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Abstract: - Some of the mathematical difficulties when modeling and simulate engineering systems arrive from the different time scales of the several components involved. However, in some situations, the behavior of fast components in the system may be modeled with instantaneous changes. This lead to a variable structure DAEs with their activity governed by a set of events. This paper explores the use of the Hybrid Statecharts graphical formalism to describe systems with continuous and discrete behavior. Being a multi level formalism, the Statecharts hierarchy mechanisms are particularly important to model complex systems as are normally the case of engineering systems. Throughout the article examples are presented trying to evidence the Statecharts formalism capabilities to describe hybrid behavior.
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1 Introduction

Engineering systems are a special case of physical systems as they are man constructed and may be seen as a configuration of interconnected physical elements. Some of these physical elements have very different time scales which lead to mathematical modeling problems. For example, in electrical systems fast switching elements such as diodes or relays can coexist with continuous elements such as solenoids, capacitors or electrical motors. In detailed models even the transitions of the commutation elements may be modeled; the resulted model will be a stiff continuous equation system. In a more practical model these transitions can be considered instantaneous ideal transitions. Other frequent situation occurs when continuous systems are controlled by digital computers. In fact the hybrid behavior (continuous and discrete) may naturally occur in systems with digital embedded controllers, because the controller can force the system to operate in variable configurations or modes. Modeling fast dynamics as instantaneous changes, by describing the behavior through continuous modes intersperse by instantaneous transitions, has been used to reduce the overall model complexity [1]. These variations in the continuous modes occur when the system variables reach some conditions and when state or external events occur. Hybrid models are then a natural representation of embedded systems and of complex systems whose behavior is simplified through the use of discrete transitions substituting fast dynamics [1].
The modeling, simulation, analysis and control of systems that incorporates continuous and discrete dynamics, known as hybrid systems, have been a study object in the last years. The hybrid systems formulation can be done in continuous time or in discrete time. A continuous time formulation assumes that at least part of the system may be described with differential equations in some time intervals. According to Barton [2] a hybrid system can be described by a set of sub-systems with discrete states, by a set of sub-systems of continuous states and the possible interactions between the two sub-systems. The continuous sub-systems are mainly modeled with ODEs or DAEs. 
Concerning the formalisms there are mainly two approaches to describe hybrid behaviors: one is extension of continuous formalisms, as the case of the Bond Graphs formalism [6], with discrete features; the other corresponds to the extension of the discrete formalism with continuous dynamics as is the case of the Finite State Machine [3], Petri Nets [4] or the Statecharts [5] formalisms.
In the following sections the Statecharts formalism and the add-on features to describe hybrid behavior, will be introduced. Throughout the paper, examples are presented trying to evidence the capabilities provided by the hybrid statecharts formalism to model continuous and discrete behavior.
2 The Statecharts formalism

The Statecharts formalism was initially proposed by Harel [7] as a method to specify complex reactive systems. The Statecharts enlarge the traditional states and transitions of FSM formalisms with hierarchy of states, concurrency or ortogonality between states and a broadcast mechanism that possibilitates the communication between states. The hierarchy mechanisms are particularly important to model complex systems, as they allow the high level abstract states. The parallelism and event propagation mechanisms are important features when modeling real time reactive systems. Some extensions have been proposed to the Statecharts formalism [8], being the hybrid features the most interesting add-on to enhance the formalism to describe hybrid behavior.
A statechart is described through a set of states, transitions, events and conditions. The states and events are considered the most natural way to describe complex systems. However, in complex systems it may exists many distinct states that, organized in accordance with a one level formalism, as the case of the FSM formalism, results in complicated and difficult to analyse state diagrams; in fact, it can be difficult, if not impossible, to show all the states in one diagram. The dependency and the parallelism of actions of concurrent subsystems increase exponentially the number of states and transitions in the FSM model. For example the same behavior of the FSM of Fig.1a) is described in a statechart with half of the transitions, because the Statecharts offer proper mechanisms to describe concurrent subsystems.
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Fig.1 Parallel activities with a) FSM, b) Statecharts

The states allow the specification of different system’s context and are represented graphically through rectangles. When a state is active it describes a situation in the system. There are three types of states: basic states, OR states and AND states. In the example of the figure the states A1, A2, A3, B11, B12, B21, B22, B23, B311, B312 and B32 are basic states.
One of the differences, regarding the FSM, is the possibility of hierarchical decomposition of states, allowing the grouping of states in another state originating different hierarchical levels. This hierarchical manner of organizing information encourages the use of zooming tools to an easy movement between abstraction levels.

