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Abstract— Difference systems of sets can be used to transform  Since the zero vector belongs to any linear code, the comma-
an arbitrary linear code to a coset of a linear code with a given free index of a linear code is zero. Levenshtein [6] gave the
comma-free _mdex by means of a m|r_1|mal increase of its length. ¥ollowing construction of comma-free codes of index> 0
The paper discusses some constructions of difference systems o . . s -
sets obtained from cyclic difference sets and finite geometry. obtained as COSQFS of linear codes, that _ut|||zes difference

Key Words code synchronization, difference set, differenceYSteéms of sets. Given a D§&, . . ., Qq—1} with parameters
system of sets. (n,70,...,74-1,p), define a linearg-ary codeC C F}' of

dimensionn — r, where
I. INTRODUCTION

qg—1
A difference system of set¢DSS) with parameters r=>Y_1Qil,
(n,70,...,74—1,p) is @ collection ofg disjoint subsets); C i=0
{1,2,...,n},|Q;| = 7, 0 < i < ¢—1, such that the multi-set whose information positions are indexed by the numbers not

. contained in any of the set9,...,Q,_1, and having all
fa=b (modn)[acQibeq; i#j} @) redundancy symybols equal to zero. Rqeplacing in eagh vector

contains every number 1 <: < n —1 at leastp times. A =z € C the positions indexed bg); with the symbol i ( <

DSS isperfectif every numberi, 1 <i <n—1 is contained i < ¢g—1), yields a cose€” of C that has a comma-free index

exactly p times in the multi-set of differences (1). A DSS isat leastp.

regularif all subsets); are of the same sizery =1, =... = This application of DSS to code synchronization requires
7,—1 = m. We use the notatiofr, m, q, p) for a regular DSS that the redundancy
on n points withg subsets of sizen. a—1
Dl_fference Systems of Sets were mtroduped by V. Leven- r=ry(n,p) = Qi
shtein [6] and were used for the construction of codes that =0

allzw f(;rI syntchf;rc.)mzatlog |nt thfetrpl)res;:?e fof ltlerror?qmryf is as small as possible.
code of leng IS a subset of the set; of all veclors o Levenshtein [6] proved the following lower bound on
lengthn over F, = {0,1,...,¢ — 1}. If ¢ is a prime power, ro(n, p):
we often identify £, with a finite field of orderg, in which ? P .

) . a i o Theorem 1.1:
casei (0 < i < ¢ — 1) stands for theth power of a primitive
element. Alinear g-ary code ¢ a prime power), is a linear
subspace off!. If v = x1---2p, ¥y = Y1y € FY,
and0 < i < n — 1, the ith joint of = and y is defined as
Ti(z,y)=xiy1 - Tpy1 - - - yi. I particular,T; (x, z) is a cyclic
shift of z. Thecomma-free index = p(C') of a codeC C F?*
is defined as

gp(n —1)
rLI(na p) Z q— 1 ) (2)
with equality if and only if the DSS is perfect and regular.
In [6], Levenshtein found optimal DSS fer=2 andp = 1

or p = 2, and proved that for ath > 2
p=min d(z,Ti(z,y)), ro(n,1) =]v2(n — 1)[, ra2(n,2) =]2vn — 1J.

where the minimum is taken over all,y,z € C and all Similar results are not known far > 3.

i = 1,..,n — 1, and d is the Hamming distance between In a recent paper Levenshtein [7] introduced some construc-
vectors in F'. The comma-free indey(C) allows one to tions of imperfect regular DSS obtained as products of cyclic
distinguish a code word from a joint of two code words (andifference sets. In particular, he proved that the existence of
hence provides for synchronization of code words) providedcyclic (v, ¢, p) difference set with2 < ¢ < v implies the
that at most p(C) /2| errors have occurred in the given codexistence of an DSS with parametdrs = v" m,q,p) for
word [5]. every h > 2. A corollary of this result is that for any prime



powert and any integer there exists a regular DSS with Example 2.5:Letn =31 =2-5-3 + 1. We takem = 5,
n=+t+1)" m= % g=t+1,andp=1. g = 3, anda = 3 as a primitive element modulo 31. The
In this paper we describe some direct constructions 8¢t Ds defined as in Theorem 2.4 fon = 5 consists of the

perfect and regular, hence optimal difference systems of setements
obtained as partitions of cyclic difference sets. 30 =16, 312=8, 318 =4, 324 =92 330 =1

Il. DSSAS PARTITIONS OF DIFFERENCE SETS

Let D = {z1, z9,...,2%} be a(v, k, \) difference set (cf. ) 4
[1], [2], [9]), that is, a subset ot residues module such that Qo = Ds = {16,8,4,2,1}, Q1 = D53” = {20,10,5,18,9}, Q2 = D53" -
every positive residue modulooccurs exactly\ times in the are base blocks of a cyclic @1,5,2) design, and their union
multi-set of differences Qo U Q1 U Q, is the set of all nonzero quadratic residues
modulo 31. Consequently, the collecti@gpy, @1, Q2 is a
perfect regular DSS with parametets= 31, m =5, ¢ =
Then the collection of singleton®y = {z1},...,Qx—1 = 3, p=5.
{z}} is a perfect regular DSS with parametérs= v, m =
1, = k,p = \). Thus, DSS are a generalization of cyclic Ill. DIFFERENCE SYSTEMS OF SETS FROM FINITE
difference sets. The next lemma generalizes this simple con- GEOMETRY
struction by using more general partitions of difference sets. Perfect DSS with reasonably small redundangiy, p) can

