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Abstract: - Because of ever-higher operating frequencies and circuit integration, distributed electromagnetic 
(EM) coupling effects are becoming increasingly important in RF/microwave integrated circuits. Although 
existing EM-based models for passives are accurate, they do not adequately include distributed EM coupling 
between adjacent components. In this paper, the authors introduce the concept of automatic generation of 
accurate and fast neural models for passives that can efficiently integrate distributed EM coupling effects 
between adjacent elements. Examples of passive device modeling and use of these models in commercial 
circuit simulators demonstrate that the proposed approach is a generic method which can allow to extend the 
present capabilities to a large variety of RF/microwave circuit design and optimization. 
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1   Introduction 
The 21st century will be the information age 
characterized by ever-increasing need for 
communication systems. There are several 
constraints on the nature of the communicating 
terminal, (i) it must be wireless and portable, (ii) 
should include several advanced and complex 
functions, (iii) be able to work properly under severe 
conditions, (iv) cost-effective mass production must 
be possible, and (v) the communication device must 
be suitable for broadband operation. To reach such 
targets the needs for concurrent and multi-
disciplinary design with simultaneous consideration 
of electrical and reliability criteria become 
increasingly important. This trend leads to massive 
and highly repetitive computational tasks during 
simulation, optimization and statistical analyses, 
requiring that the component models be not only fast 
but also accurate so that the design can be achieved 
accurately and reliably. In fact, the demand for more 
complexity and higher performance leads to new 
generations of passive models where first-order 
approximations and/or semi-empirical equations are 
no longer sufficient to achieve proper design [1]-[3]. 
For this aim, several approaches to device modeling 
are being continuously proposed, especially for 
passives that are widely used in RF/microwave 
integrated circuits such as multichip modules [4]-
[10] (Fig. 1). 

Conventional modeling techniques for passive 
elements can be grouped into three main classes. 
The first represents a passive component by an 
equivalent electrical circuit.  

 
 

 
 
 
 
                                                             

  
Fig. 1. Passives in RF/Microwave integrated circuit. 

 
Such models exhibit a relatively narrow 

bandwidth and the circuit parameter extraction 
procedure is still perfectible, strongly dependent on 
the device geometry, and relatively complex to 
achieve [7]-[9]. Similarly, table look-up models can 
also be fast, but suffer from the disadvantages of 
large memory requirements and limitation on the 
number of parameter [11]. The third class uses 
Maxwell’s equations and/or physics-based equations 
to quantify the electromagnetic (EM) field in a given 
structure. Such EM numerical methods have 
demonstrated their efficiency in terms of accuracy, 
but still require a huge computing time and memory 
space [7], [12]-[14]. As such, development of full 
EM representations with physical/geometrical 
parameter information, and including high-order EM 
effects, such as coupling, become necessary.  

Furthermore, to enable efficient circuit 
optimization, the model outputs must be directly 
function of the geometrical and electrical parameters 
of passives. Therefore, modeling techniques that can 
provide such continuous variations are essential 
while almost all-existing passive models are 
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“frozen” once implemented in commercial circuit 
simulators. In other words, the set of S-parameters 
that characterize any passive device is valid only for 
a given combination of physical/geometrical 
parameters. In addition to the above limitations, 
existing models suffer on an important lack at circuit 
level. In fact, even if EM-based device models are 
accurate, they are developed separately, i.e., 
excluding any external circuit environment effects 
such as mutual and distributed couplings.   

Coupling research has mostly been brought 
forward from the antenna/microwave community. 
This includes coupling between transmission lines, 
interconnects, through apertures, and in printed 
circuit boards to name a few. Recently there has 
been activity in bringing this coupling research 
forward into the circuit design space [12], [15]. 
Since distributed coupling between elements 
introduces a major effect at higher frequencies, any 
efficient modeling technique should include these 
EM effects.       

In the recent years, a CAD approach based on 
neural networks (NN) has been introduced for 
microwave circuit modeling, simulation, and 
optimization. Fast, accurate, and reliable neural 
models can be trained from measured or simulated 
data. Once developed, these neural models can be 
used in place of computationally intensive device 
models to speed up circuit design. Neural models are 
much faster than original detailed physical/EM 
models, more accurate than polynomial and 
empirical models, allow more dimensions than table 
lookup models, and are easier to develop when a 
new device/technology is introduced [3], [16]-[18].   

