
 1

Pattern Matching Using the Hausdorff Distance

Fang Yi, Xiong ShengWu

Computer Science and Technology Department

Wuhan University of Technology

Wuhan, Hubei, P.R. China

Abstract Point matching can be a computationally intensive task, especially when
large point sets are involved and when the transformation space has many degree of
freedom. Here, we employ two efficient algorithms to solve the problem, in an
attempt to reduce its computational complexity, while providing acceptable result.
The first method is an approximation algorithm based on branch-and-bound approach,
it is possible to achieve a tradeoff between the quality of result and the running time.
The second method operates within the framework of the first method but accelerate it
by using point alignments. We demonstrate the algorithms’ performances on
synthetically generate data. Moreover, we apply them on finding facial feature points
in images and show some preliminary results.
Keywords Feature extraction, Pattern matching, Hausdorff distance, Image
registration, Feature space

1. Introduction

In pursuing an image registration task,
we are given two images of roughly the
same scene, and are asked to determine
the transformation that most nearly maps
one image into the other. Based on point
pattern matching, the problem can be
defined abstractly as follows. Given two
point sets A and B lying in two different
spaces, a space T of transformations
mapping one space into the other, a
measure of distance between any two
point sets, to find the transformation t∈
T that minimizes the distance between
t(A) and B.

In an attempt to arrive a sound
registration scheme, we explore two
efficient algorithms that are both
accurate and fast. We show the overview
of these two algorithms according to the
following four factors, proposed by
Brown[1] for classifying any image
registration method.

1.1 Feature space

Feature space is the domain in
which information for matching is
extracted. Specifically, we consider
feature points that were extracted in the
image domain. They may be control
points, corners, line segments, etc. All of

 2

them are assumed to be available as a
result of applying standard feature
extraction algorithms. It is important to
notice that feature extraction process
would yield unexpected result. The first
is perturbation errors, which result from
a combination of the image digitization
process, expansion or shrinkage of
objects due to variations in lighting
conditions, and the failure of the feature
extraction algorithm. The second source
of error is the presence of outliers,
which can result from many sources, the
fact that the two images cover different
regions, the presence of occluding
objects in images, and the sensitivity of
the feature extraction algorithm to
variations in lighting, point of view, or
other aspects of imaging process.

1.2 Search space

Search space is the class of
transformations that establish the
correspondence between the sensed
image and the reference data.
Specifically, we consider
two-dimensional affine transformations,
allowing for translation, rotation, scaling
along each axis, and shearing. Using
homothetic coordinates expressing, any
linear transformation in the plane can be
expressed as affine transformation.
Usually, we consider such common
subspaces of transformations as
translation only, rigid motions
(translation, rotation and possibly
reflection), homothetic transformations
(translation, rotation and uniform
scaling). Our algorithm methodology
can be applied to any reasonable space
of transformations of bounded
dimensionality.

1.3 Search strategy

We use two search strategies for
finding the optimal transformation. The
first is based on a branch-and-bound
search of transformation space, and the
second combines this with a method
based on alignment judiciously chosen
candidate feature points. The first
method has the advantage that it can
provide arbitrarily good guarantees on
the accuracy of the final match, and that
it naturally uses a priori information to
bound the search. The main problem
with this method is that the nature of the
search leads to rather high running times.
The second method is very easy to
implement, but it cannot generate results
with better than a fixed constant error,
and does not lend itself easily to
exploiting a priori information in the
search.

1.4 Similarity metric

The figure of merit assigned to a
match that is determined by a specific
transformation is based on the
(directional) partial Hausdorff
distance[2]. This is a robust measure, it
consider the set of distances resulting
from taking each point in one set, and
finding the nearest point to it in the other
set. Rather than taking the sum or the
maximum of these distances, which may
be affected by outliers, we consider the
median or, in general, the k-th smallest
distance. More formally, given two point
sets A and B, and a parameter k, 1≤k≤
|A|, we define the directed partial
Hausdorff distance from A to B to be

() ()badKBAh
Bb

th
Aak ,min,

∈∈=

 3

where Kth returns the k-th smallest
element of the set, and where d(a,b) is
the Euclidean distance from a to b. The
parameter k is typically based on a priori
bounds on the number of points of A that
are expected to have close matches in B
under the optimum transformation.
These are the inliers[3].

