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Abstract Point matching can be a computationally intensive task, especially when 
large point sets are involved and when the transformation space has many degree of 
freedom. Here, we employ two efficient algorithms to solve the problem, in an 
attempt to reduce its computational complexity, while providing acceptable result. 
The first method is an approximation algorithm based on branch-and-bound approach, 
it is possible to achieve a tradeoff between the quality of result and the running time. 
The second method operates within the framework of the first method but accelerate it 
by using point alignments. We demonstrate the algorithms’ performances on 
synthetically generate data. Moreover, we apply them on finding facial feature points 
in images and show some preliminary results. 
Keywords Feature extraction, Pattern matching, Hausdorff distance, Image 
registration, Feature space 

 

1. Introduction 

In pursuing an image registration task, 
we are given two images of roughly the 
same scene, and are asked to determine 
the transformation that most nearly maps 
one image into the other. Based on point 
pattern matching, the problem can be 
defined abstractly as follows. Given two 
point sets A and B lying in two different 
spaces, a space T of transformations 
mapping one space into the other, a 
measure of distance between any two 
point sets, to find the transformation t∈
T that minimizes the distance between 
t(A) and B. 

In an attempt to arrive a sound 
registration scheme, we explore two 
efficient algorithms that are both 
accurate and fast. We show the overview 
of these two algorithms according to the 
following four factors, proposed by 
Brown[1] for classifying any image 
registration method. 

1.1 Feature space 

Feature space is the domain in 
which information for matching is 
extracted. Specifically, we consider 
feature points that were extracted in the 
image domain. They may be control 
points, corners, line segments, etc. All of 
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them are assumed to be available as a 
result of applying standard feature 
extraction algorithms. It is important to 
notice that feature extraction process 
would yield unexpected result. The first 
is perturbation errors, which result from 
a combination of the image digitization 
process, expansion or shrinkage of 
objects due to variations in lighting 
conditions, and the failure of the feature 
extraction algorithm. The second source 
of error is the presence of outliers, 
which can result from many sources, the 
fact that the two images cover different 
regions, the presence of occluding 
objects in images, and the sensitivity of 
the feature extraction algorithm to 
variations in lighting, point of view, or 
other aspects of imaging process. 

1.2 Search space 

Search space is the class of 
transformations that establish the 
correspondence between the sensed 
image and the reference data. 
Specifically, we consider 
two-dimensional affine transformations, 
allowing for translation, rotation, scaling 
along each axis, and shearing. Using 
homothetic coordinates expressing, any 
linear transformation in the plane can be 
expressed as affine transformation. 
Usually, we consider such common 
subspaces of transformations as 
translation only, rigid motions 
(translation, rotation and possibly 
reflection), homothetic transformations 
(translation, rotation and uniform 
scaling). Our algorithm methodology 
can be applied to any reasonable space 
of transformations of bounded 
dimensionality. 

1.3 Search strategy 

We use two search strategies for 
finding the optimal transformation. The 
first is based on a branch-and-bound 
search of transformation space, and the 
second combines this with a method 
based on alignment judiciously chosen 
candidate feature points. The first 
method has the advantage that it can 
provide arbitrarily good guarantees on 
the accuracy of the final match, and that 
it naturally uses a priori information to 
bound the search. The main problem 
with this method is that the nature of the 
search leads to rather high running times. 
The second method is very easy to 
implement, but it cannot generate results 
with better than a fixed constant error, 
and does not lend itself easily to 
exploiting a priori information in the 
search. 

1.4 Similarity metric 

The figure of merit assigned to a 
match that is determined by a specific 
transformation is based on the 
(directional) partial Hausdorff 
distance[2]. This is a robust measure, it 
consider the set of distances resulting 
from taking each point in one set, and 
finding the nearest point to it in the other 
set. Rather than taking the sum or the 
maximum of these distances, which may 
be affected by outliers, we consider the 
median or, in general, the k-th smallest 
distance. More formally, given two point 
sets A and B, and a parameter k, 1≤k≤
|A|, we define the directed partial 
Hausdorff  distance from A to B to be 
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where Kth returns the k-th smallest 
element of the set, and where d(a,b) is 
the Euclidean distance from a to b. The 
parameter k is typically based on a priori 
bounds on the number of points of A that 
are expected to have close matches in B 
under the optimum transformation. 
These are the inliers[3]. 
 