This paper introduces a new concept of accurate 
and fast neural models for passives that efficiently 
integrate higher-order EM mutual device coupling. 
In this original approach, EM-based neural models 
of passives were first trained by varying their 
geometrical/electrical parameters. This was achieved 
by an automatic driving of data generation, avoiding 
any human error. Second, mutual device couplings 
present in microwave integrated circuits were 
computed and modeled (Fig. 2). Third, neural 
models were plugged into commercial simulators to 
automatically predict not only the optimum 
geometry of structures but also their optimum 
placement in the circuit layout taking into account 
these couplings. Applications in commercial 
simulators are presented. 
 
 
2   Proposed Modeling Approach 
Neural networks can learn multi-parameter 
nonlinear relationships and can generalize from 

complex EM data. They are also easier to update as 
technology changes and the generated neural 
function allows a continuous variation of input 
parameters versus outputs. However, neural model 
development involves several sub-tasks, such as data 
generation. This assignment becomes highly tedious 
and human error prone when extensive data are 
required for model training. Therefore, there are 
several advantages of making the process of data 
generation automatic; we reduce manual labor 
thereby reducing the time for data generation and 
any possible chances of human error [8].  

In absence of an expensive experimental plant, 
selecting a full 3D-EM simulator like Anfoft-HFSS 
[19] would provide the desired accurate data. As 
shown in Fig. 2, once a passive structure is defined, 
a code is created to drive the EM-simulator. In 
practice, the code calls the EM simulator, creates a 
macro for each given structure, runs the simulation 
and saves the results in desired files. This process is 
repeated for each new set of input geometrical 
and/or electrical parameters.  

All the process is done automatically without any 
human intervention. Then, the trained neural models 
are implemented into a circuit simulator, i.e., 
Agilent-ADS [20] using the internal SDD 
configuration (for Symbolically-Defined Devices) in 
order to achieve a circuit layout design taking into 
account possible EM coupling between adjacent 
passives.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Algorithm of the technique for circuit design. 
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3   From Component to Circuit Level  
 
 
3.1  Component Modeling Level 
All neural models were generated using the 
NeuroModeler tool [21]. The trained neural models 
have been first validated. For instance, by varying 
the number n of turns, the width W, the space s 
between lines, and the frequency f, of a square spiral 
inductor (Fig. 3-a), Fig. 4 shows a good agreement 
between original EM data and those obtained by our 
model. The final training error was 1.65% with a 
neural network structure of two hidden layers (Fig. 
3-b) and the test error was 2.27% with data never 
shown during training. Similar work was achieved 
for resistors, capacitors and interconnects [9]. 
 
 
 
 

 
(a) 

 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 

Fig. 3. (a) Square spiral inductance, and (b) 
equivalent neural network structure. The R and I 
Symbols refer to Real and Imaginary parts of S-

parameters, respectively. 
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Fig. 4. S-parameters of a square spiral inductor. Our 
values (___) are successfully compared to those given 

by the 3D-EM simulator [19] (*).  
The parameters are n = 4.5, w = 10 µm, s = 2 µm. 

3.2  Circuit Simulation Level 
In order to achieve an accurate circuit design, the 
trained neural models of passives have to been 
enhanced, at the circuit simulation level, by 
including distributed EM couplings between 
adjacent components. In fact, the above models are 
based on EM simulations generated with the 
assumption of a “perfect shielded” passive structure. 
In other words, the structure environment is 
assumed to be perfect, without any perturbations or 
field radiations from other structures. Therefore, 
distributed EM coupling between adjacent elements 
have to be computed and included. As shown in Fig. 
5, distributed EM coupling between adjacent 
elements can be defined accordingly to the element 
in the circuit layout and its location in relation to the 
other passive elements.    
 
 
 
    
 
 

(a) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 

Fig. 5. Different EM distributed couplings:  
(a) between interconnect and component, (b) 

between components. Subscripts R, L, C and I refer 
to resistors, inductors, capacitors, and interconnects 

respectively. 
 
 
4   Examples of Circuit Design 
In order to highlight our approach, we designed and 
built various widely used circuits, such as filters and 
RLC circuits. Therefore, we compared our EM data 
and simulated results with measurements and 
showed the significant effect of distributed coupling 
between adjacent components, even at the lower 
side of the RF/microwave frequency range.  
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4.1  Without Distributed Coupling Effects 
The first designed circuit is a 4-6 GHz 4th-ordrer 
band-pass filter. First, we simulated the circuit in the 
EM-simulator. Then, we implemented it in the 
circuit simulator, i.e., ADS, replacing all passives by 
their equivalent neural models. Finally, we realized 
and tested the circuit. Fig. 6 shows a close 
agreement between the two simulated responses and 
an acceptable agreement with measurements when 
considering all possible errors due to fabrication 
tolerances, measurements, and coupling.  