2. The Branch-and-Bound

Algorithm

Both of our registration algorithms
are based on a branch-and-bound
framework, we will describe the
branch-and-bound algorithm in this
section. For conveniences, we introduce
some definitions and notations.

2.1 Definitions and Notations

z A and B, the given two point sets,
they are fixed for the remainder of
the discussion.

z T, a space of transformations.
z τ, τ∈T, a concrete transformation.
z q, a distance quantile, 0<q≤ 1,

define Hq(A,B) to be Hk(A,B),
where k=ceil(q*|A|).

z simq(τ), the similarity measure of τ,
i.e., simq(τ) = Hq(τ(A),B).

z τopt, the optimum transformation.
z simopt, the optimum similarity, i.e.

simopt = H(τopt(A), B) = min
H(τ(A),B).

z M and t, parameters for affine
transformation. For any a = (a1, a2)
∈A, τ(a) = Ma + t.

z εr, the relative error bound.
z εa, the absolute error bound.
z εq, the quantile error bound.

z q' = (1 - εq)q, the weak quantile.
Note that since q'≤ q, we have
simq’(τ)≤simq(τ), for any τ∈T.

z τ is approximately optimal relative
to εr, εa and εq, if either simq’(t)≤
(1+εr)simopt or simq’(t)≤simopt + εa
holds.

z Tree, node and cell. We construct a
search tree, where each node of the
tree is identified with the set of
transformations contained in some
axis-aligned hyperrectangle in the
six-dimensional transformation
space. These hyperrectangles are
called cells.

z τlo and τhi, a pair of transformations
for each cell, whose coordinates are
the upper and lower bounds on the
transformations of the cell.

z T0, an initial cell. It is assumed to
contain the optimum transformation.
This is supplied by the user, based
on a priori knowledge of the nature
of the transformation.

z Active cell, if the cell is a candidate
to provide the optimum
transformation.

z Killed cell, if it cannot provide the
optimum solution.

z Cell processing. Select one of the
active cells to process. After
processing, a cell is either killed or
is split into two disjoint subcells.

z simhi(T), an upper bound of the
smallest similarity, associated
transformation of which contained
in cell T.

z simlo(T), an lower bound of the
smallest similarity, associated
transformation of which contained
in cell T.

z simbest, the best similarity
encountered so far in the search.

z τbest, the transformation associated

 4

with simbest.
z A simhi(T) computing. We may

sample any transformation from
within the cell. In particular, this is
done by simply taking the midpoint
τ of the cell, and then computing
simq(τ).

z Uncertain region. Given any cell
T⊂T, and given any point a∈A,
consider the image of a under every
　∈T. It is easy to compute a
bounding rectangle for this set. We
call this bounding rectangle the
uncertainty region of a relative to T.

z A simlo(T) computing. To derive our
lower bound for T, for each point a
∈A, we compute the distance from
the corresponding uncertainty
region to its nearest neighbor in B.
Observe that this distance is a lower
bound on the distance from (a) to 　

its nearest neighbor in B, for any 　
∈T. We then take the q-th smallest
such distance. Call this simlo(T).

z The size of uncertain region, define
as its longest side.

z The size of a cell, define as largest
size among the associated
uncertainty regions for each point in
A.

z Cell queue. The active cells are
stored in a priority queue, ordered
by cell size.

z Cell splitting. Split cell T into two
smaller subcells T1 and T2, by
splitting it along the dimension that
contributes most to its uncertainty
region size.

2.2 Overview of the Algorithm

Here is an overview of the
approximation algorithm. The input
consists of the point sets A and B, the

Hausdorff quantile q, the approximation
parameters εr, εa and εq, and the initial
cell T0.
(1) Build a nearest neighbor data

structure for the points of B.
Initialize the priority queue to
contain T0. Set simbest=∞. Define
the weak quantile q' to be (1 - εq)q.
Repeat steps (2)-(5) until the priority
queue is empty or until simbest≤εa.

