAM (a
two-dimensional array) in the same row order.
Then, coefficients read from the RAM in
column order are processed using the 1D-DCT
architecture. The final DCT coefficients are then
read from the Transposition RAM in row order.
The 2-D DCT transform is performed in two
passes using two 1-D DCT transform. The first
pass will grab from the frame buffer perform the
1-D DCT on each row and store the temporary
coefficients in row order into the transposition
RAM (8x8 array). The second pass will read
the coefficients stored in the RAM in column
order and then perform the 1-D DCT on each
column. These coefficients will be stored in
column order into the RAM and read in row
order as the final DCT coefficients outputs. The

transposition RAM is composed of an 8x8 array
with n-bits of data. The determination factor of
n-bits is specified by the target physical area
design constraints of the hardware digital
system. The transposition RAM is designed to
read and write in column or row order. [6]

7. SystemC Implementation of 2D-
DCT Co-Software/Hardware
In our case study, the top level interface signals,
internal signals, modules, monitor units, and
tracker files are interconnected in the top level
SystemC Main Module. The interface signals are
composed of all the I/O signals connecting the
top level modules. The internal signals are
signals internal to the top level modules. These
signals can not be access by outside modules.
The modules are the representational codes of
RTL/TL codes. The RTL code may represent
synthesizable code. The monitor files are files
which dump information in a specified text
format. An the tracer file is a file format used to
represent I/O signals in a waveform viewable
format. This is represented in Figure 9.

Figure 9: Top-level Functional Verification
SystemC Block Diagram

In this case, we dump VCD files tracking
interface input/output (I/O) signals representing
time events. The VCD files can be viewed
using a VCD WaveForm Viewer. In our case,
we used SynaptiCAD WaveForm Viewer. The
following approach is used to create a SystemC
VCD trace file:

sc_trace_file *tf
=sc_create_vcd_trace_file("MyDCT_Stimulus");

The top-level signals do not need the full path of
the signal to be represented such as:

Mux

8 x 8
transposition RAM

(Row Order f0 ...f7 input samples)

1-D
DCT

Select_Pass

Fx,y: DCT Output Coefficients

MacroBlock
Controller

Image or Video
Frame Buffer

(Column Order DCT output coefficients)

(Fo...F7 output coefficients)
 Pass1

Pass2

SC_MODULE

MacroController

SC_MODULE

Memory

SC_MODULE

1D-DCT

SC_MODULE

TransposeRAM

SC_MODULE

ReadVector

SC_MODULE

MUX0

SC_MODULE

MUX1

SC_MODULE

MUX2

SC_MODULE

MUX3

SC_MODULE

MUX4

SC_MODULE

MUX5

SC_MODULE

MUX6

SC_MODULE

MUX7

SC_MODULE

Monitor

SystemC RTL C++/SystemC TL

2D-Inverse
DCT

Memory Array

DumpFile

sc_trace(tf, start, "start");
sc_trace(tf, clk, "clk");

int sc_main (int argc, char* argv[]){
//Interface Signals
…
//Internal Signals
…
//Interface Modules
…
//Monitor Modules
…
//VCD Trace Files
…
}

Figure 10: SystemC top level sc_main file

The internal module interface can be tracked if
references are pointing to the child modules as
shown below:

sc_trace(tf,dctm.fx0_ptr->reg_out, "fx0_reg");
sc_trace(tf,dctm.fx1_ptr->reg_out, "fx1_reg");
sc_trace(tf,dctm.fx2_ptr->reg_out, "fx2_reg");
sc_trace(tf,dctm.fx3_ptr->reg_out, "fx3_reg");
sc_trace(tf,dctm.fx4_ptr->reg_out, "fx4_reg");
sc_trace(tf,dctm.fx5_ptr->reg_out, "fx5_reg");
sc_trace(tf,dctm.fx6_ptr->reg_out, "fx6_reg");
sc_trace(tf,dctm.fx7_ptr->reg_out, "fx7_reg");

Likewise, the VCD tracer file needs to be closed
as follows:
sc_close_vcd_trace_file(tf);

The VCD files will help in the debugging
process of the co-design system since we have
visual representation of selected interface signals
in time-event representation [7][8].

8. Conclusion
This research work addressed a new
implementation of the Discrete Cosine
Transform (DCT) in a co-hardware/software
design environment using SystemC, a new state-
of-the-art hardware description language (HDL).
New standards and functional hardware
verification methodologies are being developed
on this next-generation standard. This
co-design environment will be used for image
and video SystemC architectures. In our case
study, our modeling methodology introduces the
capability of exploring feasibility studies in a
C++/SystemC Transaction level modular
designs and refining these components once
fully functional into RTL modeling. In the

proposed architecture, the 2D-DCT was
designed in a RTL modeling style while
surrounding modules where designed in a
C++/SystemC TL. Monitors files are used to
dump text file format representation of vital
information for the verification process.
Likewise, VCD trace files where used to visual
interface signals time events in a waveform
viewer. The framework thus exploits the true
features that SystemC could bring to a real-time
co-design environment in industrial designs.
Efforts are being made to expand the modeling
framework of the image/video co-design.

References
 [1] J. Bhasker, A SystemC Primer. Star Galaxy

Publishing, Allentown, PA, 2002.
[2] Thorsten, G. et al. System Design with

SystemC. Kluwer Academic Publishers,
Boston, 2002.

[3] Ming-Hau Lee, Design and Implementation
of the High-Performance Low-Power
MorphoSys Reconfigurable Processor, UMI,
Ann Arbor, MI, 240 pages, 2002.

[4] Dan Crisu, A Hardware/Software Co-
Simulation Environment for Graphics
Accelerator Development in ARM-Based
SOCs, The Netherlands, 2002.

[5] Ali Sayinta, Gorkem Canverdi, Marc
Pauwels, Amer Alshawa, Wim Dehaene, A
Mixed Abstraction Level Simulation Case
Study Using SystemC for System on Chip
Verification, Germany, 2003

[6] Iain Richardson, Video Codec Design.
JohnWiley & Sons, Inc, New York, New
York, 299 pages, 2002

[7] The Open SystemC Initiative (OSCI), URL:
http://www.systemc.org.

[8] Synopsys Inc. SystemC Version 2.0 Users
Guide. 2003 at: www.systemC.org.

Acknowledgements
This research was supported by the National
Science Foundation Grants EIA-9906600,
CNS 042615, and HRD-0317692; and the
Office of Naval Research Grant N00014-99-
1-0952.