The Statecharts formalism introduce the depth concept in the state diagram through the OR decomposition of a conventional FSM state. Orthogonality represents the dual of depth and correspond to a AND decomposition of a FSM state. This decomposition of states originates sub-states. In the example of Fig.2 the states Root, A, B1, B2 and B3 are OR decompositions. The state B1 contains the sub-states B11 and B12, that are called child states of B1, being B1 their parent state. A statechart has always a state without parent (in this case the state Root) that is called the root of the statechart. When an OR state is active only one sub-state is also active. Looking at the example of Fig.2, when the A state is active only one of the states A1, A2 or A3 is active.
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Fig.2 Statechart with different hierarchical levels
Concurrency can be described through AND states, allowing the description of concurrent activities through orthogonal states. These orthogonal states are all activated or de-activated simultaneously when the entrance or exit of a AND state, respectively. The states B1, B2 and B3 are orthogonal sub-states resulting from the AND decomposition of state B. The decomposition of states may proceed until the desired low level description is achieved. 
Transitions are the only mean by which a state can be activated explicitly or implicitly. Thus, the evolution of a statechart is managed by internal or external events that originate the firing of transitions.

The events can also be associated with transitions through the execution of actions when the transitions are fired; for example e11 and e2 are associated with transitions t9 and t2, respectively. Most of the implementations of the statecharts formalism restrict a transition to have only an origin state and a destination state. One particular transition is called the default transition that has only a destination state and that is fired when an OR state is entered. For example, when the state A is activated the default transition is fired, activating its destination state, A1, that is considered the default state of A. The generic syntax for transition label is “event[guard]/action”, where event is an expression that contains the necessary events for a transition to occur, guard is a conditional expression that may inhibit the firing of a transition in the case of a false evaluation of the expression. The guard may be a specification for the domain of a variable, the evaluation of orthogonal states components or can be used to establish transitions priorities. Resuming, a transition can only be fired when the events defined in event occurs, its origin state is active and the conditional expression guard be true. When the transition is fired the actions defined in the expression action are executed. These mechanisms of generating events, associated to the firing of transitions, allow the specification of communication channels between orthogonal states and can be used to synchronize concurrent tasks as the case of the action e11 associated with transition t9 that is used as the event for t11.
Other Statecharts concepts, such as transition conflicts and non-determinism, or the history concept, not to much relevant for the understanding of the present work, can be found in [7] and [8].
3.1   Actions and activities
The Statecharts formalism adds the possibility of association of discrete actions to the activation and the deactivation of states and to the firing of transitions. These actions are executed when the respective events occur. The association of continuous activities (During activities, Fig.3) to the statechart states allows the specification of continuous behavior when the respective state is active. This extension is known as Hybrid Statecharts [9] and may be used to model hybrid systems: while the actions and transitions capture the discrete features of the system, the activities describe its continuous part. The continuous activities associated to a state are operational while the state is active. All the activities have a continuous time behavior, allowing then the modeling of hybrid systems, as if it can see in the example presented in Fig.3. This statechart represents a competition between a cat and a mouse and was initially presented by Kesten in [9]. Its simplicity evidences some of the potentialities of Hybrid Statecharts to model systems with continuous and discrete components. The example can be described of the following form: after the Start button being pressed, the mouse starts to run from a certain position, straight forward to a hole that is in the wall, and that is at a distance X0 of the initial position.
The mouse runs with a constant velocity Vm. After a predefined time delay, (t, the cat is untied in the same initial position and pursues the mouse also with a constant velocity, Vc, throughout the same trajectory. With the statechart execution it can be known if the cat can catch the mouse, or if the mouse can reach its sanctuary and the mouse jams against the wall. The specification uses the continuous variables xm and xc to measure the distance of the mouse and the cat, respectively, up to the wall. X0, Vm, Vc and (t are constant values. The evolution of statechart is initiated with the Init button that leads to the abandonment of the Start state. In the instant of the Start state deactivation the action associated with its output is executed (Exit action), in which the state variables xm and xc are initialized. The game then begins with the mouse immediately in competition, signaling the beginning of its race, that “is felt” by the mouse after the delay, (t. The mouse luck or the cat meal will depend on the velocities of the cat and the mouse and of the delay in the start of the cat.
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Fig.3 Statechart describing the mouse and cat competition
3.2   The execution semantics

The behavior of a system described with a statechart is a set of possible executions, each one representing the reply of the system to a sequence of external stimuli generated by its environment. An execution consists of a series of instantaneous moments of evaluation; each moment is called status. The first one of the sequence is the initial status, and each subsequent is gotten from its predecessor through the execution of a step, Fig.4.
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Fig.4 Evolution of the execution of one statechart

