
Parallel Learning Using Decision Trees: A Novel 
Approach  

 
 

Sattar Hashemi1, Mohammad. R. Kangavari1 
 

 1 Department of Computer Engineering,  
Iran University of Science and Technology 

Tehran , Iran 

 
 

Abstract. Decision trees are one of the most effective and widely used 
induction methods that have received a great deal of attention over the past 
twenty years. When decision tree induction algorithms used with uncertain 
rather than deterministic data, the result is complete tree, which can classify 
most of the unseen samples correctly. This tree would be pruned in order to 
reduce its classification error and over-fitting. 

Recently, parallel decision tree researches concentrated on dealing with large 
databases in reasonable amount of time. In this paper we present new parallel 
learning methods that are able to induce a decision tree from some overlapping 
partitioned training set. Our methods are based on combination of multiple 
induction methods; each one is running on different processor. These methods 
have been developed based on Kramer and fuzzy mode to control and combine 
the result of learning methods in order to generate the final tree. Experimental 
results show that if the attributes and classes in training set have uniform 
distribution and the size of training set are not too small, these methods result 
statistically lower error rate in comparison to existing methods. 

 
 

1. Introduction 
Decision tree learning program have received a great deal of attention over the past 

twenty years in the field of machine learning and KDD (knowledge discovery in 
databases) [11]. Several factors contribute to their popularity: Decision tree learning 
programs are fast and effective [2], They work remarkably well with no tweaking of 
parameters, which has facilitated their wide use in the comparison of different 
algorithms. Decision trees also work comparatively well with very large datasets [13], 
with large number of variables, and with mixed type data (continuous, nominal, 
Boolean, etc.). These qualities result in part from the simple yet powerful divide-and-
conquer algorithm underlying decision tree learners, and in part from the high quality 
software packages that have been available for learning decision trees (most notably, 
CART [1] and C4.5 [3]). 

However most parallel learning research has concentrated on dealing with large 
datasets in reasonable a mount of time [7],[10], multiple models research involves 
learning a set of classifiers, an ensemble, and then combining their classification or 
evidence in order to make more accurate classifications [4],[8],[12]. The research 
typically compares the error rate of the ensemble on test examples to the error rate of 
single model learned on the same data. 

mailto:@iust.ac.ir


Our goal is to have a single decision tree (named PDT) after learning is done 
independently on three overlap subset of data. The independent learners can be 
viewed as agents and the knowledge of each agent is combined into one knowledge 
base. Towards this end the independent decision tree might share information in each 
node to make single decision tree. However, there are significant complexities in 
attempting such an approach. In PDT, three processor at each node share information 
about the selected attribute in that node, then the most informative one is chosen for 
next development of tree using two novel methods, named Kramer and Fuzzy, Then 
tree is pruned using EBP [5], and final pruned tree will be used to classify unseen 
examples. 

The rest of this paper consists of six sections. Section 2 is a discussion of building 
the decision trees, section 3 analyzes the tree pruning methods, section 4 discusses 
how to combine decision trees, and section 5 contains experimental result on some 
known datasets. Finally, section 6 is a conclusion of current work and future 
directions.     

 
2. Decision Tree Growing 

There are a number of alternative suggestions for measure to be used in selecting 
attributes for growing a tree. Three of them that are used in our model as follow: 
Gain ratio measure (GR) [9]. The default splitting criterion used by C4.5 is gain 
ratio, an information based measure that takes into account different numbers (and 
different probabilities) of test outcome. Let that C denote the number of classes and    
p(D, j)  the proportion of cases in D that belong to the Jth class. The residual 
uncertainty about the class to which a case in D belongs can be expressed as 

)),((*),()(
1

2 jDPLogjDpDInfo
C

j
∑

=

−=  (1) 

And the corresponding information gained by a test T with k outcomes as 

)(*
||

||
)(),(

1
i

k

i

i DInfo
D
D

DInfoTDGain ∑
=

−=  (2) 

The information gained by a test is strongly affected by the number of outcome and 
is maximal when there is one case is each subset Di. On the other hand, the potential 
information obtained by partitioning a set of cases is based on knowing the subset Di 
into which a case falls; this split information  

∑
=









−=

k

i

ii

D
DLog

D
DTDSplit

1
2 ||

||
*

||

||
),(  (3) 

Tend to increase with the number of test outcomes. The gain ratio criterion assesses 
the desirability of a test as the ratio of its information gain to its split information. The 
gain ratio of every possible test is determined and, among those with at least average 
gain, the split with maximum gain ratio is selected. 

