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Abstract: New concepts are entered in the theory of injective mappings and in the theory of numerical sequences such as: a precise pair of variables, a divergent sequence, a convergent in itself sequence etc. The new methodological approach has allowed to classify injective mappings and numerical sequences and to prove some paradoxical from the classical point of view the statements on the analysis: the existence of infinity large Cauchy’s sequences has made possible and necessary the introduction of infinity large numbers.
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1 Introduction 

The Great scientist of XVII century G. Galilei, having discovered that the quantities of natural numbers and their quadrates are equal, has bequeathed to the successors to be very cautious at an operation with infinite amounts: "… the properties of equality, and also greater and smaller values have no the places there, where the matter goes about the infinity, and they can be applied only to finite amounts" [1, p. 140-146]. The ignoring of this warning has entered into the mathematical folklore some false hypotheses together with its proofs that contain incorrect reasoning. These and contiguous by them problems were as a subject of learning in this work. The new procedure enabled us to overcome the above difficulties. 

The injective mappings (: 
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 and the properties of numerical sequences have been analyzed in this work. Classification of the investigated objects has become one of the results of our research. This theory is borne out by the facts too.
2 Problems Formulation
For finite sets A and B the check of mapping 
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 surjectivity does not cause difficulties. On the contrary, the similar procedure for mappings of infinite sets is not such trivial. Injective mappings (: 
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, are considered bijective by default in the traditional mathematical texts. The proof of surjectivity criteria for injective mappings (: 
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 and their classification made up the first problem, which was solved in this paper. The second problem – the research of properties of numerical sequences and their classification has been solved due to the introduction of positive definition of a divergent numerical sequence. The main result of these researches has been formulated in the following form:
Theorem 1. Any fundamental number sequence (а) satisfies to the following condition: 
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or, that is the same,
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3 Solutions of problems
3.1 About properties of injective mappings N(N 

The infinity of set 
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 of natural numbers is understood in connection with a principle of a mathematical induction as unbounded possibility of transition from (n) to (n+1). More common phrases "at a passage to the limit in F(n)" and "at 
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The principle of the passage to the limit (3) and an uniform ordering of set of natural variables make possible the introduction of the following concept.

Definition(1. The pair (n, m) of variables, n, m(N, is named as a precise pair at 
[image: image13.wmf]¥

®

n

, if 

[image: image14.wmf]p

n

m

p

n

n

N

p

n

p

+

=

>

"

Î

$

)

(

)

)

(

,

(

. 
 (4)

Let there is an infinite sequence of natural numbers (=(
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 of the non-negative integers under the following formulas:
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From the condition (5) follows that 
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From determining conditions (5)​(7) follows, that 
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Statement 1. Sequences 
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The following below statement is a consequence of conditions (8): 
Statement 2. If such splitting (() of sets N on pieces
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Classification of injective mappings 
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 is carried out to following two properties: 1) a triviality, not trivial boundedness, unboundedness of the sequence 
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Conditions (5)​(7) allow to separate all injective mappings 
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Definition 2. Injective mapping 
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Definition 3. Injective mapping 
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Definition 4 Injective mapping 
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 is determined as antisurjective ones, if at least one of two following conditions is carried out: 
1) (С>0, ((=(
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The necessary criterion exact or potential surjectivity of injections 
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 is formulated on the basis of the classification given above as follows:
Theorem 2. Injective mapping 
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 is exact or potentially surjective ones in only case when the following below two conditions have been satisfied: 
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Theorem 3. For injective mappings 
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 of first two classes the following below limiting equality are fair:
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 and, hence, the conditions (11) are fair for such mappings. Generally, the opportunity of construction of splitting (
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The statement following below is consequence of (10) for infinite subsets of set N (comp. [2, p. 20]):
Theorem 4. A bijection does not exist between set N of natural numbers and its own subset А(N.
Theorem 4 can be proved with the help of the following below Theorem 5 (see [3]).
Theorem 5. Let A and B be own subsets of set N also there is an injection 
[image: image122.wmf]B

A

®

j

:

. Then this injection 
[image: image123.wmf]B

A

®

j

:

 can be continued up to bijection 
[image: image124.wmf]N

N

®

y

:

. 

