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Abstract: - School timetabling is a classical combinatorial optimization problem, which consists in assigning 
lessons to time slots, satisfying a set of constraints of various kinds. Due mostly to the constraints this problem 
falls in the category of NP-Complete problems. In this paper we try to show an implementation of a decision 
support system that solves real timetabling problems from various schools in Portugal. This implementation is 
based on the Simulated Annealing meta-heuristic. The constraints we use were obtained after inquiries made 
to several schools in Portugal. We show the results on three schools from different levels of teaching. 
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1 Introduction 
Educational timetabling problems are known to be 
difficult real world problems that have been studied 
in some detail over the years. This problem is NP-
Complete mainly due to the associated constraints 
[7], [12]. In order to implement a system that would 
fit the majority of the Portuguese education system, 
we define a set of general constraints. In this paper 
we are going to explain a decision support system 
that it is used by more than 100 schools with 
significant success in their timetabling elaboration. 

Meta-heuristics algorithms, like Simulated 
Annealing, Tabu Search, etc., have been applied 
with significant success to different combinatorial 
optimization problems. 

In this paper we explain one specific 
implementation of a Simulated Annealing algorithm 
adapted to the timetabling problem. 
 
 
2 Problem Formulation 
The timetabling problem [9] consists of assigning a 
set of lessons to time slots within a time period 
(typically a week), satisfying a set of constraints of 
various kinds. It is widely accepted that the 
timetabling problem can be divided in three main 
categories [4], [21]: 
1. Class/Teacher timetabling. The weekly 

scheduling of all classes, avoiding teachers 
meeting two classes in the same time and vice-
versa. 

2. Course timetabling. The weekly scheduling for 
all lessons of a set of courses, minimizing the 

overlaps of lessons of courses having common 
students. 

3. Examination timetabling. The scheduling for 
the exams of a set of courses, avoiding 
overlapping exams of courses having common 
students, and spreading the exams for the 
students as much as possible. 

In this work we are mainly concerned with the 
classification class/teacher, because in Portugal 
almost every school even in universities students are 
firstly joined together in groups with common 
subjects. Nevertheless, we tried to formulate the 
timetabling problem in a general way in order to 
take into account all the requirements of every 
school in Portugal. Thus, we have the following data 
sets: 
• A set { }1, , mT t t= "  of teachers. 

• A set { }1, , nC c c= "  of classes. A class is a 
group of students that attend the same subjects. 

• A set { }1, , sS s s= "  of subjects. 

• A set { }1, , rR r r= "  of rooms. Rooms are first 
grouped in subsets of the same kind, i.e., with 
the same resources. Each subject has associated 
at least one type of room. 

• A set { }1, , pH h h= …  of time slots. The 

number of time slots is equal to the number of 
days, times the number of daily periods. Each 
period has the same duration and there can be 
two types of periods. Periods with or without 
teaching activities. 

• A set 1{ , , }lA a a= …  of lessons. A lesson is the 



teaching unit. It is characterized by the 
following tuple * * *, ,T C S . Where *T  is a 

subset of the teachers set, *C  is a subset of the 
classes set and *S  is a subset of the subjects set. 
Each lesson has a duration expressed in time 
slots. 

There are two types of lessons: 

1. Simple lesson. Where * 1C =  and * 1S = . 

2. Compound lesson. Where * 1C ≥  and/or 
* 1S ≥ . 

In general, a compound lesson means that we 
have several classes joined together to attend a 
certain subject or it means that a class can be 
subdivided into subgroups to attend special subjects, 
like laboratories, etc. 

It is associated with each subject the kind of 
room it must have, i.e., the resources that there must 
exist in the room for a lesson of that subject should 
happen. 

 
2.1 Constraints 
As it was stated in the beginning of this section, a 
set of constraints must be satisfied in order to have a 
valid timetable. The number and the kind of 
constraints vary from school to school, even within 
the same school system. Nevertheless there are only 
two categories of constraints: 
• Hard constraints are constraints that physically 

cannot be violated. There are also other 
constraints in spite of not being any physical 
constraint they fall into this category because of 
several reasons, for instance, because they are 
governmental ruled. 

• Soft constraints are in general preferences and 
they do not represent a physical conflict. 