The Chi Square statistic ( 2χ ) [9]. Hart and Mingers have employed another 

measure to select among attributes the Chi Square statistic. This is the traditional 
statistic for measuring the association between two variables in a contingency table. It 
compares the observed frequencies with frequencies that one would expect if there 
were no association between the variables. The resulting statistic is distributed 
approximately as the chi-square distribution, with larger values indicating greater 



association. In these experiments Yates' correction is used for 2*2 tables. The basic 
equation for this function is: 

∑∑
−

=
ij

ijij

E
Ex 2

2
)(

χ  
(4) 

where NxxE jiij /=  , i.e., the expected value for each cell in contingency table. 

One level Look Ahead (Look) [6]. It searches top-down to find more significant 
attribute than the root attribute, and then pull more significant attribute up to the root 
to obtain a tree with fewer number of nodes. Quinlan's method finds the most 
significant attribute only, but this method takes not only the attribute that Quinlan's 
method finds but also those attributes that are found in next level into consideration. 
It compares those attributes to find the most significant attribute and place the newly 
found most significant attribute at that node. For sake of simplicity we assume that 
each attribute has two possible values. The algorithm can be generalized with more 
than two possible values in each attribute. We also assume that each node in the 
decision tree is labeled by the attribute pi, which is used to partition the dataset at that 
node. 

(1) Build a decision tree by Quinlan's method, name the tree T1, and count the 
number of descendants. Name the root of T1 as p1, the left child of p1 as p2 and the 
right child of p1 as p3. 

(2) Build a new decision tree T2 by using the attribute p2 as the initial attribute at the 
root node of T2 to partition the dataset and also count the number of descendants. 

(3) Repeat step (2) for p3 and name it T3. 
(4) Compare the numbers of descendants of T1, T2, and T3, and take the tree T* 

which has the least number of nodes among those three trees. 
(5) Apply this algorithm to immediate children of the root of T*. (Then the 

algorithm will be applied throughout the tree recursively.) 
  

3. Decision Tree Pruning 
Decision trees that are grown using one of the methods discussed in last section can 

become cumbersomely large for several reason. One possible cause is noise, when 
examples have a large amount of feature noise (i.e. erroneous feature values) or class 
noise (i.e. mislabeled class value), the induction algorithm may expand the tree too 
far based on irrelevant distinctions between examples. Noise can cause some 
irrelevant features to be included among the selected tests. This leads to trees that 
overfit the training example and that do poorly in front of unseen samples. 

The goal of pruning a tree is to eliminate tests that were dictated by noisy data. Two 
categories of pruning methods are usually distinguished: include pre-pruning and 
post-pruning techniques. Pre-pruning techniques decide eliminate tree nodes and 
branches during the initial construction of the tree. Post-pruning is the more popular 
simplification method. The input to a post-pruning (or simply pruning) algorithm is 
an unpruned tree T, and its output is a pruned tree T’, formed by removing one or 
more subtree from T. Post-pruning technique do not usually search all possible T’; 
instead , they rely on heuristics to guide their search. 

Some experimental result was shown that there is no one pruning method that did 
best for all the dataset, but in relative terms, the "error based pruning" used in the 



standard C4.5 algorithm produced consistently good results. For such results, this 
approach is used for PDT pruning. 
Error Base Pruning (EBP). This is the pruning method implemented in C4.5 [3], 
[5], one of the learning systems that we employed in our experiments for building the 
trees. This method use information in the training set for building and simplifying 
trees. 

EBP visits the nodes of Tmax (fully expanded tree) according to a button-up post-
order traversal strategy instead of a top-down strategy. The true novelty is that EBP 
simplifies a decision tree T by grafting a branch Tt (subtree of node t) onto the place 
of the parent of t itself, in addition to pruning nodes (see fig. 1). 

 

 
Fig. 1.  Decision tree pruning using EBP 

 
The sum of the predicted error rates of all the leaves in a branch Tt is considered to 

be an estimate of the error rate of the branch itself. Thus, by comparing the predicted 
error rate for t with that of the branch Tt and of the largest sub branch Tt, rooted in a 
child t' of t, we can decide whether it is convenient to prune Tt, to graft Tt' onto the 
place of t or to keep Tt.    

 
4. Parallel Decision Tree 

In this section, we develop parallel formulations (PDT) for the classification 
decision tree construction and hybrid schemes that select good features of datasets. In 
our parallel formulation, Original dataset has been randomly split into two subsets: 
training set (90 percent) and test set (10 percent), and the training set has been 
divided into three overlap subsets (with 10 percent overlap). Each of these subsets is 
assigned to one processor. An overview of PDT is shown in fig. 2.  

