
Solving real school timetabling problems with meta-heuristics

F. MELÍCIO1,3, P. CALDEIRA2,3, A. ROSA3

1 ISEL, R. Conselheiro Emídio Navarro, 1900 Lisboa, Portugal
2 EST-IPS, R. Vale de Chaves-Estefanilha, 2810 Setúbal, Portugal

3 LaSEEB-ISR-IST Av. Rovisco Pais, 1, TN 6.21, 1049-100 Lisboa, Portugal

Abstract: - School timetabling is a classical combinatorial optimization problem, which consists in assigning
lessons to time slots, satisfying a set of constraints of various kinds. Due mostly to the constraints this problem
falls in the category of NP-Complete problems. In this paper we try to show an implementation of a decision
support system that solves real timetabling problems from various schools in Portugal. This implementation is
based on the Simulated Annealing meta-heuristic. The constraints we use were obtained after inquiries made
to several schools in Portugal. We show the results on three schools from different levels of teaching.

Key-Words: - Timetabling, simulated annealing, meta-heuristics, combinatorial optimization problems, local
search methods.

1 Introduction
Educational timetabling problems are known to be
difficult real world problems that have been studied
in some detail over the years. This problem is NP-
Complete mainly due to the associated constraints
[7], [12]. In order to implement a system that would
fit the majority of the Portuguese education system,
we define a set of general constraints. In this paper
we are going to explain a decision support system
that it is used by more than 100 schools with
significant success in their timetabling elaboration.

Meta-heuristics algorithms, like Simulated
Annealing, Tabu Search, etc., have been applied
with significant success to different combinatorial
optimization problems.

In this paper we explain one specific
implementation of a Simulated Annealing algorithm
adapted to the timetabling problem.

2 Problem Formulation
The timetabling problem [9] consists of assigning a
set of lessons to time slots within a time period
(typically a week), satisfying a set of constraints of
various kinds. It is widely accepted that the
timetabling problem can be divided in three main
categories [4], [21]:
1. Class/Teacher timetabling. The weekly

scheduling of all classes, avoiding teachers
meeting two classes in the same time and vice-
versa.

2. Course timetabling. The weekly scheduling for
all lessons of a set of courses, minimizing the

overlaps of lessons of courses having common
students.

3. Examination timetabling. The scheduling for
the exams of a set of courses, avoiding
overlapping exams of courses having common
students, and spreading the exams for the
students as much as possible.

In this work we are mainly concerned with the
classification class/teacher, because in Portugal
almost every school even in universities students are
firstly joined together in groups with common
subjects. Nevertheless, we tried to formulate the
timetabling problem in a general way in order to
take into account all the requirements of every
school in Portugal. Thus, we have the following data
sets:
• A set { }1, , mT t t= " of teachers.

• A set { }1, , nC c c= " of classes. A class is a
group of students that attend the same subjects.

• A set { }1, , sS s s= " of subjects.

• A set { }1, , rR r r= " of rooms. Rooms are first
grouped in subsets of the same kind, i.e., with
the same resources. Each subject has associated
at least one type of room.

• A set { }1, , pH h h= … of time slots. The

number of time slots is equal to the number of
days, times the number of daily periods. Each
period has the same duration and there can be
two types of periods. Periods with or without
teaching activities.

• A set 1{ , , }lA a a= … of lessons. A lesson is the

teaching unit. It is characterized by the
following tuple * * *, ,T C S . Where *T is a

subset of the teachers set, *C is a subset of the
classes set and *S is a subset of the subjects set.
Each lesson has a duration expressed in time
slots.

There are two types of lessons:

1. Simple lesson. Where * 1C = and * 1S = .

2. Compound lesson. Where * 1C ≥ and/or
* 1S ≥ .

In general, a compound lesson means that we
have several classes joined together to attend a
certain subject or it means that a class can be
subdivided into subgroups to attend special subjects,
like laboratories, etc.

It is associated with each subject the kind of
room it must have, i.e., the resources that there must
exist in the room for a lesson of that subject should
happen.

2.1 Constraints
As it was stated in the beginning of this section, a
set of constraints must be satisfied in order to have a
valid timetable. The number and the kind of
constraints vary from school to school, even within
the same school system. Nevertheless there are only
two categories of constraints:
• Hard constraints are constraints that physically

cannot be violated. There are also other
constraints in spite of not being any physical
constraint they fall into this category because of
several reasons, for instance, because they are
governmental ruled.

