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Abstract:- Several methods have been developed to enhance the performance of image denoising algorithms. In 
this letter we have developed an algorithm for image noise removal based on local adaptive window size/shape 
filtering. While rectangular windows are efficient, they yield poor results near object boundaries. We describe 
an efficient method for determining the variable size of the locally adaptive window using a region-based 
approach. A region including a denoising point is partitioned into disjoint subregions. The locally adaptive 
window for denoising is obtained by selecting the proper subregions. Our approach can be applied to several 
problems, including image restoration and visual correspondence. Comparison of the algorithm with the known 
techniques for noise removal from images shows the advantage of the new algorithm, both quantitatively and 
visually. 
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1. Introduction 

 
Many types of noise can be introduced when 
processing or transmitting images. The problem 
of image denoising is to recover an image that is 
“cleaner” than its noisy observation. Wavelet 
denoising techniques received wide attention 
mainly due to the breakthrough work by Donoho 
and Johnstone [1]. It has been shown that 
wavelet denoising with VisuShrink thresholding 
possesses nearly optimal rates of convergence 
over a broad family of Besov spaces [1]. 
Wavelet denoising with VisuShrink thresholding 
has been shown to be very successful for 1-D 
signals. However, its performance is not 
satisfactory for 2-D images [2].  

To improve the performance of wavelet-
based image denoising, several methods have 
been proposed in recent years [3, 4] It is found 
that models using the dependency between 

coefficients give better performance than those 
derived using an independence assumption [4]. 
A wavelet domain hidden Markov model was 
developed to exploit the statistical dependencies 
in [5, 6], also a joint shrinkage function using 
the neighboring coefficients was proposed in [7, 
8]. A new Bivariate Shrinkage function using 
Bayesian and Maximum Posterior Estimator 
(MAP) was derived in [4]. In [9], a newly 
derived Bivariate Shrinkage function was used 
with locally adaptive estimated parameters for 
the function. A local adaptive algorithm was 
proposed and its performance was demonstrated 
in [9]. The performance of this algorithm was 
high improvement over others algorithms like 
BayesShrink [3], NormalShrink [10] etc. To 
implement the algorithm in [9], Sendur et al. 
have used square shaped window, Such 
windows poorly model the boundaries of real-
world objects. This results in several well 
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known problems; for example, corners tend to 
become rounded. In this paper, we describe a 
new denoising scheme for determining the 
variable shape of locally adaptive window using 
a region-merging method. 

The paper is organized as follows: The 
bivariate shrinkage function is described in 
section 2. In section 3 we introduce our variable 
window solution. Section 4 is devoted to 
compare the performance of our proposed 
algorithm with the performance of other current 
wavelet-based denoising methods applied on a 
number of test images. Finally, section 5 draws 
conclusions and describes future work 
directions. 

 
2.  Bivariate Shrinkage Function 

 
In the wavelet domain, if we use an orthogonal 
wavelet transform, the denoising problem can be 
formulated as 

ny += ω                                    (1) 
where  is the noisy wavelet, ω  is the original 
coefficient, and n is the noise, which is 
independent Gaussian. Our aim is to estimate ω  
from the noisy observation, . The MAP 
estimator [4],[9] will be used for this purpose.  
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which can be interpreted as a bivariate shrinkage 
function. Here  is the noise-corrupted image, 

 parent image of the same signal but with one 
higher coarser scale, σ  is the variance of the 
noise-corrupted signal and σ is the signal 
variance. 
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To estimate the noise variance σ  from the 
noisy wavelet coefficients, a robust median 

estimator is used from the finest scale wavelet 
coefficients [1] 
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Sendur et al. [9] proposed a low complexity but 
powerful scheme to denoise images by 
exploiting the dependencies between the 
coefficients and their parents in detail within 
each scale. In [9] reasonably good results were 
obtained. The signal variance σ  for the k  
wavelet coefficients is defined by  
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where  is the signal variance of noisy 
observations  and . σ  is estimed   
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where  is defined as all coefficients within a 
windows that is centered at k  coefficient. The 
M is the size of the neighborhood. Then, σ  can 
be estimated as 
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3. Varying Window Size Selection 