 

6 

6 

True False 

True True 

Tru
e 

False False 

False 

2 1 

4 5

7 8 

3 

 x
 9 9 

 x3 
5 7 

 x
 4 5 

- 
4 5 

+ 
2 0 

+ 
3 4 

+ 
5 3 

+ 
2 2 

0 
 x
 11

Original Tree T 

6 

True False 

True True False False 

2 1 

0 

5 4 3 

 x
 11

 x
 9 9 

 x
 5 7 

- 
4 5 

+ 
5 3 

+ 
2 2 

Pruning T in Node 1 

True False 

True True False False 

2 4 

0 

5 8 7 

 x
 9 9 

 x
 5 7 

- 
6 6 

+ 
3 3 

+ 
5 3 

+ 
2 2 

Grafting the subtree rooted in node 3 on 
the place of node 1 of T 

 x
 11

+ 
5 4 



 
Fig. 2. The overviews of PDT approach. 

 
Major steps for PDT construction are given as below: 
1) Select a node to expand according to a decision tree expansion strategy (e.g. 

Depth-first or Breadth-first), and call that node as the current node. At the 
beginning, root node is selected as the current node. 

2) Assign the subsets of the local data at the current node to each of three 
processors. 

3) Simultaneously, the GR, 2χ , and the Look measures of each attribute at each 

processor are computed and best three attributes are selected. 
4) Among three selected attributes, the most informative one is chosen by our 

approaches Kramer and Fuzzy as follow. 
5) Depending on the branching factor of the tree desired, create child nodes for the 

same number of partitions of attribute values, and split training cases accordingly. 
6) Repeat above steps (1-5) until no more nodes are available for the expansion. 
7) Prune the final tree using EBP method. 
 
Now we explored two alternatives for combining classifications or evidence of each 

individual processor in order to make the final PDT tree. 
Kramer Method. The attribute proposed by each processor is noted and the 
most frequent one is used for the ensemble expansion. For this operation at least 
two proposed attributes must be the same. If different attributes are suggested by 
each processor, we have defined a relation function that estimated the similarity 
of each pair of attributes, such as A and B. Let N be the total number of sample 
in current node and p, r the row and column of contingency table respectively, 
the Kramer relation of these two attribute is computed as follow 

)1,1(*
),(

2

−−
=

drMinN
BAR

χ  
(5) 

This relation is computed for all three attributes, and the attribute with highest 
Kramer relation with two other attributes is selected to develop the tree. Note that 
relation between two attribute such as A and B ),( BAR  is a positive number 



below one that explores the dependency of these two nominal attribute and is 
transposition i.e. ),(),( ABRBAR = . 

 
Fuzzy Method. Another method for combination of these attribute is Fuzzy 
method. This method define ),( BAR  as a matrix which rows equal to distinct 

values of attribute A  and columns are equal to number of distinct values of B, 
and define as  

),(*),(),( BCRCARBAR =  (6) 

Where C is total classes },....,,{ 21 kCCC  and * denote matrix product. Therefore this 

relation is not transposition i.e. ),(),( ABRBAR ≠  because the product of two 

matrixes is not transpositive. Suppose that A have i distinct values, then ),( CAR  is a 

ki ×   matrix that ),( kiR  element represent the frequency of samples in current node 

with  iV  value that belong to class iC . These elements are divided by number of total 

samples to be normalized. Therefore all elements of this matrix are real numbers 
between 0 and 1. 

Now we present a method for computing the cardinal of a matrix such 
as |),(| BAR , and among these attribute the attribute with highest cardinality is 

chosen to expand the tree. For this purpose, first a vertical projection of  ),( BAR  is 

computed and define a one dimensional matrix  ]....1[ ip  , then α cut point that 

empirically achieved 
2

1
k

 (k is number of classes of all samples) is applied to map p 

matrix to a binary matrix. Elements which their values are higher than α  map to one 
and the others are map to zero. The sum of theses elements represents the cardinality 
of p matrix. Despite the Kramer method, this method can chose an attribute between 
two same attributes that are suggested by two processors and don't need to vote 
among them. 

  
5. Experimental Results 

Simple initial experiments to test the feasibility of PDT were done on datasets that 
are taken form UCI repository [14]. These datasets contain some natural and artificial 
domains. The experiments have been done with parallel 3-processor simulation that 
each of these processors runs one heuristic over the corresponding subset. The results 
are average of 10-fold cross-validations. The 10-fold cross-validation was done by 
breaking the data into 10 train/test sets, so that the test sets were mutually exclusive. 
For each train fold three classification trees were generated, one on each of three 
overlapped subsets, and among selected attributes in each subset, the best one was 
chosen by our proposed heuristic to grow the PDT. Finally, the PDT was pruned and 
used to classify the unseen example of each test fold. 