• Soft constraints are in general preferences and
they do not represent a physical conflict.

By hard constraints, we mean the following:
• A teacher cannot teach different lessons at the

same time.
• A class cannot have different lessons at the

same time.
• Different classes cannot be held in the same

room at the same time.
• Class unavailabilities.
• Teacher unavailabilities.
• Etc.
As soft constraints are mainly preferences they vary
a lot among schools some examples are:
• Teachers may prefer specific time slots.
• Teachers may prefer specific rooms.

• Certain kind of subjects should not be in
contiguous time slots.

For a complete description of the set of constraints
we have used, see Table 1.

Constraint Description

0C Number of time slots of lessons that aren’t yet scheduled

2,1C Number of time slots of overlapped lessons
 (1-classes; 2-teachers)

4,3C Number of time slots exceeding the maximum allowed
per day (3-classes; 4-teachers)

6,5C Number of time slots exceeding the maximum
consecutive time slots allowed (5-classes; 6-teachers).

9,8,7C Number of preferable time slots filled
(7-classes; 8-teachers; 9-subjects).

11,10C Number of idle time slots (10-classes; 11-teachers)

12C Number of time slots of lessons without a room assigned.

15,14,13C Number of time slots that are forbidden and are filled
with lessons (13-classes; 14-teachers; 15-subjects)

16C Total number of teaching days for teachers

17C Number of repetitions of lessons of the same subject in
the same class per day

18C Number of time slots that doesn’t satisfy the predefined
space between lessons.

Table 1 Constraint set.

We also have introduced the concept of flexible
constraint. Which means that a user may choose to
which category each constraint belongs.

Therefore the main objective of any Decision
Support System for this kind of problem should be
solving the hard constraints and minimizing the soft
constraints. Even if it is impossible to find any
feasible solution, it is better to give an approximate
solution than none at all.

3 Combinatorial Optimization

Problem (COP)
Any timetabling problem belongs to the class of
combinatorial optimization problem. In general a
combinatorial optimization problem has a discrete
finite search space S, and a function f, that measures
the quality of each solution in S.

:f S →\ (1)

The problem is to find

)(minarg sfs
Ss∈

∗ = (2)

Where s is a vector of decision variables and f is
the cost function. The vector *s is a global
optimum. The neighbourhood ()N s of a solution s
in S is defined as the set of solutions which can be

obtained from s by a move. Each solution
' ()s N s∈ is called a neighbour of s .

For each s the set ()N s doesn’t need to be
listed explicitly, in general it is implicitly defined by
referring to a set of possible moves. Moves are
usually defined as local modifications of some part
of s . The “locality” of moves (under a
correspondingly appropriate definition of distance
between solutions) is one of the key ingredients of
local search. Nevertheless, from the definition above
there is no implication that there exist “closeness” in
some sense among neighbours, and actually
complex neighbourhood definitions can be used as
well. This operator can be quite complicated it might
even be a meta-heuristic.

3.1 Search Space
When working with discrete domains it is possible
to define the search space in terms of the possible
values that each variable can have [13]. For this
problem we have the set { }1, , pH h h= … as the set

of possible values that each lesson can have.

Definition Search space: The complete set of
solutions that belongs to the search space is defined
by 1 lS H H= × ×… . If all iH are equal then

lS H= and
l lS H p= = .

This value is an extreme case. For instance, there
are 1010 possible solutions if there are 10 lessons
and 10 time slots. Even if we restrict each lesson to
a different time slot there will be 10! 3,628,800=
possible assignments. As it can easily be verified the
search space for this kind of problem is very large.
However not all solutions are feasible, i.e., a feasible
solution has to have its lessons all scheduled and
satisfying a certain number of constraints (hard
constraints). A possible search space for this kind of
problem could be similar to the one shown in Figure
1.

For certain problems it is very difficult to know
if there exists at least one feasible solution before
starting any search algorithm. Thus any search
algorithm should be able to walk across the search
space even inside infeasible regions. One of the
most common ways to do that is to penalize
constraints that are not satisfied and mixing them
together in a cost function.

Feasible solutions

Search space for all solutions

Figure 1 Search space of all solutions for

the timetabling problem.