 
In this section we describe our variable window 
algorithm. Our overall goal is to determine a 
reasonable window size in order to estimate the 
signal variance for each wavelet coefficient. Our 
approach is based on region merging. Assume 
that there is a region  including ω . Let 

be a partition of the region , 
, , and  U . In addition, 

only a subregion  includes . 
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Starting from the subregion  including 
denoising point ω , the region in which to 
estimate the signal variance is expanded until 
the homogeneity of the variance is achieved. 
The measure of the homogeneity is defined 
according to the normalized difference of 
variances, that is 
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4. Results And Discussion 
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We tested our algorithm on a number of images, 
here, we only report the results for Shape, 
Anime, Bike and Resolution illustrated in 
Figure.1. We generated i.i.d. Gaussian noise at 
four different values of the noise variance, σ . 
All simulations were performed with a five-
scale orthogonal wavelet transform by using 
Daubechies length-eight filter. For practical 
purposes, we use 9 , and nine 

subregions. Therefore, Q .The scaling 
constant of threshold t  was set at  (our 
results were insensitive to this value). We 
compared the proposed algorithm to other 
effective systems in the literature, namely 
VisuShrink, BayesShrink, NormalShrink,  and 
BiShrink. Performance analysis is done using 
the peak signal-to-noise ratio (PSNR) mesure. 
The PSNR is defined by  
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where is the local variance of region . 
Since the local mean of wavelet coefficients is 
very small, σ  is approximately calculated by 
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where is the set of all coefficients within 
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 is the cardinality of 
neighborhood . )

Let be a binary factor indicating 
where the variance σ  is homogenous with 

, or not. That is 
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where t  is the threshold defined by k
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where ε is the root mean-squared error given by  

In (11),  is a scaling constant,  indicates 
the finest scale, and  indicates the coarsest 
scale of the wavelet decomposition. Then, the 
estimate of the signal variance σ  is obtained by 

β 0j =
Jj =
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where is the number of image pixels.  N
Each PSNR value is averaged over five runs. 
The results can be seen in Table 1. In this table, 
the highest PSNR value among five algorithms 
is emphasized with a star (*). As seen from the 
results, our algorithm mostly outperforms the 
others.    
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Image denoising is achieved by employing (2) 
with the estimated signal variance σ . 2ˆ  Some illustrative images are given in Figure 

2. Figure 2.(a) show the noisy image (shape), 
with a PSNR value of 24.59. The denoised 
image obtained using VisuShrink, BayesShrink, 
NormalShrink, BiShrink and our model are 
illustrated in Figures 2.(b, c, d, e, f) respectively 
and have PSNR values of 29.57, 29.78, 30.48, 
32.53, and 32.98, respectively. We can see that 
our model has a significant performance 
improvement in both PSNR and visual quality.  

In our method, there are  differently 
shaped windows. We exploit a square-shaped 
region and square shaped subregions for 
simplicity of computation. In this letter, we 
use , and nine subregions. Therefore, 

and there exist 256 differently shaped 
windows. 
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5. Conclusions And Perspective 
 

In this paper, we proposed a new algorithm for 
determining the variable size of a locally 
adaptive window using a region-based approach. 
Because our approach uses a nearly arbitrarily 
shaped window to obtain more accurate local 
statistics of images, the denoising method using 
a varying window size according to the 
homogeneity of variance is an efficient 
algorithm in removing white Gaussian noise 
from image. The comparison suggests the new 
denoising results outperform the best wavelet-
based results reported in the literature.  

Other new algorithm for determining the 
variable size of a locally adaptive window are 
under way and the results are postponed to a 
subsequent publication. 
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Figure1. original images test 

Table.1

PSNR values of denoised images for different test images and noise levels of Noisy, VisuShrink, BayesShrink, 
NormalShrink, BiShrink , Our Model. 

Image 
nσ  Noisy VisuShrink BayesShrink NormalShrink BiShrink Our Model 

10 28.1 32.85 33.29 33.62 35.65 36.10 * 
15 24.59 29.57 29.78 30.48 32.53 32.98 * 
20 22.13 27.23 27.66 28.18 30.35 30.75 * 

 
 

Shape 
25 20.26 25.89 26.48 26.73 28.67 29.07 * 
10 28.13 32.5 33.33 33.55 35.33 35.54 * 
15 24.61 29.24 30.37 30.43 32.2 32.44 * 
20 22.11 27.11 28.13 28.07 30.05 30.29 * 

 
 

Anime  
25 20.18 25.35 26.37 26.33 28.42 28.63 * 
10 28.11 29.88 30.32 30.56 33.95 34.07 * 
15 24.6 27.71 28.61 28.93 31.63 31.86 * 
20 22.13 24.07 25.61 25.79 29.72 29.79 

 
 

Bike  
25 20.22 23.61 24.09 24.78 28.63 * 28.56 
10 28.23 31.08 31.14 31.71 33.18 33.99 * 
15 24.7 28.06 28.21 28.8 30.08 30.73 * 
20 22.19 25.76 26.15 26.73 27.88 28.39 * 

 
 

Resolution 
25 20.24 23.97 24.58 24.69 26.17 20.58 * 
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Figure 2. (a) noisy images (PSNR=24.59), (b)VisuShrink (PSNR=29.57), (c)BayesShrink (PSNR=29.78), 

(d)NormalShrink (PSNR=30.48), (e)BiShrink (PSNR=32.53), (f)Our model (PSNR=32.98). 

 


