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Abstract: - The design of RF/microwave systems requires fast and accurate modeling tools. This aspect is 
crucial when the design process leads to massive and highly repetitive computational tasks during simulation, 
optimization and statistical analysis. In this paper, we present a robust framework that combines the 
capabilities of neural networks and fuzzy systems to automatically predict, at the component level, the most 
reliable equivalent circuit model of most widely used RF/microwave transistors, i.e., MESFETs and HBTs. 
Thus, the proposed approach is demonstrated, at the circuit level, through CAD of an amplifier circuit.   
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1   Introduction 
In this information age, the rapid growth of today's 
RF/microwave communication systems requires a 
continuous upgrading of existing computer-aided 
design tools. Furthermore, the needs for concurrent 
and multi-disciplinary design with simultaneous 
consideration of electrical and reliability criteria 
become increasingly important. This trend leads to 
massive and highly repetitive computational tasks 
during simulation, optimization and statistical 
analyses, requiring that the component models be 
not only fast but also accurate so that the design can 
be achieved accurately and reliably. Therefore, the 
efficiency of such Computer Aided Design (CAD) 
tools relies heavily upon the speed and accuracy of 
their most sensitive device models, particularly the 
active components such as Metal-Semiconductor 
Field Effect Transistors (FETs) and Heterojunction 
Bipolar Transistors (HBTs) [1].  

Since FETs and HBTs are widely used in the 
RF/microwave area, a large number of modeling 
approaches are being proposed. Detailed physics-
based transistor models are accurate but slow. Table 
look-up models can be fast, but suffer from the 
disadvantages of large memory requirements and 
limitations on number of parameters. Nevertheless 
they are difficult to develop, equivalent circuit 
models remain the most used modeling approach, 

where the element values can be determined either 
by direct extraction [1] or by optimization-based 
extraction [2]. Fast and simple to implement, direct-
extraction techniques provide adequate values for 
the more dominant circuit model elements but they 
cannot determine all the extrinsic elements uniquely 
[3]. On the other side, optimization-based extraction 
techniques are more accurate but computationally 
intensive and sensitive to the choice of starting 
values. Though several optimization-based 
extraction methods that are insensitive to starting 
values have recently been proposed, it is still 
difficult to determine all the model elements with a 
high degree of certainty. Furthermore, in order to 
make them attractive to non-experienced users, such 
techniques often assume a prior universal transistor 
circuit topology referred in this paper as the FET 
standard topology  or FET circuit # 1 (Fig. 1) [4] 
and the HBT standard topology or HBT circuit # 1 
(Fig. 2) [5]. 

During the last decade, information processing 
techniques such as neural networks and fuzzy logic 
systems gained a particular attention as fast and 
reliable tools to RF/microwave device/circuit 
modeling and design. By combining the Fuzzy c-
means method (FCM) and the small-signal neural 
representation of a device behavior, the proposed 
method allows efficient evaluation of the transistor 



small-signal equivalent circuit parameters [6] at the 
component level. Since the equivalent circuit is 
often specific to a given type of device and/or 
technology and it is puzzling to decide which one is 
most suitable for a given specific application, we 
created a library of the most often used equivalent 
circuit topologies, displayed in Fig. 3 to 6 [7]-[10] 
and in Fig. 7 to 10 [5], [11]-[13] for FETs and 
HBTs, respectively. Of course, this library is not 
exhaustive but contains most widely used models.  
 

 
 

 
 
 
 
 
 

 

Fig. 1. FET standard topology (# 1). 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. HBT standard topology (# 1). 
 

  
 
 
 
 
 
 

Fig. 3. FET circuit topology # 2 as reported in [7]. 
  
 
 
 
 
 
 
 
 
 

Fig. 4. FET circuit topology # 3 as reported in [8]. 

 
 
 
 
 
 
 
 
 

Fig. 5. FET circuit topology # 4 as reported in [9]. 
 
 
 
 
 
 
 
 
 

 
 

Fig. 6. FET circuit topology # 5 as reported in [10]. 
 
 
 
 
 
 
 
 
 
 

 

Fig. 7. HBT circuit topology # 2 as reported in [5]. 
 
 
 
 
 
 
 
 
 
 

Fig. 8. HBT circuit topology # 3 as reported in [11]. 
 
 
 
 
 

 
 
 

 
Fig. 9. HBT circuit topology # 4 as reported in [12]. 
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Fig. 10. HBT circuit topology # 5 as reported in [13] 
 

Therefore, we developed a framework to include the 
circuit level modeling. For that purpose, a prior 
knowledge input (PKI) neural network was built 
to improve the training and prediction of the 
neural-based circuit model. The efficiency of the 
proposed device/circuit modeling unified 
framework is demonstrated through CAD of a 
three stage amplifier. 
 