 
 
 
 
 
 



Table 1. Error Rate of different methods  

 C4.5 Kramer 
Method 

Fuzzy 
Method 

Iris  5.3 5.3 5.2 
Voting 6.3 5.7 4.8 
Hypo 0.54 0.49 0.415 
Led-1000 27 26.1 26.5 
Led-200 32.7 34.2 38 
Golf 28.2 37 35 
Glass 35 38 37.5 

 
The classification error of final pruned PDT over datasets are shown in table 1 and 

compared with the error rate of C4.5. The default C4.5 parameters were used. Our 
experimental results showed that the proposed attributes in the first rounds of learning 
process unusually are the same, therefore in the first steps tree growing was fast 
because of low computational cost, but in middle toward bottom of tree these 
attributes were different, and tree growing in this manner became slow. Most of 
variant that are produce by PDT in bottom of tree is pruned by pruning method. In 
some noisy datasets fuzzy method have better performance because if two processor 
select same noisy attribute, Kramer method select this attribute by voting, but it is not 
the case for Fuzzy method, and this method have higher exploration in dataset. 

Size of dataset is another important factor in our approach, as seen in the table, 
although in Hypo and Led_1000, PDT emerged better performance than C4.5, in 
Led-200 and Golf its error rate increased due to partitioning of dataset and loosing 
comprehensibility. The other reason for good performance of PDT in artificial 
domain is capability of Look Measure in artificial domains. Voting dataset is similar 
to Led dataset but base error in this dataset is low (most of attributes that are 
suggested in each node are similar) thus PDT that used Fuzzy method achieved better 
performance because of its exploration power. Although Iris dataset is not so huge 
but PDT represent acceptable accuracy because samples and classes in this dataset are 
distributed uniformly, however none uniform distribution in Glass dataset results 
unbalanced trees and reduction in accuracy. Another important feature of PDT in 
comparison to other parallel learner that produce many trees, is capability to reform 
to decision rule to be better understandable and used in expert system. 

 
6. Conclusion 

Parallel approach in learning from the examples that discussed in this paper, broke 
training set into three overlap subsets, each of these subsets evaluated by an 
individual heuristic (processor), and then the best attribute is selected for expanding 
the tree. A tree that constructed base on PDT, gives better performance as compared 
to using the single (C4.5) growing methods when data set is not too small and classes 
and attributes in dataset are distributed uniformly.  

These results provide empirical validation (for trees) of the widely held belief that 
the multiple models approach is able to do better than the single model approaches 
when the learned models make uncorrelated errors.  



 
References 
1. Breiman, L., Friedman, J. H., Olsen, R.A., & Stone, C.J. Classification and Regression 

Trees, Wadsworth international group, 1984. 
2. Mingers, J.  An empirical comparison of selection measures for decision-tree induction. 

Machine learning 3: 319-342, 1989. 
3. Quinlan, J.R. Constructing Decision Tree in C4.5: Programs for Machine Learning, pp.17-

26, Morgan Kaufman Publishers, 1993. 
4. Kamal Ali, On explaining degree of error reduction due to combining multiple decision 

trees. IBM Almaden research center, CA, 95120, 1996  
5. Floriana Esposito, Donato Malebra, and Giovanni Seminar, A comparative analysis of 

methods for pruning decision trees, IEEE transaction on pattern analysis and machine 
intelligence, vol. 19, no. 5, 1997. 

6. K.V. Sreerama, On growing better decision trees from data, PhD thesis, Johns Hopkins 
University, 1997.  

7. Anurag Srivastava , Eui-Hong Han, and Vipin Kumar, Parallel formulation of decision tree 
classification algorithms, Information technology lab, Hitachi America, 1998. 

8. Provost, F., & Kolluri, A survey of methods for scaling up inductive algorithms, Data 
mining and knowledge discovery, 3(2), 131-169, 1999. 

9. Lim,T.-J.,Loh,W.Y.,& Shih, A comparison of prediction accuracy, complexity, and training 
time of thirty-three old and new classification algorithms, Machine learning, 40(3), 203-228, 
2000. 

10. S. Orlando, P.Palmerini, R. Perego, F.Silverstri, Scheduling High Performance Data 
Mining Task on a Data Grid Environments, proceedings of Euro-par 2002 

11. Gerald Benoit, DATA MINING, Annual review of information science and technology, 
2002, B.Cronin, ed., in press. 

12. C.mastroianni , D.Tailia, P.Trunfio, Managing heterogeneous resource in data mining 
application on grid using XML-Based metadata, proceeding of IPDPS 2003, IEEE computer 
society press, April 2003. A  

13. Shu-Tzu Tasi, chao-Tung Yang, Decision tree construction for data mining on grid 
computing, IEEE conference on e-technology, e-commerce and e-service. 2004. 

14. Merz, C., and Murphy, P. UCI Repository of Machine Learning Databases, University of 
California, Dept. of CIS, Irvine, CA. http://www.ics.uci.edu/~mlearn/MLRepository.html. 
2004. 

http://www.ics.uci.edu/~mlearn/MLRepository.html

