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Abstract: - This paper considers the kinematic optimization of a parallel manipulator actuated in redundant form, using a 
numeric conditioning of the Jacobian matrix. The kinematic model proposed by Zanganeh and Angeles (1994) consists of 
nine prismatic in-parallel actuators, i.e., three actuators, called external legs, connect the moving platform directly to the base 
platform by spherical joints, and the six actuators, termed the upper internal and the lower internal legs, are coupled in pairs 
by three concentric spherical joints at the internal point. First, the end effector velocity problem is solved, and then the 
identification of a neutral configuration of manipulator is developed. Finally, the platform geometry parameters of the 
manipulator are formulated,  and solved as an optimization problem. 
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1   Introduction 
The optimal design for parallel structures is an open and 
difficult question. As Merlet noted in [1], it is very 
important to design parallel structures in accordance with 
the task to which they are assigned, in particular for 
mechanisms where the performance is strictly dependent on 
the mechanical architecture and its dimensions. In the 
solution of this problem, the first difficulty is that most 
performance criteria considered for practical applications 
are extremum to functions that are configuration-dependent 
(stiffness, force in the actuator, dexterity, etc.). The second 
difficulty is that of using an appropriate design 
methodology to obtain an optimum architecture of the 
mechanism for the assigned task. Numerous studies have 
investigated this problem, and one alternative to the classic 
approach is that presented by Merlet; the so-called 
parameters space approach [1]. 
In this paper, the optimum design problem is considered for 
a new redundant parallel manipulator with nine degrees of 
freedom proposed by Zanganeh and Angeles in [2, 3] and 
shown in Fig. 1. 
The model consists of nine prismatic in-parallel actuators li, 
ri and qi  for i = 1,2,3 , and e , i ie~  and e  for i = 1, 2, 3 are 

the unit vectors along 
iˆ

ii BA , OBi and OAi

3
1}

, respectively . 

Moreover, the three actuators { , called external legs, 
connect the moving platform (denoted as MP) directly to 
the base platform (denoted as BP) by spherical joints at 

 and { . The six actuators {  and { , termed 
the upper internal and the lower internal legs respectively, 
are coupled in pairs by three concentric spherical joints at 
point O. 
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Fig. 1: The model of a redundant parallel manipulator 

 
The full details of the kinematics model, including the direct 
and inverse position analyses, were derived in [2], the 
velocity and acceleration relations were studied in [3]. On 
the basis of the kinematic chain, it is possible to construct 
an entire class of prototypes which differ in the geometry of 
the platform and in the position of the joints but which 
fundamentally refer to the same structure. For example, the 
two prototypes shown in Fig. 2 and Fig. 3 differ in the 
position of the external and internal legs, which can be 
coupled or non-coupled, resulting in either a triangular or a 
hexagonal platform geometry. 



 

 
Fig. 2: First prototype of the manipulator 

 

 
 

Fig. 3: Second prototype of the manipulator 
 

This paper reports a study of the kinematic performance of 
the redundant parallel manipulator, considering the numeric 
conditioning of the Jacobian matrix. An appropriate design 
methodology is used to determine an optimum architecture 
in terms of kinematic performance for the assigned task. 
 
 
2   Architecture design 
The kinematic performance of a manipulator is closely 
related to the numerical stability of the Jacobian matrix and 
thus to its numerical condition. For this purpose, several 
indicators of the kinematic performance of manipulators 
(kinematic indices) in terms of the numerical condition of 
Jacobian matrices, have been introduced:  

• Yoshikawa, 1985 introduced manipulability, based on 
the determinant of the product of the manipulator Jacobian 
by its transpose [4]. 

• Paul and Stevenson (1983) assessed the kinematic 
performance of spherical wrists (the absolute value of the 
Jacobian determinant) [5]. 
These performance indices, are configuration-dependent, 
i.e. depending on joint variables. But, it is well known that 
motion performance also depends on the manipulator 
architecture, and this dependence is notably greater in 
parallel than in serial manipulators because there are much 
larger differences in the architecture of the former than in 
that of the latter. Thus the choice of architecture is essential 
for good kinematic performance. 
The kinostatic performance index used in this paper is the 
condition number of the Jacobian matrix, first applied to 

robotics by Salisbury e Craig [6]. The condition number 
calculated in our optimum design problem for the redundant 
parallel manipulator, is less than 3.9110, a value which 
allows the architecture to be considered close to the isotropy 
architecture condition. 
 