By hard constraints, we mean the following: 
• A teacher cannot teach different lessons at the 

same time. 
• A class cannot have different lessons at the 

same time. 
• Different classes cannot be held in the same 

room at the same time. 
• Class unavailabilities. 
• Teacher unavailabilities. 
• Etc. 
As soft constraints are mainly preferences they vary 
a lot among schools some examples are: 
• Teachers may prefer specific time slots. 
• Teachers may prefer specific rooms. 

• Certain kind of subjects should not be in 
contiguous time slots. 

For a complete description of the set of constraints 
we have used, see Table 1.  
 
Constraint Description 

0C  Number of time slots of lessons that aren’t yet scheduled 

2,1C  Number of time slots of overlapped lessons  
 (1-classes; 2-teachers) 

4,3C  Number of time slots exceeding the maximum allowed 
per day (3-classes; 4-teachers) 

6,5C  Number of time slots exceeding the maximum 
consecutive time slots allowed (5-classes; 6-teachers). 

9,8,7C  Number of preferable time slots filled   
(7-classes; 8-teachers; 9-subjects). 

11,10C  Number of idle time slots (10-classes; 11-teachers) 

12C  Number of time slots of lessons without a room assigned. 

15,14,13C Number of time slots that are forbidden and are filled 
with lessons (13-classes; 14-teachers; 15-subjects) 

16C  Total number of teaching days for teachers 

17C  Number of repetitions of lessons of the same subject in 
the same class per day 

18C  Number of time slots that doesn’t satisfy the predefined 
space between lessons. 

Table 1 Constraint set. 

We also have introduced the concept of flexible 
constraint. Which means that a user may choose to 
which category each constraint belongs. 

Therefore the main objective of any Decision 
Support System for this kind of problem should be 
solving the hard constraints and minimizing the soft 
constraints. Even if it is impossible to find any 
feasible solution, it is better to give an approximate 
solution than none at all. 
 
 
3 Combinatorial Optimization 

Problem (COP) 
Any timetabling problem belongs to the class of 
combinatorial optimization problem. In general a 
combinatorial optimization problem has a discrete 
finite search space S, and a function f, that measures 
the quality of each solution in S. 

:f S →\  (1) 

The problem is to find 

)(minarg sfs
Ss∈

∗ =  (2) 

Where s  is a vector of decision variables and f  is 
the cost function. The vector *s  is a global 
optimum. The neighbourhood ( )N s  of a solution s  
in S  is defined as the set of solutions which can be 



obtained from s  by a move. Each solution 
' ( )s N s∈  is called a neighbour of s . 

For each s  the set ( )N s  doesn’t need to be 
listed explicitly, in general it is implicitly defined by 
referring to a set of possible moves. Moves are 
usually defined as local modifications of some part 
of s . The “locality” of moves (under a 
correspondingly appropriate definition of distance 
between solutions) is one of the key ingredients of 
local search. Nevertheless, from the definition above 
there is no implication that there exist “closeness” in 
some sense among neighbours, and actually 
complex neighbourhood definitions can be used as 
well. This operator can be quite complicated it might 
even be a meta-heuristic.  

 
 

3.1 Search Space 
When working with discrete domains it is possible 
to define the search space in terms of the possible 
values that each variable can have [13]. For this 
problem we have the set { }1, , pH h h= …  as the set 

of possible values that each lesson can have. 

Definition Search space: The complete set of 
solutions that belongs to the search space is defined 
by 1 lS H H= × ×… . If all iH  are equal then 

lS H=  and 
l lS H p= = . 

This value is an extreme case. For instance, there 
are 1010  possible solutions if there are 10 lessons 
and 10 time slots. Even if we restrict each lesson to 
a different time slot there will be 10! 3,628,800=  
possible assignments. As it can easily be verified the 
search space for this kind of problem is very large. 
However not all solutions are feasible, i.e., a feasible 
solution has to have its lessons all scheduled and 
satisfying a certain number of constraints (hard 
constraints). A possible search space for this kind of 
problem could be similar to the one shown in Figure 
1. 

For certain problems it is very difficult to know 
if there exists at least one feasible solution before 
starting any search algorithm. Thus any search 
algorithm should be able to walk across the search 
space even inside infeasible regions. One of the 
most common ways to do that is to penalize 
constraints that are not satisfied and mixing them 
together in a cost function. 

 
Feasible solutions 

Search space for all solutions 

 
Figure 1 Search space of all solutions for 

the timetabling problem. 

