
Recommendations for MDA CASE Tools for Efforts Reducing in
Software Modeling

José Eduardo Belix

Sérgio Martins Fernandes
Selma Shin Shimuzu Melnikoff

Edison Spina

The Department of Computing and Digital Systems Engineering (PCS)
University of São Paulo - Polytechnic School

Av Professor Luciano Gualberto, travessa 3, nº158 - Sala C2-42.
Cidade Universitária - São Paulo - SP

CEP: 05508-900
Brazil

Abstract: - The OMG’s MDA (Model Driven Architecture) defines an approach to IT system specification that
separates the specification of system functionality from the specification of the implementation of that
functionality on a specific technology platform [1]. The MDA proposes automatic code generation from UML
models. The MDA process is divided in 3 models: the PIM (Platform Independent Model), a system’s model that
has no platform considerations. The PSM (Plataform Specific Model) is generated from PIM and considers the
platform’s technological issues, and the source code, generated from PSM.
For the model-driven software development vision to become reality, CASE Tools must support this automation
[2].
This paper focuses on defining recommendations for these MDA CASE Tools. The objective is to reduce the
necessary efforts to represent the PIM model, by the adoption of predefined solutions for the software to be
generated.

Key-Words: - MDA, MDD, CASE TOOLS, Generative Programming, Software Architecture.

1 Introduction
The MDA states that code must be generated from
UML Model, in a process that begins with the PIM.
This initial model is refined and transformed into the
PSM, which is transformed into source code.
This paper proposes that the MDA CASE Tools must
be elaborated considering the commonalities between
the different products [3], which raises two points:
• Its is advantageous to the developer that the

MDA Case tools provide solutions
(specifications or implemented functionalities)
that could aid to define/implement the
commonalities of these applications, reducing
the efforts in modeling software;

• Considering that these provided solutions
establish some parts of the software design, the
developer must direct his efforts to what really
needs design definitions.

1.1 Taking Decisions

Conscientiously or not, a set of decisions is always
taken in a software development effort. These
decisions can deal with high-level software issues,
like the choice of an architecture pattern; or can deal
with more specific issues, like data persistence.
These decisions represent different solution
characteristics. An architecture pattern, for example,
“describes a particular recurring design problem that
arises in specific contexts, and presents a well-proven
generic scheme for its solution” [4]. The pattern is a
solution, but provides no implementation.
On the other hand, decisions for more specific issues
can result in solutions with the corresponding
complete implementation. The use of ADO (ActiveX
Data Objects) to access persistent data in Visual
Basic projects is an example.
[5] presents a taxonomy to classify these issues. The
taxonomy is about abstractions, which are defined as
“composed new solutions from existing ones to
solve problems expect to be encountered during
system refinement”. The taxonomy is:

• White-box abstraction
Provides a description of the solution, but not
an implementation. It can be applied in many
contexts. Patterns are examples of white-box
abstractions.

• Black-box abstraction
Provides a fully implemented solution that is
completely opaque to the user. To provide a
completely implemented solution, such
abstraction can only be applied to problems that
require that exactly solution. Features supplied
by libraries or compiled languages are generally
black-box abstractions.

• Gray-box abstraction
Represents the intermediate level: provides
source code for a partial or complete
implementation of the solution, which can be
completed or modified when needed.

2 A Practical Example

A MDA CASE Tool can be configured to generate
business applications (problem domain) from a set of
design decisions (solution domain). As an example of
solutions that do not provide implementation (white-
box abstractions), the tool must generate software
based on the Layers Pattern [4] in three-tier
configuration, using DAO Pattern [6] for data
persistence. DAO classes implement a CRUD-based
interface [7], and the Use-Case Controller pattern [8],
[9] must be used to map the requirements
specifications to the implementation.

2.1 Applying the Decisions
This design example will be used for the
development of online retail sales software. In the
Use Case “Customer Maintenance”, there is a
customer information consult, which selects customer
for ID and validates the dealer’s password (two
business objects interacting to allow this consult).
The representation of this behavior is:

Figure 1 - A Use-Case path

This sequence diagram represents the necessary
messages for this consult within the proposed design
context. The DAO and ACCESS classes, for
example, are consequence of the adopted decisions.

