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Abstract— Difference systems of sets can be used to transform
an arbitrary linear code to a coset of a linear code with a given
comma-free index by means of a minimal increase of its length.
The paper discusses some constructions of difference systems of
sets obtained from cyclic difference sets and finite geometry.
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I. I NTRODUCTION

A difference system of sets(DSS) with parameters
(n, τ0, . . . , τq−1, ρ) is a collection ofq disjoint subsetsQi ⊆
{1, 2, . . . , n}, |Qi| = τi, 0 ≤ i ≤ q−1, such that the multi-set

{a− b (mod n) | a ∈ Qi, b ∈ Qj , i 6= j} (1)

contains every numberi, 1 ≤ i ≤ n − 1 at leastρ times. A
DSS isperfectif every numberi, 1 ≤ i ≤ n− 1 is contained
exactly ρ times in the multi-set of differences (1). A DSS is
regular if all subsetsQi are of the same size:τ0 = τ1 = . . . =
τq−1 = m. We use the notation(n, m, q, ρ) for a regular DSS
on n points withq subsets of sizem.

Difference Systems of Sets were introduced by V. Leven-
shtein [6] and were used for the construction of codes that
allow for synchronization in the presence of errors. Aq-ary
code of lengthn is a subset of the setFn

q of all vectors of
length n over Fq = {0, 1, ..., q − 1}. If q is a prime power,
we often identifyFq with a finite field of orderq, in which
casei (0 < i ≤ q − 1) stands for theith power of a primitive
element. Alinear q-ary code (q a prime power), is a linear
subspace ofFn

q . If x = x1 · · ·xn, y = y1 · · · yn ∈ Fn
q ,

and 0 ≤ i ≤ n − 1, the ith joint of x and y is defined as
Ti(x, y)=xi+1 · · ·xny1 · · · yi. In particular,Ti(x, x) is a cyclic
shift of x. Thecomma-free indexρ = ρ(C) of a codeC ⊆ Fn

q

is defined as
ρ = min d(z, Ti(x, y)),

where the minimum is taken over allx, y, z ∈ C and all
i = 1, ..., n − 1, and d is the Hamming distance between
vectors in Fn

q . The comma-free indexρ(C) allows one to
distinguish a code word from a joint of two code words (and
hence provides for synchronization of code words) provided
that at mostbρ(C)/2c errors have occurred in the given code
word [5].

Since the zero vector belongs to any linear code, the comma-
free index of a linear code is zero. Levenshtein [6] gave the
following construction of comma-free codes of indexρ > 0
obtained as cosets of linear codes, that utilizes difference
systems of sets. Given a DSS{Q0, . . . , Qq−1} with parameters
(n, τ0, . . . , τq−1, ρ), define a linearq-ary codeC ⊆ Fn

q of
dimensionn− r, where

r =
q−1∑
i=0

|Qi|,

whose information positions are indexed by the numbers not
contained in any of the setsQ0, . . . , Qq−1, and having all
redundancy symbols equal to zero. Replacing in each vector
x ∈ C the positions indexed byQi with the symbol i (0 ≤
i ≤ q−1), yields a cosetC ′ of C that has a comma-free index
at leastρ.

This application of DSS to code synchronization requires
that the redundancy

r = rq(n, ρ) =
q−1∑
j=0

|Qi|

is as small as possible.
Levenshtein [6] proved the following lower bound on

rq(n, ρ):
Theorem 1.1:

rq(n, ρ) ≥

√
qρ(n− 1)

q − 1
, (2)

with equality if and only if the DSS is perfect and regular.
In [6], Levenshtein found optimal DSS forq = 2 and ρ = 1
or ρ = 2, and proved that for alln ≥ 2

r2(n, 1) =e
√

2(n− 1)d, r2(n, 2) =e2
√

n− 1d.

Similar results are not known forq ≥ 3.
In a recent paper Levenshtein [7] introduced some construc-

tions of imperfect regular DSS obtained as products of cyclic
difference sets. In particular, he proved that the existence of
a cyclic (v, q, ρ) difference set with2 ≤ q < v implies the
existence of an DSS with parameters(n = vh,m, q, ρ) for
every h ≥ 2. A corollary of this result is that for any prime



power t and any integerh there exists a regular DSS with
n = (t2 + t + 1)h, m = (t+1)h−1

t , q = t + 1, andρ = 1.
In this paper we describe some direct constructions of

perfect and regular, hence optimal difference systems of sets
obtained as partitions of cyclic difference sets.

II. DSS AS PARTITIONS OF DIFFERENCE SETS

Let D = {x1, x2, . . . , xk} be a(v, k, λ) difference set (cf.
[1], [2], [9]), that is, a subset ofk residues modulov such that
every positive residue modulov occurs exactlyλ times in the
multi-set of differences

{xi − xj (mod v) | xi, xj ∈ D,xi 6= xj}.

Then the collection of singletonsQ0 = {x1}, . . . , Qk−1 =
{xk} is a perfect regular DSS with parameters(n = v,m =
1, q = k, ρ = λ). Thus, DSS are a generalization of cyclic
difference sets. The next lemma generalizes this simple con-
struction by using more general partitions of difference sets.