In our problem we did more or less the same 
thing with the main difference that we didn’t relax 
the hard constraints (user defined). Instead, we will 
allow partial solutions to belong to the search space. 
We have a partial solution when there is at least one 
lesson that is not scheduled. Mathematically this can 
be represented by augmenting each set iH  with one 
more time slot, 0h . From a technical point of view, 
we will assume that the search space (with partial 
solutions) satisfies the following properties: 
1. The empty solution is in the search space 

S∅∈  

2. There is a path from any partial solution 
leading to other partial solution along which 
the lessons are scheduled one after the other. 

3. All complete solutions in the search space 
satisfy the hard constraints. 

In an attempt to limit the search space it is possible 
to define at the beginning regions of the search 
space that are forbidden, black holes. This can be 
accomplished by defining a bipartite graph 

1 2( , , )G V V E= , where every lesson belongs to 1V  
and every time slot belongs to the other vertex set 

2V  of this bipartite graph. The edge ( , )i j E∈  
means that lesson i  can be given in time slot j . 
This graph only takes into account the static 
constraints, i.e., class unavailabilities, teacher 
unavailabilities, subject unavailabilities, etc. It is 
then possible to define the set iH  for each lesson. 
The search space thus formed could be like the one 
shown in Figure 2. 
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Feasible solutions 

Search space for all solutions 

 
Figure 2 Search space with forbidden 

regions.  

Nevertheless, the number of possible solutions is 
still a huge value, so any attempt to check them all 
would be impossible for most real problems 
instances. 
 
 
3.2 Local search methods 
Any local search algorithm starts off with an initial 
solution and then continually tries to find better 
solutions by searching the neighbourhood of the 
current solution. A local process can be viewed as a 
walk in a graph ( , )G S E=  where the vertex set is 
the set of solutions S  and there is an edge ( , ')s s  in 
E if and only if s  and 's  are neighbours ' ( )s N s∈ . 
The efficiency of any local search method depends 
on the modelling [14]. A fine tuning of parameters 
will never balance a bad definition of the solution 
set, of the neighbourhood or the cost function. In 
general the following rules apply for any local 
search methods: 
1. It should be easy to generate solutions in S . 
2. For each solution Ss∈ , there should be a path 

linking to an optimal solution. 
3. The solutions in the neighbourhood of s  

should be in some sense close to s  (strongly 
correlated to s ). 

It is important to define neighbourhoods in which it 
is possible to determine the best solution within a 
reasonable small amount of time. 
 
3.2.1 Double move 
In our system we implemented this kind of move, 
also called pairwise interchange. It is identical to 
some other implementations of a neighbourhood 
operator [8]. 

 
Figure 3 Double move adapted to the 

timetabling problem. 

The size of this neighborhood is given by, 

( 1)( )
2

l lN s −
=  (3) 

Where l  is the number of lessons. Usually the 
number of time slots is much smaller than the 
number of lessons. 

Nevertheless for real problems the size of this 
neighbourhood is quite large, for instance, if there 
are 1000 lessons, there will be 499500 neighbours 
for each solution. However it is known that only a 
fragment of this number of neighbours can actually 
improve the quality of a solution. Normally, the 
exchange of two lessons of two different classes 
deteriorates the quality of the solution. 

So, if we limit the exchanges of lessons 
belonging to the same class the number of 
neighbours would be, 

( )
1

1
( )

2

C
c c

c
c

l l
N s

=

−
=∑  (4) 

Where cl  is the number of lessons belonging to 
class c. In the above example, if we have 50 classes 
and each class have 20 lessons, which makes a total 
of 1000 lessons (same number as above). The size of 
this reduced neighbourhood would be of 9500 
neighbours. 

Without considering compound lessons the total 
number of lessons is given by, 

1

C

c
c

l l
=

= ∑  (5) 

And if each class has the same number of lessons 
expression (5) will become cl C l= × . The ratio 
between these two neighbourhoods will be equal to, 

( )
( )

1( ) 11
( ) 1

c

c c c

C lN s
C C

N s l l
⋅ − ⎛ ⎞

= ≈ + ≈⎜ ⎟− ⎝ ⎠
 (6) 

Where ( )N s  is the neighbourhood size associated 

with the double move and ( )cN s  is the 

1. Select randomly two lessons ji ≠  

2. Exchange the time slots of each lesson 

3. If any of the two lessons isn’t scheduled choose 
the “best” time slot for the other 



neighbourhood size related with the double move 
intraclasses. As it can be seen by equation (6) the 
ratio between the sizes of these two neighbourhoods 
is approximately proportional to the number of 
classes. Hence, for bigger problems better results 
one would expect to obtain with this reduced 
neighbourhood. The neighbourhood has a major 