 
3   The Conditioning Index 
Singularities or an ill-conditioned Jacobian matrix J have to 
be avoided in solving the twist vector t from the relation, 
 
   (1) tθJ =&
 
where  is the vector velocity of the actuated joints and 

with  and p are the angular velocity and 
the vector velocity of the end-effector respectively. In fact, 
if J is singular or ill-conditioned, it is, respectively, 
impossible to determine t or to determine t accurately. The 
singularity or the ill-conditioning of the Jacobian matrix is a 
result of both the configuration and the architecture of the 
manipulator. Moreover, the architecture singularities cannot 
be avoided by trajectory planning or control, but can only 
be eliminated by design. Similarly, ill-conditioning resulting 
from the architecture also has to be eliminated by design. 
The degree of the influence of an architecture on the 
numerical conditioning of J is termed architecture 
conditioning and the literature contains several indicators to 
measure architecture conditioning. One of the classic 
indicators is a condition number of the Jacobian matrix. 
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Fig. 4: Liner transformation of the unit sphere into an 
ellipsoid associated to J 
 
The Jacobian matrix J transforms the unitary sphere defined 
in joint velocity space  into an ellipsoid, rotated or 

mirrored, in the Cartesian velocity space  as indicated in 
Fig. 4. If the Jacobian matrix J has all homogeneous 
elements, the condition number k(J) can be calculated as the 
ratio between the largest and the smallest of the single 
values, 
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     This scaling can assume a value between one and 
infinity; the unitary minimum occurs when the singular 
values are all the same, in this case the transformation is 
from one sphere to another of different radius and the 
matrix is said to be isotropic so that the manipulator is 
defined isotropic. Conversely, in singular matrices the 
smallest singular value equals zero and thus the condition 
number becomes infinite. This index of kinostatic 
performance can be seen as a parameter indicating the 
distortion of the sphere in joint velocity space; the greater 
this distortion, i.e. the greater the condition number, the 
worse the conditioning of the Jacobian matrix. It should be 
noted that the condition number is an indicator of the 
amplification of the computational errors in the solution of 
the linear equation systems associated with the matrix itself, 
Forsythe and Moler [7], Dahlquist and Björck [8]. The 
condition number of the Jacobian matrix, or rather its 
reciprocal, between zero and 1, is therefore an index of 
kinematic performance for manipulators which allows a 
better computer calculation. 
As noted by Lipkin and Duffy [9], the condition number of 
J becomes deprived of physical significance when the 
Jacobian matrix is dimensionally heterogeneous: ordering 
the single values of different dimensions from the largest to 
the smallest would result in the condition number varying 
with the unit of measurement of the dimensions of the 
manipulator. This incongruity can be resolved by adopting a 
different kinematic model proposed by Gosselin and 
Angeles [10]. Here the problem is overcome by defining a 
characteristic link length lc which divides the elements of 
the Jacobian matrix by length sizes. Different characteristic 
lengths are proposed in the literature: unitary length, mean 
length, natural length, each appropriate for a particular 
individual objective. 
Using a characteristic link length l, the original Jacobian 
matrix is homogenized as, 
 

 
)1,1,1,1,1,1(

lll
diagh JJ =

  (3) 
 
Now the indicator of numerical conditioning is defined as, 
 

 
1 )( −= hhk JJJ

  (4)
 

In [11], Ma gave many examples of architectures in which 
there are singularities and ill-conditioning which can then 
cause problems in manipulator performance. 
The architecture design with the smaller condition number 
of J has the better kinematic performance. The architecture 
has the best performance when the condition number of its 
Jacobian matrix is equal to 1 and such architecture is called 
isotropic architecture, i.e., 
 

   (5) 1JJ σ=h
T
h

 

where σ is a positive scalar and 1 is the 6×6 identity matrix. 
Clearly, it is impossible to achieve an isotropic architecture 
at every configuration because the Jacobian matrix is also 
configuration dependent. Hence an architecture is 
considered isotropic as long as the corresponding Jacobian 
matrix can become isotropic in one configuration. 
 