Each step must be defined with accuracy including all its collateral branches and effects. A step means the accomplishment of a set of transitions, being defined as the maximum set of transitions that are consistent, compatible and relevant in the initial configuration and fired by the communication signals (generated by the actions). Two transitions are consistent when they belong to parallel components. They are compatible if, in the action of one transition, does not exist any signal that appears denied in the event of the other. A transition is relevant if its origin state is part of the configuration. A statechart configuration is defined as the maximum set of states that the system can have active simultaneously. The basic configuration refers to the maximum set of basic states that a system can have active simultaneously. In the example of Fig.3, {MouseRace, CatWait} is a basic configuration and its full configuration is the set of states {Root, MouseCatGame, Cat, Mouse, MouseRace, CatWait}.
When fired, a transition sends signals through the associated action that may, instantaneously, enable new transitions (relevant and compatible).
The status contains information about active states and activities, values of variables and conditions, and generated events. At the beginning of each step, the environment supplies to the system in description the external stimuli; these stimuli, along with the changes that occur in the system, during and after the leading step, are responsible for the firing of transitions and the activities associated with the states become operational. As a result, the system is moved for a new status: some states are deactivated and others are activated, values of conditions and variables are modified, new events are generated, and the evolution continues in a similar way.

Beyond being possible to associate actions with the firing of transitions, they can also be associated with the entrance and output of states. The actions associated with the input of a state are executed in the step where the entrance to the state occurs, as if it was an action associated with an input transition to the state. In the same way, the actions associated with the output of a state (Exit actions) are executed in the step where the state is deactivated, as if these were associated with an output transition of the state.

In one determined moment, the set of operational activities in the states of a configuration defines DAE system that has to be evaluated. The above cited full configuration defines the differential equation system: 
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In a step, the system carries through operations of four types: transitions, activities, actions performed when the entrance of states and actions accomplished when leaving states. Step execution must always lead the system for a legal configuration.
3.3   The synchronous hypothesis

Two approaches for step execution are normally considered: the asynchronous and the synchronous hypothesis. The synchronous hypothesis assumes that the system is infinitely faster than the environment and, then, the reply to an external stimulus introduced in a step always is generated in the same step [10]. In fact, the synchronous hypothesis is an abstraction that limits the interference that can occur in the period of time that separates the stimulus and its reply. In a statechart, the global activities are modeled by a set of DAEs that describes all the continuous behavior of the configuration. When an event, detected by a set of monitoring functions, occurs the continuous integration of the DAE is interrupted and thus all the actions associated with the events (including the events generated by actions) are always executed before the continuous integration being retaken. This includes the firing of all the transitions, and the accomplishment of all the actions associated with transitions, entrance and leaving of states.

3 Modeling example

To illustrate the applicability of hybrid Statecharts to describe hybrid behaviour an example of a well known friction model will be presented. 

Friction is a highly non-linear phenomena and can provoke stationary regime errors and low performance in dynamic systems. The term friction is normally used to assign a tangential reaction force reaction, between two surfaces, responsible for the energy waste. Accurately friction modeling is very important mainly for the analysis of high accuracy servomechanisms and for friction compensation. 
The modified classic model proposed by Armstrong [11], contemplates some dynamic friction effects, although it is a static model, because it introduces time dependence for the no sliding regime and the Stribeck effect. This model is valid when lubrication exists and it contemplates four regimes of velocity, Fig.5, and two dependant properties of the time.


[image: image7.wmf]II- 

Boundary

lubrication

III- 

Partial fluid

lubrication

IV- 

Full fluid 

lubrication

I- 

Elastic deformation

(no sliding)

Friction force

Sliding velocity


Fig.5 Stribeck curve with four regimes of lubrication
These velocity regimes contribute for the dynamics of the system that accelerates from zero velocity. The curve defines three motion regimes and a regime where the friction does not depend on the velocity.

The first regime represents the static friction and the microscopic displacement that occurs in the pre-sliding. In this regime, when the applied force is less then the static friction (break-away force), there exists elastic deformations of the asperities in contact. The junctions between asperities behave as springs and there is a micron-displacement that can be considered linear with the applied force. The friction force can then be approached by:
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where kt is the stiffness of the contact. The stiffness depends on the geometry of the asperities, of the elasticity of the material and the applied normal force; x is the relative movement in relation to the equilibrium position, Fig.6a). The static friction force is dependant of the tax of increase of the external force and magnifies with the time of permanence in a no sliding state (known as dwell time). When the applied force exceeds the static friction, the established junctions between the asperities are broken and then the sliding occurs, Fig.6b).
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Fig.6 a) Asperities deformation under force 
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The second regime is characterized by boundary lubrication. For very low velocities the lubrication is not very important as the velocity is not enough to develop a fluid layer between the surfaces. 