However this move has a major drawback. As it 
is explained in [2], any kind of move should attempt 
to visit all possible time slots and in this case this 
would never happen after an initial solution. So in 
our implementation we made a the following change 
from the described technique, 

Figure 4 Double move with heuristic 
improvement 

 
 
4 Cost Function 
The cost function plays a key role in any 
optimization problem. It is through its calculation 
that one can measure the quality of any solution. 
Hence its correct definition is essential for the 
behaviour of any search algorithm. Our cost 
function is given by the following expression: 

( ) k k
k

f s w C=∑  (7) 

Where s S∈  is a solution in the search space (can 
be a partial solution) and the values kC  represent 
each of the objectives that we are trying to optimize, 
weighted by a factor kw . This weight translates the 
relative importance of the related constraint. The 
objective of any search algorithm will be to find an 
optimum solution s∗  that minimize ( )f s . 

In our problem there is one objective that is 
clearly much more important than the rest which is 
the scheduling of all lessons. As we have stated 
before partial solutions make part of the search 
space. In order to do that and following the same 
idea expressed in [6] it is defined a constraint 0C  
that represents the sum in time slots of all 
unscheduled lessons. The weight that affects this 

constraint is the only one that the user can’t modify 
and it is computed as follows: 

0
1

K

k k
k

w p w
=

= ∑  (8) 

Where K  is the number of constraints defined to the 
specific problem and kp  is the maximum value that 
one can violate constraint k  if a lesson is scheduled 
in a given time slot. For the move operator defined 
in the last section the cost function is computed 
incrementally, i.e., it is only computed the change in 
cost between the new solution and the old one. 
 
 
5 Implementation 
The implemented system is based on a modular 
implementation [19]. 

 
Figure 5 Block diagram of the implemented 

system. 

It was developed in C++ using an object oriented 
technique. It runs on Microsoft Windows ® and the 
database is implemented in Microsoft Access®. 

 
Figure 6 Graphical user interface. 

The Automatic scheduler contains two different 
and complementary algorithms. 

Graphical User 
Interface 

Database

Automatic 
scheduler 

1 Select randomly two lessons ji ≠  from the 
same class 

2 id ← day of lesson i  

3 jd ←day of lesson j  

4 Unschedule lessons i  and j  

5 Find the best time slot in jd  for lesson i  

6 Find the best time slot in id  for lesson j  



1. An iterative algorithm based on Simulated 
Annealing  

2. A heuristic constructive algorithm. 
The iterative algorithm is based on the original 

Simulated Annealing algorithm [18]. 
Simulated Annealing has been applied with 

significant success to different combinatorial 
optimization problems. One of the reasons why SA 
has been widely used is mostly because it is an 
algorithm very easy to implement and it doesn’t 
depend on the problem structure or any solution 
strategy. The basic algorithm is described in Figure 
7. 

Generate initial solution i
Compute cost(i)
Compute initial temperature t0
t= t0
while stop criteria is not satisfied
{

while equilibrium is not reached
{

Generate new solution j
∆c = cost(i)-cost(j)
if ))random()(||)0(( / tcec ∆−<≤∆
{

i = j
}

}
Update temperature t

}
 

Figure 7 Simulated Annealing Algorithm 

The design of a good annealing algorithm is 
nontrivial [10], it generally comprises four parts: 
1. Search space. 
2. Neighbourhood set. 
3. Cost function. 
4. Annealing schedule. 

We have explained the first three items in the 
previous sections we are going now to explain with 
a little more detail the fourth item. 

It is widely accepted that this algorithm is very 
time consuming, i.e., it needs a great amount of time 
to get to a near optimum solution. 

Therefore our efforts were made in order to 
speed up the algorithm without loss of quality. 

As it can be seen in Figure 7 the algorithm starts 
with a parameter called temperature with a high 
value, which is then lowered during the annealing 
process generally by the following expression [3], 
[11], [22], 

1k kt tα −= ⋅  (9) 

Where α  is designated the cooling factor. 
Typically, the value of α  is chosen in the range 
0.90 to 0.99. 