Lemma 2.1:Let D ⊆ {1, 2, . . . , n}, |D| = k, be a cyclic
(n, k, λ) difference set. Assume thatD is partitioned intoq
disjoint subsetsQ0, . . . , Qq−1 that are the base blocks of a
cyclic designD with block sizesτi = |Qi|, i = 0, . . . , q − 1
such that every two points are contained in at mostλ1 blocks.
Then the setsQ0, . . . , Qq−1 form a DSS with parameters
(n, τ0, . . . , τq−1, ρ = λ − λ1). The DSS{Qi}q−1

i=0 is perfect
if and only if D is a pairwise balanced design with every two
points occurring together in exactlyλ1 blocks.

The following theorem gives infinitely many perfect and
regular DSS obtained by partitioning the trivial cyclic(n, n−
1, n− 2) difference setD = {1, 2, . . . , n− 1}, wheren is an
arbitrary prime number.

Theorem 2.2:Let n = mq + 1 be a prime, and letα be a
primitive element of the finite field of ordern, GF (n). The
collection of sets

Q0 = {αq, α2q, . . . , αmq = 1}, Q1 = αQ0, . . . , Qq−1 = αq−1Q0

is a perfect regular(n, m, q, ρ = n−m− 1) DSS.
The DSS described in Theorem 2.2 has redundancy

rq(n, ρ) = n − 1 . However, the following example suggests
that it is sometimes possible to obtain a DSS with a smaller
value ofrq(n, ρ) being a sub-collection of the DSS described
in Theorem 2.2.

Example 2.3:Let n = 19, q = 6,m = 3. The DSS from
Theorem 2.2 hasρ = 15, and the six setsQi of size 3 are

{1, 7, 11}, {2, 14, 3}, {4, 9, 6}, {5, 16, 17}, {8, 18, 12}, {10, 13, 15}.

The two sets{1, 7, 11}, {2, 14, 3} form a perfect DSS with
q = 2, ρ = 1, andr = 6.

It is an interesting open problem to find an infinite class of
such examples.

The following theorem gives perfect regular DSS’s obtained
as partitions of difference sets of quadratic-residue (QR) type.

Theorem 2.4:For every prime n = 2mq + 1 ≡
3 (mod 4) there exists a perfect regular DSS with parameters
(n, m, q, ρ = (n− 2m− 1)/4).

Example 2.5:Let n = 31 = 2 · 5 · 3 + 1. We takem = 5,
q = 3, and α = 3 as a primitive element modulo 31. The
set D5 defined as in Theorem 2.4 form = 5 consists of the
elements

36 ≡ 16, 312 ≡ 8, 318 ≡ 4, 324 ≡ 2, 330 ≡ 1.

The sets

Q0 = D5 = {16, 8, 4, 2, 1}, Q1 = D532 = {20, 10, 5, 18, 9}, Q2 = D534 = {25, 28, 14, 7, 19}

are base blocks of a cyclic 2-(31, 5, 2) design, and their union
Q0 ∪ Q1 ∪ Q2 is the set of all nonzero quadratic residues
modulo 31. Consequently, the collectionQ0, Q1, Q2 is a
perfect regular DSS with parametersn = 31, m = 5, q =
3, ρ = 5.

III. D IFFERENCE SYSTEMS OF SETS FROM FINITE

GEOMETRY

Perfect DSS with reasonably small redundancyrq(n, ρ) can
be obtained from difference sets related to finite geometry.

Let H be a hyperplane in the2s-dimensional projective
spacePG(2s, p) over GF (p). The (p2s − 1)/(p − 1) points
of H form a cyclic difference set with parameters

v =
p2s+1 − 1

p− 1
, k =

p2s − 1
p− 1

, λ =
p2s−1 − 1

p− 1

in a cyclic group acting regularly on the points ofPG(2s, p),
known in design theory and geometry as the Singer difference
set. It is known [4] that the points ofH can be partitioned
into disjoint linesQ0, Q1, . . . , Qq−1, where

q =
p2s − 1
p2 − 1

= p2s−2 + . . . + p2 + 1.

On the other hand, the collection of all lines inPG(2s, p) is
a cyclic 2-(p2s+1−1

p−1 , p + 1, 1) designD. If the partition

H = Q0 ∪Q1 ∪ . . . ∪Qq−1

is chosen so thatQ0, . . . , Qq−1 are base blocks ofD, then
by Lemma 2.1 the collectionQ0, Q1, . . . , Qq−1 is a perfect
regular DSS with parameters

n =
p2s+1 − 1

p− 1
, m = p + 1, q =

p2s − 1
p2 − 1

, ρ =
p2s−1 − p

p− 1
.

Hyperplane partitions with the above property were studied by
Fuji-Hara, Jimbo and Vanstone in a different context in [3],
who showed that such partitions exist inPG(2s, 2) for s ≤ 5,
and inPG(2s, 3) for s ≤ 3.

Example 3.1:Let p = 2, s = 2. We consider
1, α, α2, . . . , α30 as points ofPG(4, 2), whereα is a primitive
element ofGF (25) defined by the polynomialx5 + x3 + 1.
The following set of 15 points

H = {α, α2, α4, α8, α16, α3, α6, α12, α24, α17, α29, α27, α23, α15, α30}

is a hyperplane inPG(4, 2), and hence a(31, 15, 7) difference
set in the multiplicative group ofGF (25). The following
partition of H,

H = {α, α3, α29}∪{α2, α6, α27}∪{α4, α12, α23}∪{α8, α24, α15}∪{α16, α17, α30}



has the property that each of the five 3-subsets is a projective
line, and these five lines are the base blocks of a cyclic 2-
(31, 3, 1) design under the multiplicative group ofGF (25).
Thus, these five 3-subsets define a perfect DSS with parame-
ters (n = 31,m = 3, q = 5, ρ = 6).
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