(2) Remove the largest cell T from the
queue. Compute its lower and upper
bounds. This involve the following
steps:
(a) Compute the uncertainty regions

for every point a∈A with respect
to T.

(b) For each uncertainty region,
compute its nearest neighbor in
B.

(c) Using any fast selection
algorithm, compute the q-th
quantile among these distances.
Call this simlo(T). If simlo(T) >
simbest/(1+εr) or if simlo(T) >
simbest - εa, kill this cell and
return to step (2).

(d) Otherwise, sample a
transformation from this cell. 　

Compute the image of each point
of A under , and compute the 　

nearest neighbors of these points
with respect to B. Find the q'th
smallest such distance. Call this
simhi(T).

(3) If simhi(T) < simbest, update simbest
and let τbest be the associated
transformation.

(4) Split cell T into two smaller subcells
T1 and T2, by splitting it along the
dimension that contributes most to
its uncertainty region size. Compute
size bounds for T1 and T2.

(5) Enqueue T1 and T2 in the queue of

 5

active cells.
The final transformation is τbest and

its similarity is simbest.

3. Bound Alignment

The branch-and-bound algorithm
has many nice features, but its main
drawback is its relatively high running
time. This occurs especially when high
accuracy is required and the optimum
similarity is very good. For this reason,
we introduce an additional process
called bound alignment to help
accelerate the search.

Suppose that the search of
branch-and-bound has progressed to a
stage where most of the uncertainty
regions associated with the points of A
contain at most one point of B. Consider
the points of A that have exactly one
point of B in their uncertainty regions. If
a cell contains the optimum
transformation, we sample one such
point at random and compute the unique
transformation that maps this point to
the corresponding point of B for several
times, and there is a good probability
that desired optimum transformation is
found. On the other hand, if a cell does
not contain the optimum, after taking a
number of samples and witnessing
repeatedly poor similarities, we may
regard this as evidence that the cell in
question does not contain the optimum
and therefore we kill it.

Before giving detailed alignment
algorithm, we introduce some
definitions and notations.

3.1 Definitions and Notations

z Alignment. The process whereby triples
from A are matched against prospective

corresponding triples from B in order to
determine a candidate transformation is
called alignment.
z Noise bound η. In noisy

environments, suppose that for each
inlier a∈A there is a point of B that
lies within some small distance η
from its optimum image point,
τopt(a). We assume that an upper
bound on η, called the noise bound,
is provided to the search algorithm.

z Alignable uncertain region. An
uncertainty region is said to be
alignable if there is at most one
point of B in the region, or if the
region is empty and there is at least
one point of B within distance η of
the region.

z Alignable cell. If the current cell
has a significant fraction of
alignable uncertainty regions, we
say that this cell is eligible for
alignment.

z qs, the quantile of uncertainty
regions becoming alignable.

z Ns, the number of taking samples.

3.2 Detailed Algorithm

Here are steps used for the bounded
alignment algorithm. (These steps are
added after step (2d) in the previous
description.) The algorithm is given an
expected inlier perturbation η, sampling
quantile qs, and a minimum sample size
Ns.
(e) For each a∈A, count the number

of points of B that lie within a's
uncertainty region. If this at most
one, and the nearest neighbor is
within distance η of the

 6

uncertainty region, flag this
region as alignable.

(f) If the fraction of alignable
uncertainty regions is less than qs,
return to step (2). Otherwise, let
A' denote the subset of A such
that for each a∈A', there exists
at least one point b∈B that
either lies inside or within
distance η of a's uncertainty
region. Repeat the following Ns
times:
(i) Sample (without replacement)

triples of points of A', until a
triple that is geometrically
well-distributed is found.

(ii) Compute the transformation
that aligns each point in the
triple with a random point of
B in its associated
uncertainty region. Compute
the similarity of this
transformation.