In the beginning of the algorithm’s execution, as 
the temperature is high all new possible solutions 
have a big probability of being accepted 
( /c tp e−∆> ), and we can travel around the search 
space without getting much information from it. It 
seems in this phase much like a random algorithm. 

In order to avoid the time spent in this initial 
stage, we choose to start with a lower temperature 
but in a good region of the search space. 

The problem is then how to choose the 
temperature value to start with the annealing 
algorithm. 

We implement an adaptive technique [17] which 
depends on the quality of the starting solution. 

2

( )
( )kt i

E f i
σ

γ σ
∞

∞ ∞ ∞

≈
− −

 (10) 

Where E∞  and σ∞  are respectively the expected 
cost and standard deviation of cost over the entire 
search space, ( )f i  the cost of the initial heuristic 
solution and kγ  represents the number of standard 
deviation units the expected cost is greater than the 
minimum cost at temperature kt , 

min( )k k k kE f i γ σ= +  (11) 

Assuming a normal distribution of the solutions 
for almost all temperatures [1], we expect the offset, 

kγ , to remain approximately constant over all 
temperatures except near the temperature 
corresponding to the cost function optimal value 
where it converges rapidly towards zero. 

Equation (10) tell us that the starting temperature 
for the annealing phase depends on how good the 
initial solution is, regarding the cost function.  

To get an initial solution we developed a 
heuristic algorithm based on the following ideas, 
1. Sort all lessons unscheduled based on its 

urgency. 
2. Schedule each unscheduled lesson in its best 

free time slot. 

This notion of urgency is similar to the one used 
by several authors [15], [24], is given by, 

1( )
i

u i
H

=  (12) 



Where ( )u i  is the urgency coefficient for lesson 
i  and iH  is the number of free time slots for 
lesson i  taking into account all the hard constraints 
(section 4). 0 ( ) 1u i< ≤  for all lessons. When 

0iH =  means that lesson i  is impossible to 
schedule and it is withdrawn from the lessons set. 

The results obtained from this hybrid algorithm 
were compared with other techniques and were very 
good [20]. 

 
 

6 RESULTS 
This system is now used in several schools from the 
Portuguese education system. We show the results 
in three typical schools. The data is shown in Table 
2. 
 

Data 
ISEL 

(DEEA) 
C1 

EST 

C2 

Escola Sec.  
Fernando Namora 

C3 

Classes 21 124 54 

Teachers 79 208 112 

Subjects 250 1345 492 

Rooms 21 90 50 

#Lessons 
(#Time slots) 

359 
(1135) 

1908 
(3175) 

1357 
(1660) 

Table 2 Three Portuguese schools. 

Every test was made with real data, this means 
that, every constraint and the correspondingly 
weight was defined by each school.  

We used the real timetable for comparison and 
the results are summarized in Table 3. 

 
 C1 C2 C3 

Real Timetable 479,1 2138,2 481,6 

Best result from this algorithm 141,0 1998,1 277,0 

Gain in percentage 70 % 7 % 57 % 

Table 3 Results from the 3 schools. 

The difference in case C2 is due to the fact that 
the real timetable was made with a previous version 
of this system while the other two were hand made. 

It is also important to mention that the tests were 
made in a Pentium IV, 1,6MHz and could last from 
20 minutes for C1 until 2 hours for C2. 

Nevertheless, the gain obtained in using such a 
system is much greater than just the one expressed 
in Table 3. Before using this system each school 
needed several weeks and a group of people to do it. 
Now, after the introduction of such a system real 

timetables are made in just a day or two with one or 
two persons attached to it. 

 
 

7 Conclusion 
As it is well recognized people in general are not 
interested in solving their optimization problems to 
optimality or even close to optimality. They are 
more often interested in “good enough – soon 
enough – cheap enough” solutions to their problems 
[5]. 

We also think that good choices of specific parts 
of each problem are fundamental for the success of 
any search algorithm. As [23] showed there are no 
algorithms either deterministic or stochastic 
behaving the same on the total set of search and 
optimization problems defined on a finite and 
discrete domain.  

In this paper we illustrate the implementation of 
customized simulated annealing algorithm for the 
timetabling problem. It is worthwhile to say that by 
now more than 100 schools from the Portuguese 
education system uses this system. 

Our main conclusion from this work is that we 
can solve a very difficult scheduling problem with 
simulated annealing and be time competitive, but we 
must be very careful in the way we choose to 
implement specific parts of the problem. 
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