The opportunity of such continuation is proved by means of consecutive designing of points of set 
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3.2 Examples
Example 1 (G..Galileja's paradox [1]). It is obvious, that a mapping 
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Example 3 (to Th. 6) It is know harmonic series 
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Example 4. (to Th. 5). Let 
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3.3 Properties and classification of number sequences

A sequence (а), (а)
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The number sequence (а) is named a fundamental sequence (regular sequence, Cauchy's sequence ​ (CS)) (see [7, p. 355], comp. with [6, S. 81, 85-86]), if
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It is easy to prove that the limiting equality (15) is equivalent “on the language ((, n(())” to following condition: 
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It is possible to consider a pair (m, n) of variables n and m in (15) as a precise ones (see (4)): 
[image: image230.wmf]p

n

m

p

n

n

p

n

p

+

=

>

"

Î

$

)

(

)

)

(

,

(

N

. The validity of Theorem 1 follows from both the (15) and the (4) at p=1. 
Definition 5. A number sequence (а) is named "convergent in itself" ones (CIS), if (2) is fair or, that is same, if 
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The term "CIS" has been used in [5, S. 51] as a synonym for "CS". It is obvious, that the convergent to number a sequence (а) will be and CIS too. The inverse statement has no a place generally.
Theorem 7. The following below limit equality is fulfilled for a convergent (or convergent in itself) number sequence at any natural number p 
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(The validity of Theorem 7 follows from conditions (14), (or from (17), accordingly) and from the following equality:
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Definition 6. The number sequence (a) is termed a divergent ones (DS), if there are two infinite subsequences 
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 is fulfilled (comp. with [5, p. 46]). 
The following statement is fair by virtue of conditions (15), (16) and (20):
Theorem 8. Any numerical sequence is either regular sequence, or divergent sequence, i. е. 
((a) (a)({CS}({DS}, {CS}({DS}=(,     (21)
The direct proof of Theorem 1 is stated below. 
( We suppose the opposite judgment that there is a sequence convergent in itself but ones is not being fundamental. By virtue (21) this sequence will be divergent, that means the condition (20) is fair: 
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By virtue of infinity of sequences 
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Let 
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then an inconsistency of inequalities (22) and (23) proves the theorem.

Let 
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A sequence (a) is termed as limited ones, if (С>0 
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Example 5. Let the sequence (s) determine for all 
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is fair. The last conditions are equivalent to corresponding limiting equalities at relevant integer numbers 
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Every one from the equalities (25) contradicts to transcendence of number π [8, p. 5]. (
The example 5 let to speak, that the following below judgment is fair:

Statement 3. Not any limited sequence contains a convergent subsequence. 
Definition 7. The number sequence (a) is termed total divergent ones, if a condition 
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 is carried out for any two infinite subsequences 
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Example 6. The trivial total divergent sequence is sequence determined for all 
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 by the formula: 
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3.4. Infinitely large numbers
We select a class of «infinitely large sequences at the limit» from a set of unlimited sequences by means of following below definition.
Definition(8. We name a limiting value of each unlimited CS (a) as infinitely large number (ILN) determined by this CS (a) and the unlimited CS is termed as infinitely large CS (ILCS). And we shall write 
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We shall designate the set of all ILN by symbol  and we shall attribute the set 
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The class of unlimited sequences divides concerning convergence-divergence on six subclasses (compare with [6, S. 64, 65]): 

1) The sequences convergent to appropriate concrete infinitely large number 
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,

2) The sequences divergent to plus-infinity,

3) The sequences divergent to minus-infinity,

4) The divergent sequences having at least one subsequence, convergent to finite number, 

5) The divergent sequences having at least one subsequence, convergent to some ILN, 

6) The total divergent sequences. 

The divergent sequences of the second and third kind can be classified by the method similar ones, specified in [9, p. 26-28].

Below we consider some properties of ILCS.

Statement 4. The sequence (
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Statement 4 supposes the following generalization.

Theorem 9. Unlimited differentiated in 
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(Transition to limit in Lagrange’s formula for function f written below: 
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takes up the proof of Theorem 9. (
Theorem 9 helps to prove the following below

Statement 5. The sequence (
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Statement 5 allows to formulate following below
Statement 6. There is not neither greatest, nor least number in the set of infinitely large ones. 

Example 7. Let for 
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Statement 7. 
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Statement 8. 
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Statement 10. 
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Statement 11. If 
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The ILN have been termed in the non-standard analysis (see [2, p. 21 and further]) as non-standard, impracticable, actually infinite large or inaccessible numbers. 
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