 
4   The Optimum Kinematic design 
Architecture conditioning is measured by a kinostatic 
performance index, i.e. the condition number of the J 
matrix, introduced above. In the problem considered here, 
the index k(J) depending on the geometry parameters of the 
two platforms must be calculated and then optimised by 
means of design variables. 
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Fig. 5: Geometry and parameters of manipulator platforms 
 
 
The geometry of the base and moving platforms, shown in 
Fig. 5, are, for simplicity, hexagons with three equal long 
sides alternating with three equal short sides. The 
architecture of the platform manipulator is therefore fully 
defined by the parameters a1, a2, b1, b2. 
The problem of optimum design is considered for a 
particular platform configuration, termed the neutral 
configuration, i.e. the two mass centers of the two platform 
and the spherical joints at point O, are aligned along the z 
axis. The configuration of the moving platform is defined 
by a rotation matrix Q of a frame OM_ z~ y~ ~x  ,fixed into 
MP,  respect to inerzial frame OB_x y z, and a position 
vector p of the center mass of the MP. The internal point O 
is individuated by s vector as showed in Fig. 1. The neutral 
configuration is defined as, 
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where 1 is a 3×3 identity matrix and zp>zs. In this particular 
configuration, the moving platform is not oriented with 
respect to the base. Displacements are along the z axis and 
since zp varies, the configuration for a given manipulator is 



not unique. The parameters zs and zp are also design 
variables in the optimization problem.  
The optimization design problem consists of finding a 
configuration (Q, p, s) and an architecture of the 
manipulator such that the index k(J) is minimum. In 
mathematical formulation means, 
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The neutral configuration is the most stable local 
configuration for the condition number. The configuration 
of the manipulator can be expressed in terms of nine 
variables, i.e. the three rotation angles θx, θy, θz, about the x, 
y, and z axes, respectively, of the inertial frame of the BP, 
and the Cartesian coordinates of the points p and s. 
Therefore, indicating the geometric parameters of BP and 
MP by a1, a2, b1, b2, respectively, it is possible to verify that 
the condition number k is dependent on nine variables that 
achieve the neutral configuration of the manipulator. Using 
eq.(2), the Fig.6 shows the variation of k(J) from a neutral 
configuration with respect to four, i.e., of the nine variables 
reported above. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6: Condition number k vs. displacement 
 
The optimum design problem, with design a1, a2, b1, b2, zp, 
zs, can now be mathematically formulated as: determine the 
minimum of the objective function k(J), 
 

 
( )Jk

sp zzbbaa
min

),,,,,( 2121  (8) 
 

subject to the following constraints, 
 

 a      a      b ;     b  (9a) 1 0≥ 2 0≥ 1 0≥ 2 0≥
 

      zzp > 0 s > 0     z  (9b) zsp >
 
The four constraints, eq.(9a), ensure a non-negative 
geometrical dimension for the platform; the first two 
constraints of eq.(9b) relating to the points p and s, are to 
avoid the singular configuration where both plates are 
coincident. The third condition of eq.(9b) avoids the point 
of confluence of the internal articulations O lying on one of  
the bases.  
To derive the objective function, the Jacobian matrix of the 
manipulator must be derived in terms of the design variable. 
The geometry of platforms is shown in Fig. 5. 
The kinematic equations of the parallel manipulator are 
derived in [3] and reported below, 
 

vsp +=  (10) 
0reup =−−+ iiii l      for i=1, 2, 3 (11) 

0res =−− iiir ˆˆ              for i=1, 2, 3 (12) 
~~ 0euv =++ iii q           for i=1, 2, 3 (13) 