(iii)If the similarity of this
transformation is better than
the current best similarity
simbest, make it the new best.
If the similarity obtained for
all of the Ns transformations
exceeds the current best by
an additive amount of η, kill
this cell.

If the similarity obtained for all of
the Ns transformations exceeds the
current best by an additive amount of η,
kill this cell.

4. Experiments

We apply the algorithms on finding
Facial Feature Points (FFP) in images.
We are given a reference face image,
FFP of which is known, and expected to

find FFP in sensed face image. To
comparing with standard face, the
sensed image may have many
transformations, such translation,
rotation, scaling, etc. Extracting feature
point set in the reference image and
sensed image, we can use our search
algorithm to derive optimum
transformation by minimizing Hausdorff
distance, and find FFP in sensed image
finally.

Fig. 1 gives a standard FFP map as
reference image, fig.2 shows a face
image and its corresponding feature
points that served as candidate FFP, fig.
4 displays a final found facial feature
points using optimum transformation
computed by the bound alignment
algorithm.

Fig. 1

 7

Fig. 2

5. Conclusion

We have explored two algorithms
for registering images in a robust
manner through the use of feature point
pattern matching. Both algorithms allow
the user to choose tradeoff between
running time and accurate by specifying
initial parameters. The first algorithm is
based on branch-and-bound search. It is
simple and safe, but is relatively slow,
especially when high accuracy is desired.
The second algorithm, called bounded
alignment, is based on combining
branch-and-bound with computing point
alignments to accelerate the search. It
seems to be much faster than the
branch-and-bound algorithm in many
cases, but it may fail with some small
probability.

References

[1] L.P.Chew, D.Dor, A.Efrat, K.Kedem.
Geometric Pattern Matching in
d-Dimensional Space. Proc. Ninth
Ann. ACM-SIAM Symp. Discrete
Algorithms, pp. 658-667, Jan. 2003.

[2] M.T.Goodrich, J.S.B.Mitchell,
M.W.Orletsky. Approximate
Geometric Pattern Matching under
Rigid Motions. Proc. First
Workshop High Performance Data
Mining, Mar. 1998.

[3] M.Gavrilov, P.Indyk, R.Motwani.
Geometric Pattern Matching: A
Performance Study. Proc. Seventh
Ann. European Symp. Algorithms, J.
Nesetril, ed., pp. 362-371, July
1999.

[4] D.P.Huttenlocher, G.A.Klanderman,
W.J.Rucklidge. Comparing Images

 8

Using the Hausdorff Distance. IEEE
Trans. Information Theory, vol. 28,
129-137, 1982.

[5] D.M.Mount, N.S.Netanyahu,
J.L.Moigne. Efficient Algorithms
for Robust Feature Matching. Data
Mining and Knowledge Discovery,
vol. 1, pp. 183-201, 1997.

[6] D.P.Huttenlocher, K.Kedem,
J.M.Kleinberg. On Dynamic
Voronoi Diagrams and the
Minimum Hausdorff Distance for
Point Sets Under Euclidean Motion
in the Plane. Proc. 10th Ann.
ACMSIAM Symp. Discrete
Algorithms, pp. S931-S932, Jan.
1999.

[7] L.P.Chew, M.T.Goodrich,
D.P.Huttenlocher. Geometric Pattern
Matching under Euclidean Motion.

IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 22, no. 1,
pp. 4-37, Jan. 2000.

[8] Sunil Arya, David M. Mount.
Algorithms for Fast Vector
Quantization. Proc. Data
Compression Conference, J. A.
Storer and M. Cohn, eds., Snowbird,
Utah, 1993, IEEE Computer Society
Press, 381-390.

[9] Sunil Arya, David M. Mount.
Approximate Range Searching, Proc.
of the 11th Annual ACM Symp. on
Computational Geometry, 1995,
172-181.

[10] S.M. Smith and J.M. Brady.
SUSAN - a new approach to low
level image processing. Int. Journal
of Computer Vision, 23(1):45-78,
May 2002.