In our problem we did more or less the same
thing with the main difference that we didn’t relax
the hard constraints (user defined). Instead, we will
allow partial solutions to belong to the search space.
We have a partial solution when there is at least one
lesson that is not scheduled. Mathematically this can
be represented by augmenting each set iH with one
more time slot, 0h . From a technical point of view,
we will assume that the search space (with partial
solutions) satisfies the following properties:
1. The empty solution is in the search space

S∅∈

2. There is a path from any partial solution
leading to other partial solution along which
the lessons are scheduled one after the other.

3. All complete solutions in the search space
satisfy the hard constraints.

In an attempt to limit the search space it is possible
to define at the beginning regions of the search
space that are forbidden, black holes. This can be
accomplished by defining a bipartite graph

1 2(, ,)G V V E= , where every lesson belongs to 1V
and every time slot belongs to the other vertex set

2V of this bipartite graph. The edge (,)i j E∈
means that lesson i can be given in time slot j .
This graph only takes into account the static
constraints, i.e., class unavailabilities, teacher
unavailabilities, subject unavailabilities, etc. It is
then possible to define the set iH for each lesson.
The search space thus formed could be like the one
shown in Figure 2.

“B
la

ck
 H

ol
es

”
(f

or
bi

dd
en

 so
lu

tio
ns

)

Feasible solutions

Search space for all solutions

Figure 2 Search space with forbidden

regions.

Nevertheless, the number of possible solutions is
still a huge value, so any attempt to check them all
would be impossible for most real problems
instances.

3.2 Local search methods
Any local search algorithm starts off with an initial
solution and then continually tries to find better
solutions by searching the neighbourhood of the
current solution. A local process can be viewed as a
walk in a graph (,)G S E= where the vertex set is
the set of solutions S and there is an edge (, ')s s in
E if and only if s and 's are neighbours ' ()s N s∈ .
The efficiency of any local search method depends
on the modelling [14]. A fine tuning of parameters
will never balance a bad definition of the solution
set, of the neighbourhood or the cost function. In
general the following rules apply for any local
search methods:
1. It should be easy to generate solutions in S .
2. For each solution Ss∈ , there should be a path

linking to an optimal solution.
3. The solutions in the neighbourhood of s

should be in some sense close to s (strongly
correlated to s).

It is important to define neighbourhoods in which it
is possible to determine the best solution within a
reasonable small amount of time.

3.2.1 Double move
In our system we implemented this kind of move,
also called pairwise interchange. It is identical to
some other implementations of a neighbourhood
operator [8].

Figure 3 Double move adapted to the

timetabling problem.

The size of this neighborhood is given by,

(1)()
2

l lN s −
= (3)

Where l is the number of lessons. Usually the
number of time slots is much smaller than the
number of lessons.

Nevertheless for real problems the size of this
neighbourhood is quite large, for instance, if there
are 1000 lessons, there will be 499500 neighbours
for each solution. However it is known that only a
fragment of this number of neighbours can actually
improve the quality of a solution. Normally, the
exchange of two lessons of two different classes
deteriorates the quality of the solution.

So, if we limit the exchanges of lessons
belonging to the same class the number of
neighbours would be,

()
1

1
()

2

C
c c

c
c

l l
N s

=

−
=∑ (4)

Where cl is the number of lessons belonging to
class c. In the above example, if we have 50 classes
and each class have 20 lessons, which makes a total
of 1000 lessons (same number as above). The size of
this reduced neighbourhood would be of 9500
neighbours.

Without considering compound lessons the total
number of lessons is given by,

1

C

c
c

l l
=

= ∑ (5)

And if each class has the same number of lessons
expression (5) will become cl C l= × . The ratio
between these two neighbourhoods will be equal to,

()
()

1() 11
() 1

c

c c c

C lN s
C C

N s l l
⋅ − ⎛ ⎞

= ≈ + ≈⎜ ⎟− ⎝ ⎠
 (6)

Where ()N s is the neighbourhood size associated

with the double move and ()cN s is the

1. Select randomly two lessons ji ≠

2. Exchange the time slots of each lesson

3. If any of the two lessons isn’t scheduled choose
the “best” time slot for the other

neighbourhood size related with the double move
intraclasses. As it can be seen by equation (6) the
ratio between the sizes of these two neighbourhoods
is approximately proportional to the number of
classes. Hence, for bigger problems better results
one would expect to obtain with this reduced
neighbourhood. The neighbourhood has a major