2. The Branch-and-Bound 

Algorithm 

Both of our registration algorithms 
are based on a branch-and-bound 
framework, we will describe the 
branch-and-bound algorithm in this 
section. For conveniences, we introduce 
some definitions and notations. 

2.1 Definitions and Notations 

z A and B, the given two point sets, 
they are fixed for the remainder of 
the discussion. 

z T, a space of transformations. 
z τ, τ∈T, a concrete transformation. 
z q, a distance quantile, 0<q≤ 1, 

define Hq(A,B) to be Hk(A,B), 
where k=ceil(q*|A|). 

z simq(τ), the similarity measure of τ, 
i.e., simq(τ) = Hq(τ(A),B). 

z τopt, the optimum transformation. 
z simopt, the optimum similarity, i.e. 

simopt = H(τopt(A), B) = min 
H(τ(A),B). 

z M and t, parameters for affine 
transformation. For any a = (a1, a2)
∈A, τ(a) = Ma + t. 

z εr, the relative error bound. 
z εa, the absolute error bound. 
z εq, the quantile error bound. 

z q' = (1 - εq)q, the weak quantile. 
Note that since q'≤ q, we have 
simq’(τ)≤simq(τ), for any τ∈T. 

z τ is approximately optimal relative 
to εr, εa and εq, if either simq’(t)≤
(1+εr)simopt or simq’(t)≤simopt + εa 
holds. 

z Tree, node and cell. We construct a 
search tree, where each node of the 
tree is identified with the set of 
transformations contained in some 
axis-aligned hyperrectangle in the 
six-dimensional transformation 
space. These hyperrectangles are 
called cells. 

z τlo and τhi, a pair of transformations 
for each cell, whose coordinates are 
the upper and lower bounds on the 
transformations of the cell. 

z T0, an initial cell. It is assumed to 
contain the optimum transformation. 
This is supplied by the user, based 
on a priori knowledge of the nature 
of the transformation. 

z Active cell, if the cell is a candidate 
to provide the optimum 
transformation. 

z Killed cell, if it cannot provide the 
optimum solution. 

z Cell processing. Select one of the 
active cells to process. After 
processing, a cell is either killed or 
is split into two disjoint subcells. 

z simhi(T), an upper bound of the 
smallest similarity, associated 
transformation of which contained 
in cell T. 

z simlo(T), an lower bound of the 
smallest similarity, associated 
transformation of which contained 
in cell T. 

z simbest, the best similarity 
encountered so far in the search. 

z τbest, the transformation associated 
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with simbest. 
z A simhi(T) computing. We may 

sample any transformation from 
within the cell. In particular, this is 
done by simply taking the midpoint 
τ of the cell, and then computing 
simq(τ). 

z Uncertain region. Given any cell 
T⊂T, and given any point a∈A, 
consider the image of a under every 
　∈T. It is easy to compute a 
bounding rectangle for this set. We 
call this bounding rectangle the 
uncertainty region of a relative to T. 

z A simlo(T) computing. To derive our 
lower bound for T, for each point a
∈A, we compute the distance from 
the corresponding uncertainty 
region to its nearest neighbor in B. 
Observe that this distance is a lower 
bound on the distance from  (a) to 　

its nearest neighbor in B, for any 　
∈T. We then take the q-th smallest 
such distance. Call this simlo(T). 

z The size of uncertain region, define 
as its longest side. 

z The size of a cell, define as largest 
size among the associated 
uncertainty regions for each point in 
A. 

z Cell queue. The active cells are 
stored in a priority queue, ordered 
by cell size. 

z Cell splitting. Split cell T into two 
smaller subcells T1 and T2, by 
splitting it along the dimension that 
contributes most to its uncertainty 
region size. 

2.2 Overview of the Algorithm 

Here is an overview of the 
approximation algorithm. The input 
consists of the point sets A and B, the 

Hausdorff quantile q, the approximation 
parameters εr, εa and εq, and the initial 
cell T0. 
(1) Build a nearest neighbor data 

structure for the points of B. 
Initialize the priority queue to 
contain T0. Set simbest=∞. Define 
the weak quantile q' to be (1 - εq)q. 
Repeat steps (2)-(5) until the priority 
queue is empty or until simbest≤εa. 