The simulation in HFSS required more than 5h 
while the one in ADS was achieved in 14s. The 
computing time gain was significant. This was more 
highlighted by optimizing the filter response using 
the inductor parameters W, s, and n, as variables. 
The optimization was achieved in 24mn in ADS 
while a less acceptable response was obtained after 
more than 9h in HFSS (Fig. 7). Moreover, the 
number n of turns cannot be varied in HFSS while it 
is part of the optimized variables in ADS. 
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Fig. 6. 4-6 GHz band-pass filter: Comparison 

between measurements (◊) and simulated values 
Given by the EM simulator [19](*) and the circuit 

simulator [20] (__). 
 
 
4.2  Including the Distributed Couplings  
Then, we took into account the different mutual 
device coupling in order to minimize the errors 
between measured and computed values. Fig. 8 
shows a closer agreement with measurements, 
demonstrating the soundness of our approach even 
at the lower side of the RF/microwave frequency 
range.  
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Fig. 7. 4-6 GHz band-pass filter: comparison 
between the response before (---) and after 

optimization in the circuit simulator (__) and the EM 
simulator (◊). 
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Fig. 8. 4-6 GHz band-pass filter: comparison 
between measurements (◊) and simulated values 

given by ADS [20] with (*) and without including 
couplings (__). 

 
 
At the same time, a circuit layout could be easily 

optimized in terms of circuit topology layout by 
varying the geometrical interconnect dimensions 
[15]. In fact, we optimized the output filter response 
|S21| of a 2.5-5 GHz frequency doubler, taking as 
optimized variables the interconnect dimensions   
{(xi ,yi), i = 1, …, 3}, as shown in Fig. 9. The 
optimized function and constraints were defined as 

  
-3 dB ≤ |S21| ≤ 0 dB      for     4 GHz ≤ f ≤ 6 GHz 
 |S21| ≤ -15 dB        for     3.5 GHz  ≤ f                                   



 
 
 
 
 
 
 

Fig. 9. 4th order output filter: Localization of the four 
inductances. The capacitors are omitted for clarity. 

 
Since the (x, y) set values depend directly on the 

length/width of the interconnects, this optimization 
was achieved by plugging the neural models of the 
interconnects in the circuit simulator and setting 
their geometrical dimensions as optimized variables. 
After less than 3 minutes, an optimization routine 
gave the optimized values as shown in Table I.   

Now, based on the distributed coupling effects 
we already computed, we simulated another passive 
circuit, i.e., an RLC circuit (Fig. 10) both in HFSS 
and ADS, including this time all possible distributed 
couplings. As expected, the results given by the 
circuit simulator were very close to those given by 
the full EM simulator (Fig. 11), both in terms of 
magnitude and phase.  

To furthermore investigate the coupling effects in 
the circuit level, a third circuit, i.e. a 55 GHz tee 
junction was also designed. As expected, the 
simulated results showed the significant contribution 
of such distributed effects in a higher frequency 
range (Fig. 12). 

 
 

Table I. 4th order output filter: Dimensions of the 
interconnects before and after optimization. 

 
 Before 

optimization 
After  

optimization 
x1 (mils) 2 1.3 
x2 (mils) 2 2.7 
x3 (mils) 2 1.8 
y1 (mils) 2 3.7 
y2 (mils) 2 0.5 
y3 (mils) 2 0.8 

 
 

5   Conclusion 
An efficient neural network approach for automatic 
modeling of embedded passives in microwave 
integrated circuits have been presented. The 
technique takes into account the self- and mutual-
couplings present in such high-frequency systems. It 
helps making the design of microwave circuits 
faster, more accurate and efficient, contributing to 
overall reductions in design cycles.  

 
 

Fig. 10. Parallel RLC Circuit. 
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Fig. 11. S-Parameters for the parallel RLC circuit: 
comparison of results given by the EM simulator 

HFSS (*), and by the circuit simulator ADS including 
(___) or not the distributed coupling (---). 
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Fig. 2: Magnitude of the S11 tee junction parameter: 

The measured values (∆) are compared with our 
computed values (___) and with simulated values 

obtained by classical approaches that not include the 
distributed coupling effects (---). 
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