Lemma 2.1:Let D C {1,2,...,n}, |D| = k, be a cyclic be obtained from difference sets related to finite geometry.
(n,k, \) difference set. Assume thd? is partitioned intog ~ Let H be a hyperplane in thes-dimensional projective
disjoint subsetso, ..., Q,_1 that are the base blocks of aspacePG(2s,p) over GF(p). The (p** —1)/(p — 1) points
cyclic designD with block sizesr; = |Q;], i = 0,...,q —1 of H form a cyclic difference set with parameters
such that every two points are contained in at masblocks. P2l 1 P2 1 P21 1
Then the setx)o,...,Q,—1 form a DSS with parameters v 1 T, T 1

I p p p

(n,70,...,Tg—1,p = A — A1). The DSS{Q;}7_, is perfect , ) ]
if and only if D is a pairwise balanced design with every twd @ cyclic group acting regularly on the points B(+(2s, p),
points occurring together in exactly; blocks. known _|n design theory and geqmetry as the Smger_d_lfference

The following theorem gives infinitely many perfect ang€l It IS known [4] that the points off can be partitioned
regular DSS obtained by partitioning the trivial cyclie,n — Nt disjoint linesQo, Q1,..., Qq—1, where
1,n — 2) difference setD = {1,2,...,n — 1}, wheren is an p?s —1 S )
arbitrary prime number. q= 1 =p +...+p°+1.

Theorem 2.2:.Let n = mq + 1 be a prime, and letv be a
primitive element of the finite field of ordet, GF(n). The

The sets

{z; —z; (modw) | z;,x; € D,x; # x;}.

On the other hand, the collection of all lines FG(2s,p) is

collection of sets a cyclic 2-(p2;+_11_1,p + 1, 1) designD. If the partition

QO = {aq7a2q7.”7amq = 1}7 Ql = aQO» ) Qq—l :aqilQO H = QOUQl Y ~-~UQq—1

is a perfect regulatn, m, q,p = n —m — 1) DSS. is chosen so thaf), ..., _Qq,l are base bIocI§s dab, then
The DSS described in Theorem 2.2 has redundangy Lémma 2.1 the collectioy, Q1,..., Q-1 is a perfect

rq(n,p) = n — 1 . However, the following example suggest£€9ular DSS with parameters

that it is sometimes possible to obtain a DSS with a smaller  p*st! —1 B L oo— p*—1 p*l—p

value ofry(n, p) being a sub-collection of the DSS described" = ~, 1 * " =P +1g= 21T 1

in Theorem 2.2.
Example 2.3:Let n = 19, ¢ = 6, m = 3. The DSS from
Theorem 2.2 hag = 15, and the six set§); of size 3 are

Hyperplane partitions with the above property were studied by
Fuji-Hara, Jimbo and Vanstone in a different context in [3],
who showed that such partitions existiG(2s, 2) for s < 5,
{1,7,11},{2,14,3},{4,9,6}, {5, 16,17}, {8, 18,12}, {10, 13, 15nd in PG(2s, 3) for s < 3.
. Example 3.1:Let p = 2, s = 2. We consider

The two sets{1,7,11}, {2,14,3} form a perfect DSS with 1,a,a2,...,a% as points ofPG(4, 2), wherea is a primitive
¢=2p=1 andr=G6. _ o element of GF(2°) defined by the polynomiat® + 2? + 1.

It is an interesting open problem to find an infinite class 6f,o following set of 15 points
such examples.

H = {a,az,a4,a8,a16,a3,046,a12,a24,a17,a29,a27,a23,a15,a30}

The following theorem gives perfect regular DSS’s obtained ) ,
as partitions of difference sets of quadratic-residue (QR) tyg8.2 hyperplane irPG:(4,2), and hence &31,15, 7) difference

Theorem 2.4:For every primen = 2mq + 1 = set in the multiplicative group ofZF(2%). The following

3 (mod 4) there exists a perfect regular DSS with parametep@rtition of 7,
(n,m,q,p=(n—2m—1)/4). H = {a,03,0?YU{a?, o’ o®Ju{a?, a'?, a®3}u{a®, o, a5 u{a!®,



has the property that each of the five 3-subsets is a projective
line, and these five lines are the base blocks of a cyclic 2-

(31,

3,1) design under the multiplicative group ¢fF(25).

Thus, these five 3-subsets define a perfect DSS with parame-
ters(n=31,m=3,¢q="5,p=6).
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