However this move has a major drawback. As it
is explained in [2], any kind of move should attempt
to visit all possible time slots and in this case this
would never happen after an initial solution. So in
our implementation we made a the following change
from the described technique,

Figure 4 Double move with heuristic
improvement

4 Cost Function
The cost function plays a key role in any
optimization problem. It is through its calculation
that one can measure the quality of any solution.
Hence its correct definition is essential for the
behaviour of any search algorithm. Our cost
function is given by the following expression:

() k k
k

f s w C=∑ (7)

Where s S∈ is a solution in the search space (can
be a partial solution) and the values kC represent
each of the objectives that we are trying to optimize,
weighted by a factor kw . This weight translates the
relative importance of the related constraint. The
objective of any search algorithm will be to find an
optimum solution s∗ that minimize ()f s .

In our problem there is one objective that is
clearly much more important than the rest which is
the scheduling of all lessons. As we have stated
before partial solutions make part of the search
space. In order to do that and following the same
idea expressed in [6] it is defined a constraint 0C
that represents the sum in time slots of all
unscheduled lessons. The weight that affects this

constraint is the only one that the user can’t modify
and it is computed as follows:

0
1

K

k k
k

w p w
=

= ∑ (8)

Where K is the number of constraints defined to the
specific problem and kp is the maximum value that
one can violate constraint k if a lesson is scheduled
in a given time slot. For the move operator defined
in the last section the cost function is computed
incrementally, i.e., it is only computed the change in
cost between the new solution and the old one.

5 Implementation
The implemented system is based on a modular
implementation [19].

Figure 5 Block diagram of the implemented

system.

It was developed in C++ using an object oriented
technique. It runs on Microsoft Windows ® and the
database is implemented in Microsoft Access®.

Figure 6 Graphical user interface.

The Automatic scheduler contains two different
and complementary algorithms.

Graphical User
Interface

Database

Automatic
scheduler

1 Select randomly two lessons ji ≠ from the
same class

2 id ← day of lesson i

3 jd ←day of lesson j

4 Unschedule lessons i and j

5 Find the best time slot in jd for lesson i

6 Find the best time slot in id for lesson j

1. An iterative algorithm based on Simulated
Annealing

2. A heuristic constructive algorithm.
The iterative algorithm is based on the original

Simulated Annealing algorithm [18].
Simulated Annealing has been applied with

significant success to different combinatorial
optimization problems. One of the reasons why SA
has been widely used is mostly because it is an
algorithm very easy to implement and it doesn’t
depend on the problem structure or any solution
strategy. The basic algorithm is described in Figure
7.

Generate initial solution i
Compute cost(i)
Compute initial temperature t0
t= t0
while stop criteria is not satisfied
{

while equilibrium is not reached
{

Generate new solution j
∆c = cost(i)-cost(j)
if))random()(||)0((/ tcec ∆−<≤∆
{

i = j
}

}
Update temperature t

}

Figure 7 Simulated Annealing Algorithm

The design of a good annealing algorithm is
nontrivial [10], it generally comprises four parts:
1. Search space.
2. Neighbourhood set.
3. Cost function.
4. Annealing schedule.

We have explained the first three items in the
previous sections we are going now to explain with
a little more detail the fourth item.

It is widely accepted that this algorithm is very
time consuming, i.e., it needs a great amount of time
to get to a near optimum solution.

Therefore our efforts were made in order to
speed up the algorithm without loss of quality.

As it can be seen in Figure 7 the algorithm starts
with a parameter called temperature with a high
value, which is then lowered during the annealing
process generally by the following expression [3],
[11], [22],

1k kt tα −= ⋅ (9)

Where α is designated the cooling factor.
Typically, the value of α is chosen in the range
0.90 to 0.99.

In the beginning of the algorithm’s execution, as
the temperature is high all new possible solutions
have a big probability of being accepted
(/c tp e−∆>), and we can travel around the search
space without getting much information from it. It
seems in this phase much like a random algorithm.

In order to avoid the time spent in this initial
stage, we choose to start with a lower temperature
but in a good region of the search space.

The problem is then how to choose the
temperature value to start with the annealing
algorithm.

We implement an adaptive technique [17] which
depends on the quality of the starting solution.