 
2   Device Level: Proposed Approach  
The first step is a direct parameter extraction of the 
standard FET and HBT topology using the classical 
techniques described respectively in [1] and [5]. The 
obtained S-parameters (Sij

s
, i, j = 1, 2) of the 

standard topology are then compared to the 
measured S-parameters (denoted as Sij

m
, i, j = 1, 2), 

as shown in Fig. 11. If the achieved accuracy is not 
acceptable, a new circuit topology should be 
selected from the respective transistor library.  

FCM is a data clustering technique wherein each 
data point belongs to a cluster to some degree that is 
specified by a membership grade. Clustering in N 
unlabeled data X = {xi, i = 1,…, N} is the assignment 
of c number of partition labels to the vectors in X. 
The problem of clustering is to find the optimum 
matrix U = [Uij ∈ [0, 1], i = 1, ..., c; j = 1, ..., N] which 
minimize the function [14] 
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where h is an exponent that controls the degree of 
fuzziness, uik describes the belongness of xi to 
cluster k,  
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Fig. 11. Algorithm of the proposed method. 
 
and vi is the centroid of ith cluster, 
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Therefore, for any circuit # k (k = 1, …, 5), the 
related Sk matrix would be compared to the input Sm 
matrix and each element of the two resulting 2x2 
error matrices Ek, Re and Ek, Im,  
 

( )mkRek
ijijij SSE −= Re,      i, j = 1, 2   (4) 

( )mkImk
ijijij SSE −= Im,   i, j = 1, 2  (5) 

 

would receive a score scaled from 1 to 10 depending 
on its value. Thus, topology #k with smallest E k, m, 
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i.e., smallest score, would be selected as the most 
adequate circuit. In the above equation, Re(*) and 
Im(*) denote the real part and the imaginary part 
respectively. However, since the approach has to be 
generic, there is no prior knowledge on the input 
parameters, and then, it is impossible to compute 
numerically (6). Let {Ωs} be the set of Ps elements 

s
pΩ (p = 1, …, Ps)  in the standard circuit topology. A 

symbolic code was developed using [15] to 
analytically derive the following nonlinear functions  
 

{ }( )kskk Ω= ,ijijij SfS     i, j = 1, 2     k = 1, …, 5 (7) 
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in order to evaluate the alternative fuzzy criteria  
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The above relations depend only on the values of 
the Pk elements of set {Ωk} which represent the 
elements added to the standard topology to form 
circuit #k. Since (8) are strongly interdependent, 
highly nonlinear, and require a huge combination of 
values to be accurately evaluated, we used neural 
networks (NN) to learn these quantities. Let x be an 
n-vector {xi, i = 1, …, n} containing the inputs and y 
be an m-vector {yr, r = 1, …, m} containing the 
outputs from the output neurons. The original 
problem can be expressed as y = f (x), while the 
neural network model for the problem is  
 

 ( )wxyy ,NN
~=  ,                 (9) 

 

where w is a Nw-vector {wi, i = 1, …, Nw} containing 
all the weight parameters representing the 
connections in the NN. The definition of w and the 
way in which yNN is computed from x and w 
determines the structure of the NN. The most 
commonly used NN configuration is the Multi Layer 
Perceptrons (MLP). For such an L-layer neural 
network, the function given by (9) is calculated on 
the basis of the input layer L1 while using [16] 
 

 ii xz =1 ,     i = 1, …, N1,     n = N1              (10) 
 

zi
1 is the output of the ith neuron of the input layer, 

and while proceeding layer by layer, the output of 
layer Ll is given by the activation function σ as 
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where j = 1, …, Nl, and l = 1, …, L, to reach the 
output layer that gives 
 

 L
kk zy =  ,     k = 1, …, NL,   m = NL                    (12)  

 

In these relations, Nl is the number of neurons in 
layer Ll, wjk represents the weight of the connection 
between the kth neuron of the layer Ll-1 and the jth 
neuron of the layer Ll. By allocating values to the 
standard Ss parameters and varying the value of each 
element k

pΩ  (p = 1, …, Pk) of set {Ωk}, we utilized 
(7) to compute the Sk parameters and therefore, the 
difference {Sk - Ss}. The resulting data in the form of      
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was submitted to a three-layer NN structure for 
training using the Neuromodeler tool [17].  

The input layer has 9 neurons (the 4 real and 4 
imaginary parts in (8) and the operating frequency f) 
while the output layer contains Pk neurons. The 
hidden layer is composed of 22 to 45 neurons 
depending on the circuit data file under training.   

Prior to further discussion, two points had to be 
considered in this work. First, the input parameter 
space is of high-dimension and the step sizes should 
be small enough to assure good convergence. This 
will lead to a too large number of combinations of 
input parameters. Second, even after selecting the 
optimum topology, the values of the elements of set 
{Ωs} obtained after the first round of extraction, i.e., 
using the standard topology need to be tuned in the 
final circuit along with the neural outputs, i.e., the 
elements of set {Ωk}. An optimization loop is then 
essential. Therefore, instead of generating large data 
files required for a classical neural development, we 
used the values of the following vector 
 

 [ ]sskk
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as starting vector for the optimization loop. This 
procedure will assure better and faster convergence. 
 