(2) Remove the largest cell T from the 
queue. Compute its lower and upper 
bounds. This involve the following 
steps: 
(a) Compute the uncertainty regions 

for every point a∈A with respect 
to T. 

(b) For each uncertainty region, 
compute its nearest neighbor in 
B. 

(c) Using any fast selection 
algorithm, compute the q-th 
quantile among these distances. 
Call this simlo(T). If simlo(T) > 
simbest/(1+εr) or if simlo(T) > 
simbest - εa, kill this cell and 
return to step (2). 

(d) Otherwise, sample a 
transformation  from this cell. 　

Compute the image of each point 
of A under , and compute the 　

nearest neighbors of these points 
with respect to B. Find the q'th 
smallest such distance. Call this 
simhi(T). 

(3) If simhi(T) < simbest, update simbest 
and let τbest be the associated 
transformation. 

(4) Split cell T into two smaller subcells 
T1 and T2, by splitting it along the 
dimension that contributes most to 
its uncertainty region size. Compute 
size bounds for T1 and T2. 

(5) Enqueue T1 and T2 in the queue of 
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active cells. 
The final transformation is τbest and 

its similarity is simbest. 

 

3. Bound Alignment 

The branch-and-bound algorithm 
has many nice features, but its main 
drawback is its relatively high running 
time. This occurs especially when high 
accuracy is required and the optimum 
similarity is very good. For this reason, 
we introduce an additional process 
called bound alignment to help 
accelerate the search. 

Suppose that the search of 
branch-and-bound has progressed to a 
stage where most of the uncertainty 
regions associated with the points of A 
contain at most one point of B. Consider 
the points of A that have exactly one 
point of B in their uncertainty regions. If 
a cell contains the optimum 
transformation, we sample one such 
point at random and compute the unique 
transformation that maps this point to 
the corresponding point of B for several 
times, and there is a good probability 
that desired optimum transformation is 
found. On the other hand, if a cell does 
not contain the optimum, after taking a 
number of samples and witnessing 
repeatedly poor similarities, we may 
regard this as evidence that the cell in 
question does not contain the optimum 
and therefore we kill it. 

Before giving detailed alignment 
algorithm, we introduce some 
definitions and notations. 

3.1 Definitions and Notations 

z Alignment. The process whereby triples 
from A are matched against prospective 

corresponding triples from B in order to 
determine a candidate transformation is 
called alignment. 
z Noise bound η. In noisy 

environments, suppose that for each 
inlier a∈A there is a point of B that 
lies within some small distance η 
from its optimum image point, 
τopt(a). We assume that an upper 
bound on η, called the noise bound, 
is provided to the search algorithm. 

z Alignable uncertain region. An 
uncertainty region is said to be 
alignable if there is at most one 
point of B in the region, or if the 
region is empty and there is at least 
one point of B within distance η of 
the region. 

z Alignable cell. If the current cell 
has a significant fraction of 
alignable uncertainty regions, we 
say that this cell is eligible for 
alignment. 

z qs, the quantile of uncertainty 
regions becoming alignable. 

z Ns, the number of taking samples. 

3.2 Detailed Algorithm 

Here are steps used for the bounded 
alignment algorithm. (These steps are 
added after step (2d) in the previous 
description.) The algorithm is given an 
expected inlier perturbation η, sampling 
quantile qs, and a minimum sample size 
Ns. 
(e) For each a∈A, count the number 

of points of B that lie within a's 
uncertainty region. If this at most 
one, and the nearest neighbor is 
within distance η of the 
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uncertainty region, flag this 
region as alignable. 

(f) If the fraction of alignable 
uncertainty regions is less than qs, 
return to step (2). Otherwise, let 
A' denote the subset of A such 
that for each a∈A', there exists 
at least one point b∈B that 
either lies inside or within 
distance η of a's uncertainty 
region. Repeat the following Ns 
times: 
(i) Sample (without replacement) 

triples of points of A', until a 
triple that is geometrically 
well-distributed is found. 

(ii) Compute the transformation 
that aligns each point in the 
triple with a random point of 
B in its associated 
uncertainty region. Compute 
the similarity of this 
transformation. 