2

()
()kt i

E f i
σ

γ σ
∞

∞ ∞ ∞

≈
− −

 (10)

Where E∞ and σ∞ are respectively the expected
cost and standard deviation of cost over the entire
search space, ()f i the cost of the initial heuristic
solution and kγ represents the number of standard
deviation units the expected cost is greater than the
minimum cost at temperature kt ,

min()k k k kE f i γ σ= + (11)

Assuming a normal distribution of the solutions
for almost all temperatures [1], we expect the offset,

kγ , to remain approximately constant over all
temperatures except near the temperature
corresponding to the cost function optimal value
where it converges rapidly towards zero.

Equation (10) tell us that the starting temperature
for the annealing phase depends on how good the
initial solution is, regarding the cost function.

To get an initial solution we developed a
heuristic algorithm based on the following ideas,
1. Sort all lessons unscheduled based on its

urgency.
2. Schedule each unscheduled lesson in its best

free time slot.

This notion of urgency is similar to the one used
by several authors [15], [24], is given by,

1()
i

u i
H

= (12)

Where ()u i is the urgency coefficient for lesson
i and iH is the number of free time slots for
lesson i taking into account all the hard constraints
(section 4). 0 () 1u i< ≤ for all lessons. When

0iH = means that lesson i is impossible to
schedule and it is withdrawn from the lessons set.

The results obtained from this hybrid algorithm
were compared with other techniques and were very
good [20].

6 RESULTS
This system is now used in several schools from the
Portuguese education system. We show the results
in three typical schools. The data is shown in Table
2.

Data
ISEL

(DEEA)
C1

EST

C2

Escola Sec.
Fernando Namora

C3

Classes 21 124 54

Teachers 79 208 112

Subjects 250 1345 492

Rooms 21 90 50

#Lessons
(#Time slots)

359
(1135)

1908
(3175)

1357
(1660)

Table 2 Three Portuguese schools.

Every test was made with real data, this means
that, every constraint and the correspondingly
weight was defined by each school.

We used the real timetable for comparison and
the results are summarized in Table 3.

 C1 C2 C3

Real Timetable 479,1 2138,2 481,6

Best result from this algorithm 141,0 1998,1 277,0

Gain in percentage 70 % 7 % 57 %

Table 3 Results from the 3 schools.

The difference in case C2 is due to the fact that
the real timetable was made with a previous version
of this system while the other two were hand made.

It is also important to mention that the tests were
made in a Pentium IV, 1,6MHz and could last from
20 minutes for C1 until 2 hours for C2.

Nevertheless, the gain obtained in using such a
system is much greater than just the one expressed
in Table 3. Before using this system each school
needed several weeks and a group of people to do it.
Now, after the introduction of such a system real

timetables are made in just a day or two with one or
two persons attached to it.

7 Conclusion
As it is well recognized people in general are not
interested in solving their optimization problems to
optimality or even close to optimality. They are
more often interested in “good enough – soon
enough – cheap enough” solutions to their problems
[5].

We also think that good choices of specific parts
of each problem are fundamental for the success of
any search algorithm. As [23] showed there are no
algorithms either deterministic or stochastic
behaving the same on the total set of search and
optimization problems defined on a finite and
discrete domain.

In this paper we illustrate the implementation of
customized simulated annealing algorithm for the
timetabling problem. It is worthwhile to say that by
now more than 100 schools from the Portuguese
education system uses this system.

Our main conclusion from this work is that we
can solve a very difficult scheduling problem with
simulated annealing and be time competitive, but we
must be very careful in the way we choose to
implement specific parts of the problem.

References:
[1] Aarts, E. H. L., Van Laarhoven, P. J. M., Korst,

J. H. M., “Simulated annealing”, Local Search
in Combinatorial Optmization, E. H. L. Aarts
and J. K. Lenstra (eds.), John Wiley & Sons,
1997.

[2] Abramson, D. “Constructing school timetables
using simulated annealing: sequential and
parallel algorithms”. Management Science, v.
37, pp. 98-113, 1991.

[3] Abramson, D., Dang, H., Krishnamoorthy, M.,
“An Emprirical Study of Simulated Annealing
Cooling Schedules”, Griffith Univ. report,
Nathan, Qld, Aus. 1994.

[4] Bardadym, V.A. “Computer-Aided School and
University Timetabling: The New Wave”. In
Burke, E.K., Ross, P. (eds), Practice and
Theory of Automated Timetabling, v. 1153,
Lecture Notes in Computer Science, pp. 22-45.
Springer-Verlag, Berlin, 1996.