The third regimen is characterized by a partial lubrication. When the velocity increase more lubricant is dislocated to the interface and a fluid layer can be formed. The thickness of the fluid layer increases with the lubricant viscosity and with the relative velocity between the two surfaces in contact. If the lubricant layer does not have enough thickness, some peaks of the asperities may be in contact which is a situation of partial lubrication. The thickness of the lubricant layer increase with the velocity that lead to a diminishing of the resultant tangential force, since the lubricant cut forces are lesser then the asperities cut forces. According to Armstrong this regime is the most difficult to model since the friction force depends on the lubricant layer (and its viscosity) and also of the direct contact between some of the asperities. In this regime, a time delay between a variation of the velocity (or charge) and the change of the friction force for a new stationary state are also observed. This time delay (or delay of phase) is known by frictional memory.

The forth regime is characterized by a total lubrication resultant from the fact that the lubricant layer if keep thicker then the size of the asperities. The friction are determined by the hydro-dynamic and elasto-hydrodynamic lubrication. The lubricant layer thickness determines the friction and depends on the surface features (stiffness and geometry), the relative velocity and the lubricant viscosity.

The model also contemplates two time properties:

· A relation between the time of permanence in a stick state (dwell time) and the rising static friction;

· A time delay between a variation of the relative velocity (or charge) and the corresponding change in the friction force (frictional memory).
The model has two states (no sliding and sliding) and seven parameters. In the no sliding state, the pre-sliding displacement defines friction by equation (1)

.
When sliding, the friction force is defined by the Coulomb friction, the viscous friction and the effect of Stribeck with frictional memory:
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with the static friction level at break-away given by:
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where fa is the instantaneous friction force, fco(*) is the Coulomb friction force, kv(*) is the coefficient of viscous friction, fs(*) is the amplitude of the Stribeck force, fs,a is the amplitude of the Stribeck force at the end of previous the sliding period, fs,((*) defines the amplitude of the Stribeck force at the end of a long period of stopping, kt(*) (from equation 
(1)

)is the tangential stiffness of the static contact,  GOTOBUTTON ZEqnNum882497  \* MERGEFORMAT (*) is the critical velocity of Stribeck, 
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(*) is the time constant of the frictional memory, 
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(*) it is the time parameter of establishment of the static friction, t2 is the time of permanence in the stick state (dwell time). (*) indicates the parameters of the model.
An implementation for the model of Armstrong is proposed in the statechart of Fig.7. This describes a composite system by a sliding mass, M, where a external force is applied, f. The movement of the sliding mass, 
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(see Fig.8), contains one elastic component (acting in the pre-sliding, constant in the sliding), xe, and one plastic component (acting in the sliding and constant in pre-sliding), xd. An elastic “concentrated” asperity (that represents all the asperities contacts) is used to evidence the elastic and plastic components of the movement.
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Fig.7 Statechart for the Armstrong friction model
The external force, f, and the current time, t, must continuously be supplied to the statechart, that returns (to the system) the instantaneous friction force, fa, the position of the mass, its velocity and the state of the system. The velocity in the time instant, 
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 and can be calculated through an operator, delay, normally supplied by modeling languages. It should be noticed that in the NoSliding state the friction force, fa, is equal to the applied force, f; this situation, along with the activity of the ArmstrongModel state, keeps constant the plastic displacement, xd, (because the velocity, v, was set to zero in the transition for the NoSliding state), leading to that only the elastic component in the displacement, xe, can change.
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Fig.8 Mass in movement with application of a external force

In [11], a set values for the parameters as well as some parameterization techniques are presented. The simulation of statechart of Fig.7 use the parameters: 
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Fig.9 Results of applying a force, f, to the statechart of Fig.7
Fig.9 presents the results of the simulation of statechart with the application of a force, in order to illustrate the sliding and pre-sliding phases of the movement. It should be notice that the amplitude of the pre-sliding displacement was exaggerated to evidence the elastic feature of this movement. The truly elastic behavior of the friction model in the stick state can be seen because, after the cancellation of the force, the mass returns to the position that occupied immediately before being applied a force below of the force of break-away.
4 Conclusions
The present work proposes the use of statecharts to describe continuous and discrete behavior of engineering systems. The Statecharts formalism provides natural mechanisms that facilitate the description of complex behavior. Also its variant, known as Hybrid Statecharts, is suitable to implement the synchronous hypothesis of hybrid systems simulation. The resume of the Statecharts formalism as also the examples presented in the paper, in special the hybrid statechart of a well known friction model, intends to be a contribution to explain how to use the hybrid statecharts formalism when modeling hybrid systems. The examples presented also evidences how the Entry and Exit actions, as also the actions associated with transitions, are useful, for example, to initialize state variables. 
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