 
These vectors are expressed referring to the inertial frame 
associated with the base platform. Further, differentiating 
eqs.(10 & 13) with respect to time leads to the relations, 
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vsp &&& +=  (14) 

0eeuωp =−−×+ iiiii ll &&&     for i=1, 2, 3 (15) 

0ees =−− iiii rr &&& ˆˆ                    for i=1, 2, 3 (16) 

0eeuωv =++×+ iiiii qq &&& ~~~   for i=1, 2, 3 (17) 
 
and projecting along the unit vectors associated with 
actuated legs, the following scalar equations are obtained, 
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Simplifying eqs.(18-20) gives, 
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and also 
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These relations can be rewritten in the following way, 
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Using the characteristic length lc, the matrices A and D, 
indicated in eq.(30) and eq.(33) respectively are written in  
homogeneous form. 
Rewriting eqs.(27-29) in compact form and in homogeneous 
form  gives, 
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As determined by Zanganeh and Angeles [2], and adopting 
the notation introduced in that paper, the equation relating 
the twist of the MP to the actuator velocities, in the form of 
the forward velocity problem, is, 
 

  (36) uJuGFt && '1 == −

 
In this form, J' is the Jacobian matrix associated with the 
forward velocity problem, and dimensionally homogenized 
by a characteristic link length lc. 
Consequently the optimization problem can be formulated 
using the Jacobian matrix obtained by either the inverse or 

the forward problem. The result is a design problem as close 
as possible to isotropy architecture. A good Jacobian 
conditioning will have an effect on the numerical solution 
of the IKP, rendering the kinematic model of the 
manipulator stable. 
Based on the assumption that the manipulator is in a neutral 
configuration, the joint position vectors with respect to the 
base frame shown in Fig. 5, are expressed as, 
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Examining the condition number curves shown in Fig. 6 for 
a generic trajectory, it is clear that the minimum condition 
corresponds to the configuration where both internal point 
O and the origin of the coordinate frame associated with  
the moving platform, are both belong to the z axis of the 
inertial frame associated with the base platform.  
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It has also been established that the objective function 
decreases on increasing the ratio between the dimensions of 
the sides of the two platforms (a1/a2, and b1/ b2) (leaving the 
other parameters free to vary) as shown in Fig. 7. 

 
 

5 Numerical optimization 
The optimization problem formulated in Section 4 was 
solved using software based on the technique of Sequential 
Quadratic Programming (SQP). This software is efficient in 
solving optimum constrain problems. 
The six solutions of design variables are: 

 
 a1 = 0.0000 lc m  (39a) 
 b1 = 5.8124 lc m  (39b) 
 zp = 3.9828 lc m (39c) 

 
and the corresponding value of the objective function is, 
 
 k = 3.9110 (40) 
 
To obtain a practical dimension for the values found in (15), 
assuming  lc = 0.5, the variables become, 
 
 a1 = 0 m    b1 = 2.9 m (41) 

 
The results obtained clearly indicate that the best prototype, 
in terms of elevated kinematic performance, is that in which 
the universal joints of the internal legs are united with the 
joints of the external legs, as shown in Fig. 2. In this way a 
manipulator with triangular platforms is produced. 
It is important to note that parallel platform manipulators 
with six prismatic joints, widely used for flight simulation 
cabins, have hexagonal bases (the fixed base twice the size 
of the mobile base, i.e., 2a2=b1) with one side much shorter 
than the other. This form is close to the triangular platform 
architecture which is optimal from the kinematic point of 
view. 
 
 
 4   Conclusion 
This paper presents the kinematic optimization of a 
redundant parallel manipulator using the condition number. 
The results obtained show that the architecture where the 
points of attachment of the external legs are rotated with 
respect to the upper internal legs on the moving platform 
corresponds to the best kinematic performance. This design 
solution is very important in preventing kinematic 
singularities. Moreover, from analyses of condition number 
curves, there was clear persistence of isotropy 
configurations in the trajectories examined. Finally, the 
neutral configuration corresponding to the condition number 
minimum was determined for given geometric manipulator 
parameters. 
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