[5] Burke, E., Hart, E., Kendall, G., Newall, J.,
Ross, P., Schulenburg, S., “Hyper-Heuristics:
An Emerging Direction in Modern Search
Technology”. In Handbook of Meta-Heuristics,
Glover, F., Kochenberger, G., (eds.), pp. 457-
474, Kluwer, 2003.

[6] Catoni, O., “Solving Scheduling Problems by
Simulated Annealing”, SIAM Journal of
Control Optimization, v. 36, No. 5, pp. 1539-
1575, 1998.

[7] Cooper, T.B., Kingston, J.H. “The Complexity
of Timetable Construction Problems”. In Burke,
E.K., Ross, P. (eds), Practice and Theory of
Automated Timetabling, v. 1153, Lecture Notes
in Computer Science, pp. 283-295. Springer-
Verlag, Berlin, 1996.

[8] Costa, D. “A tabu search algorithm for
computing an operational timetable”. European
Journal of Operational Research Society, v. 76,
pp. 98-110, 1994.

[9] de Werra, D. “An introduction to timetabling”.
European Journal of Operational Research
Society, v. 19, pp. 151-162, 1985.

[10] Dowsland, K.A., “Off-the-peg or made-to
measure? Timetabling and Scheduling with SA
and TS”. In Proceedings of the Second
International Conference on the Practice and
Theory of Automated Timetabling, pp. 7-26,
1997

[11] Elmohamed, S., Coddington, P., Fox, G. “A
Comparison of Annealing Techniques for
Academic Course Scheduling”. Proc. 2nd Intl.
Conf. On the Pratice and Theory of Automated
Timetabling, pp. 146-166, 1997.

[12] Even, S., Itai, A., Shamir, A. “On the
complexity of timetabling and multicommodity
flow problems”. SIAM Journal of Computation,
v. 5, pp. 691-703, 1976.

[13] Hemert, J., Back, T., “Measuring the Searched
Space to Guide Efficiency: The Principle and
Evidence on Constraint Satisfaction”,
Proceedings of the Seventh International
Conference on PPSN, Lecture Notes in
Computer Science 2439, Springer-Verlag,
pp.23-43, 2002.

[14] Hertz, A., Widmer, M., “Guidelines for the use
of meta-heuristics in combinatorial
optimization”, European Journal of
Operational, vol. 151, pp. 247-252, 2003.

[15] Hilbert H., “High School Timetabling in
Germany-Can it be done with MIP?”. In
Proceedings of the Second International
Conference on the Practice and Theory of
Automated Timetabling, pp. 325-327, 1997.

[16] Huang, M. D., Romeo, F., Sangiovanni-
Vincetelli, A., “An Efficient General Cooling
Schedule for Simulated-Annealing”, Proc.
IEEE-ICCAD, pp. 381-384, 1986.

[17] Varanelli, J. M., Cohoon, J. P., “A Fast Method
for Generalized Starting Temperature
Determination in Monotonically Cooling Two-
Stage Simulated Annealing Systems”, Report
CS-9508, Dep. Computer Science, University of
Virginia, 1995.

[18] Kirkpatrick, S., Gellati, C. D. , Vecchi, M. ,
“Optimization by Simulated Annealing”,
Science, vol. 220, pp. 671-680, 1983.

[19] Melício, F., “THOR: Uma ferramenta para
elaboração de horários duma escola”, Proc. 3º
Meeting OE, pp. 77-82, Porto, Jun 1997.

[20] Melício, F., Caldeira, P., Rosa, A., “Solving
Timetabling Problem with Simulated
Annealing”. Filipe, J. (ed.), Kluwer Academic
Press, pp.171-178, 2000.

[21] Schaefer, A. “A survey of automated
timetabling”. Artificial Intelligence Review, v.
13, pp. 87-127, 1999.

[22] Thompson, J., Dowsland, K. A., “General
Cooling Schedules for a Simulated Annealing
Based Timetabling System”, Proc. 1st Intl.
Conf. on the Pratice and Theory of Automated
Timetabling, pp. 345-363, 1995.

[23] Wolpert, D.H., Macready, W.G., “No Free
Lunch Theorems for Optimization”, IEEE
Transactions on Evolutionary Computation,
vol. 1, no. 1, pp. 67-82, 1997.

[24] Wright, M. “School Timetabling Using
Heuristic Search”. Journal of the Operational
Research Society, v. 47, pp. 347-357, 1996.