(iii)If the similarity of this 
transformation is better than 
the current best similarity 
simbest, make it the new best. 
If the similarity obtained for 
all of the Ns transformations 
exceeds the current best by 
an additive amount of η, kill 
this cell. 

If the similarity obtained for all of 
the Ns transformations exceeds the 
current best by an additive amount of η, 
kill this cell. 

4. Experiments 

We apply the algorithms on finding 
Facial Feature Points (FFP) in images. 
We are given a reference face image, 
FFP of which is known, and expected to 

find FFP in sensed face image. To 
comparing with standard face, the 
sensed image may have many 
transformations, such translation, 
rotation, scaling, etc. Extracting feature 
point set in the reference image and 
sensed image, we can use our search 
algorithm to derive optimum 
transformation by minimizing Hausdorff 
distance, and find FFP in sensed image 
finally. 

Fig. 1 gives a standard FFP map as 
reference image, fig.2 shows a face 
image and its corresponding feature 
points that served as candidate FFP, fig. 
4 displays a final found facial feature 
points using optimum transformation 
computed by the bound alignment 
algorithm. 

 
Fig. 1
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Fig. 2

5. Conclusion 

We have explored two algorithms 
for registering images in a robust 
manner through the use of feature point 
pattern matching. Both algorithms allow 
the user to choose tradeoff between 
running time and accurate by specifying 
initial parameters. The first algorithm is 
based on branch-and-bound search. It is 
simple and safe, but is relatively slow, 
especially when high accuracy is desired. 
The second algorithm, called bounded 
alignment, is based on combining 
branch-and-bound with computing point 
alignments to accelerate the search. It 
seems to be much faster than the 
branch-and-bound algorithm in many 
cases, but it may fail with some small 
probability. 

References 

[1] L.P.Chew, D.Dor, A.Efrat, K.Kedem. 
Geometric Pattern Matching in 
d-Dimensional Space. Proc. Ninth 
Ann. ACM-SIAM Symp. Discrete 
Algorithms, pp. 658-667, Jan. 2003. 

[2] M.T.Goodrich, J.S.B.Mitchell, 
M.W.Orletsky. Approximate 
Geometric Pattern Matching under 
Rigid Motions. Proc. First 
Workshop High Performance Data 
Mining, Mar. 1998. 

[3] M.Gavrilov, P.Indyk, R.Motwani. 
Geometric Pattern Matching: A 
Performance Study. Proc. Seventh 
Ann. European Symp. Algorithms, J. 
Nesetril, ed., pp. 362-371, July 
1999. 

[4] D.P.Huttenlocher, G.A.Klanderman, 
W.J.Rucklidge. Comparing Images 



 8

Using the Hausdorff Distance. IEEE 
Trans. Information Theory, vol. 28, 
129-137, 1982. 

[5] D.M.Mount, N.S.Netanyahu, 
J.L.Moigne. Efficient Algorithms 
for Robust Feature Matching. Data 
Mining and Knowledge Discovery, 
vol. 1, pp. 183-201, 1997. 

[6] D.P.Huttenlocher, K.Kedem, 
J.M.Kleinberg. On Dynamic 
Voronoi Diagrams and the 
Minimum Hausdorff Distance for 
Point Sets Under Euclidean Motion 
in the Plane. Proc. 10th Ann. 
ACMSIAM Symp. Discrete 
Algorithms, pp. S931-S932, Jan. 
1999.  

[7] L.P.Chew, M.T.Goodrich, 
D.P.Huttenlocher. Geometric Pattern 
Matching under Euclidean Motion. 

IEEE Trans. Pattern Analysis and 
Machine Intelligence, vol. 22, no. 1, 
pp. 4-37, Jan. 2000. 

[8] Sunil Arya, David M. Mount. 
Algorithms for Fast Vector 
Quantization. Proc. Data 
Compression Conference, J. A. 
Storer and M. Cohn, eds., Snowbird, 
Utah, 1993, IEEE Computer Society 
Press, 381-390. 

[9] Sunil Arya, David M. Mount. 
Approximate Range Searching, Proc. 
of the 11th Annual ACM Symp. on 
Computational Geometry, 1995, 
172-181. 

[10] S.M. Smith and J.M. Brady. 
SUSAN - a new approach to low 
level image processing. Int. Journal 
of Computer Vision, 23(1):45-78, 
May 2002. 

 