 
3   Circuit Level: Proposed Approach  
Once the optimum topology is selected, the 
transistor can be plugged into a circuit for efficient 
design. To further investigate the capabilities of 
neural networks to predict the circuit performance, 
we built a PKI NN [18]. Since PKI uses empirical 
prior knowledge mapping between inputs and 
outputs to learn better and faster the behavior of a 
given multi-stage circuit, the purpose is to reduce 
significantly the circuit simulation process, the 
computing time and the required training data as 
well as to enhance the model prediction beyond the 
training range [16]. This enhancement allows us to 
efficiently predict the performance of a circuit with 
3- or more stages based on the training of its first 
and second stage input-output relationships.  
 
 
4   Validation 
The first MESFET device to be characterized is the 
one reported in [15] using topology # 4. Since in this 
paper all values are given as well as the final error 
between measured and simulated S-parameters, a 
reliable comparison can be achieved for a full 
validation. In fact, by comparing the S-parameters 
(Fig. 13) and the element values (Table I) in [15] 



with those obtained in 2.3 seconds using our 
technique, FET circuit # 4 achieved a very close 
agreement as expected, with  a smaller error,  
defined for a set of Nf selected frequency values fq  
(q = 1, …,, Nf) as [15]  
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The second device is FET EPA018A. After 2.1 

seconds, our method showed that circuit # 3 is the 
most appropriate (Fig. 14) with a final error of 1.8%, 
smaller than the input user specifications, i.e., 2%.   

The third device is an HBT proposed in [5] with 
topology # 2. A similar close agreement is shown 
with published results (Fig. 15 and Table II).  

Finally, a three-stage amplifier was designed and 
simulated in [10]. The PKI input vector x contains 
the input power, the DC bias, and the frequency. 
The output vector y contains the output power of the 
two first harmonics. Based on one- and two-stage 
training data, a PKI NN showed a better agreement 
with data simulated in [10] than those given by a 
MLP NN for the three-stage amplifier. Therefore, a 
better prediction was achieved in 0.2s compared to 
the 12s required for the simulation in [10].  
 
 
5   Conclusion 
In this paper, an efficient CAD tool was presented 
that combines fuzzy and neural capabilities to first 
determine the optimum small-signal FET/HBT 
equivalent circuit topology, and then, to efficiently 
predict a circuit performance. The method has been 
proven to be fast and accurate and can be applied to 
other RF/microwave active devices and circuits.   
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Fig. 13. Comparison of measured S21-parameters 
(♦) with those extracted using different topologies: 

---- : topology # 1,   __ __  : topology # 2, 
o : topology # 3, ____  : topology # 4, * : topology # 5. 
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Fig. 14. Comparison of Measured S21-Parameters 
(♦) with those extracted using different topologies: 

---- : topology # 1, _____  : topology # 3. 
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Fig. 15. Comparison of Measured S21-Parameters 
(♦) with those extracted using different topologies: 

---- : topology # 1, _____  : topology # 2. 
 

Table I. Comparison between the MESFET 
parameters reported in [14] and our results. 

 
Circuit # 4 Our Values 

Cgs (pF) 0.277 0.215  
Cgd (pF) 0.0207 0.0211 
Cds (pF) 0.0993 0.101 
gm (mS) 26.9 27.3 
τ (ps) 1.22 1.25 
Ri (Ω) 15.3 15.1 
Rgd (Ω) 43.8 43.6 
Rds (Ω) 215 218 
Rg (Ω) 8.9 9.1 
Rs (Ω) 7.5 7.3 
Rd (Ω) 13.6 13.2 
Ls (nH) 0.437 0.441 
Ld (nH) 0.452 0.447 
Lg (nH) 0.254 0.258 
Cgsp  (pF) 0.0409 0.0397 
Cgdp  (pF) 0.001 0.001 
Error (%) 8.4 2.9 



Table II. Comparison between the HBT parameters 
reported in [5] and our results. 

 
Circuit # 2 Our Values 

Re (Ω) 1 1.7 
Le (pH) 7.5 8.5 
Rb (Ω) 0 0 
Lb (pH) 15 14.3 
Rc (Ω) 1 1.8 
Lc (pH) 5 3.1 
Cbe (fF) 3.4 3.0 
Cbc (fF) 81 73.4 
αo  0.98 0.94 
τ (ps) 2.4 1.9 
Rbe (Ω) 95.2 99.9 
Rbc (Ω) 6.79 7.28 
Rb1 (Ω) 1.85 1.62 
Cbep (fF) 30 30.2 
Ccep (fF) 30 30.1 
Cbcp (fF) 0 0 

 
Table III. Three-stage fundamental {Pout (ω)} and 

second harmonic output power {Pout (2ω)}: 
Comparison between simulated results given by [10] 

and those from MLP and PKI neural networks, 
trained with 1- and 2-stage output power data. 

 
 Pout (ω) Pout (2ω) 
ADS [10] -76.675 -191.05 
PKI -76.676 -190.31 
MLP [17] -76.602 -189.91 
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