This diagram does not contain all the information for
a CASE Tool to generate the necessary code. Despite
being representative to the humans’ cognition, a
method called “getInfoByID” represents nothing to a
computer. It is necessary to represent the detailed
behavior of the method in UML.

Another possible way to solve this problem is
applying solutions that really implement source code.
Once the CRUD principles were applied, the source
code for persistence method implementation could be
partially written and be automatically configured for
the CASE Tool to any specific class (the
implementations are all very similar - this is a gray-
box abstraction case). The ACCESS class
(responsible for DB connection and SQL statements

execution) would not demand further
parameterization and could be automatically
implemented. With these latter abstractions, the
CASE Tool would be able to completely implement
all the persistence methods. In this way, despite the
fact that the software architecture remains the same,
the CASE Tool user would only need to specify the
following behavior:

Figure 2 - The Needed Representation

In this case, the developer would only describe the
Use Case to the point where he/she could really
decide about the application design. There is no
reason to model what is already implemented and no
further consideration is required. “When deciding
how to model something, determining the correct
level of abstraction and detail is critical to providing
something that will be of benefit to the users of the
model. Generally speaking, it is better to model the
artifacts of the system - those ‘real life’ entities that
will be constructed and manipulated to produce the
final product. Modeling the internals of the web
server, or the details of the web browser is not going
to help the designer and architects of a web
application” [10].

2.2 Constraints are Useful
A MDA CASE Tool customized to work within the
design decisions presented in this paper would not
work when modeling a digital signal processing
system, which uses the Pipes & Filters architecture
pattern [11]. On the other hand, the adopted solutions

greatly facilitate the business application model task,
as suggested in this paper.
A possible way is that tools be elaborated with
different templates, each one customized for different
software development conditions. Even in business
applications, it would be useful to have templates for
.Net with DAO strategy, or J2EE applications with
container managed persistence, etc…

3 Conclusions
This paper supports the need of MDA CASE Tools to
work within the adoption of predefined solutions,
which can be classified in a spectrum varying from
just specification to fully implemented code. This
constraints the scope of possible domain problems
where tools can work, but is able to specialize the
tools in a way to reduce the amount of necessary
efforts to model software.

References:

[1] OMG. “Model Driven Architecture (MDA).
Document Number ormsc/2001-07-01” Object
Management Group, july 2001.

[2] Sendall, Shane; Kozaczynski, Wojtek. “Model
Transformation: The Heart and Soul of Model-
Driven Software Development” IEEE
SOFTWARE, Volume20, Issue5, pg 42-45,
Set/Oct 2003.

[3] Bosch, Jan. “Product-line architectures in
industry: a case study”. Proceedings of the 21st
international conference on Software engineering.
May, 1999.

[4] Buschmann Frank; Meunier Regine; Rohnert
Hans; Sommerlad Peter; Stal Michael. “Pattern-
Oriented Software Architecture. A System of
Patterns”. John Wiley & Sons Ltd., Chichester,
UK, 1996.

[5] Greenfield Jack; Short, Keith. “Software
Factories: Assembling Applications with Models,
Frameworks, and Tools”. Wiley Publishing, 2004.

[6] Alur, Deepak; Crupi, John; Malks, Dan. “Core
J2EE Patterns”, Sun Microsystems Press. 2001.

[7] Brandon, Daniel. “CRUD Matrices for Detailed
Object Oriented Design”. Journal of Computing
Sciences in Colleges. December 2002.

[8] Aguiar, Ademar; Souza, Alexandre, Pinto,
Alexandre. “Use-Case Controller”. EuroPLoP
2001.Sixth European Conference on Pattern
Languages of Programs. 2001.

[9] Evans, Gary. “Getting From Use Cases to Code
Part 1: Use-Case Analysis”. IBM – The Rational
Edge. July 2004. Available on <http://www-
106.ibm.com/developerworks/rational/library/cont
ent/RationalEdge/jul04/5383.pdf>.

[10] Conallen J. “Modeling Web Application
Architectures with UML”. Communications of
ACM, October 1999, Vol 42, nº 10, pgs 63-70.

[11] François, Alexandre R.J. “Software Architecture
for Computer Vision: Beyond Pipes and Filters”.
Available on
<http://iris.usc.edu/~afrancoi/pdf/sacv-tr.pdf>.

