
Confronting Antagonistic Views of Software Design

Sergio Martins Fernandes
José Eduardo Belix

Selma Shin Shimuzu Melnikoff
Edison Spina

The Department of Computing and Digital Systems Engineering (PCS)

University of São Paulo - Polytechnic School
Av Professor Luciano Gualberto, travessa 3, nº158 - Sala C2-42.

Cidade Universitária - São Paulo - SP
CEP: 05508-900

Brazil

Abstract: - Despite some skepticism from the software industry about software design, the traditional software
engineering approach has been enriched in the last years by new concepts, tools and techniques, like design
patterns, software architecture, the UML, frameworks and, more recently, by the emergency of OMG’s
MDD/MDA. On the other hand, different approaches have emerged, notably the agile processes, opposing many
established software design best practices.
This paper briefly presents the approach regarding these software design views, and characterizes their strengths
and weaknesses for specific types of software systems developments.

Key-Words: - Software Design, Software Modeling, RUP, Agile Processes, MDD/MDA

1 Introduction
The design of a software system is a key aspect of
software development. The software engineering
community has always emphasized the quality of
software design as fundamental for the effective
success of software development projects.
On the other hand, a large part of the software
development industry has resisted putting a
significant effort on the design of software systems.
Even complex systems were built by the direct
translation of requirements into source code. The
central argument of the industry to justify these
practices: tight schedules. Others are the difficulty to
keep the model and the code synchronized during the
software life cycle; and the developer’s lack of skills
to use modeling languages effectively.
One answer of the software engineering community
to that point of view is to underline the frequent
quality and maintenance problems in software
systems that are built without a graphic model.
Modeling reduces the coding effort and increases
quality, making maintenance easier.
Nevertheless, the software engineering community
recognizes that the problems appointed by the
industry are relevant, and is trying to solve them. The
usual path they point involves adequate developers
training and extensive use of software tools (like

CASE tools) to support the modeling effort and to
help automatically synchronize model and code.
The OMG (Object Management Group) adopted the
vision of tools supporting modeling, and is
developing an initiative named MDA/MDD (model
driven development / model driven architecture).
MDD establishes standard ways for the elaboration of
UML software models that are platform independent,
and the automatic translation of that models into
other models – platform dependent models – and,
subsequently, into source code.
A group of the software engineering community self
named agile community followed a different path,
questioning the conventional practice of software
design. This community advocates what is called
evolutionary design, which reduces the importance of
a graphic design, accepting it could be directly
expressed into the source code.
This paper briefly analyses each of these views, and
characterizes their strengths and weaknesses for
specific types of software systems developments

2 The Software Industry View
The software industry recognizes the problems
concerning software development and maintenance,
but it frequently has been skeptical about the

effectiveness of the conventional software
engineering best practices to solve these problems.
The software industry acknowledges, generally
without much conviction, that software modeling is
useful, but argues that there is not enough time to do
it, due to the tight schedules of software projects.
Some modeling efforts which are successful at short
term, frequently are lost at long term, because it is
difficult do keep model and code synchronized, while
the software evolves over its life cycle.
This skepticism is partially due to the failure of many
software development process implementation
projects; and to the lack of knowledge of the software
engineering evolution through the last decades. There
is also a perception that the software community is
adequately skilled to write code, not to build models
[1].
The quality improvement and the quantity increase of
Computer Sciences courses worldwide are weakening
this argument. Nowadays, there is a new generation
of software engineers effectively using design
patterns or software architecture modeling, although
it is less frequent that a comprehensive modeling
effort be made.
Researches show that the software industry has a
relatively low projects success rate, and insufficient
quality records. Still, the growing sophistication of
software systems and the spread of software in all
human activities and places make it impossible to
conclude that the software industry has failed.

3 The traditional Software
Engineering Community view
A fundamental software engineering practice is that
the graphical, or visual, design should precede
coding. Both the structured analysis and object-
oriented paradigms incorporate this practice.
The development of the UML, the explicit modeling
of the software architecture and the proposition of
design patterns have enriched the traditional vision of
software design, helping increasing the conceptual
knowledge and the ability of software designers to
create higher quality software designs, achieving
higher quality software systems.
This view is expressed, for instance, in the Rational
Unified Process (RUP) [RATIONAL 2003], which
proposes an iterative and incremental software life
cycle. The initial phases of the RUP life cycle are
focused on the definition of software architecture,
and on the construction of an executable prototype
that validates the architecture. RUP emphasizes the
use of design patterns and the definition of what it
calls mechanisms (like persistence or messaging
mechanisms) for software design. Its Analysis and

Design discipline recommends the development of
two models: an analysis model, relatively free of
technological considerations, which is translated in a
design model. Both models describe all the
functionality of the software system.
Although it should be configured for specific
projects, RUP is, in essence, a relatively formal and
prescriptive process. Activities, disciplines, artifacts,
roles of the process are very clearly defined and
logically organized in workflows [5], [6]. Such level
of formalism and the great quantity of artifacts it
encompasses makes RUP critics call it heavyweight.

3.1 MDD / MDA
Probably the most advanced stage for software design
of the conventional view of the software engineering
community is the MDD, which is a proposition of the
OMG for software development [12].
Its central idea is the elaboration of UML models and
the use of specialized CASE tools to automatically
translate these models into code.
MDD is based in a standard being developed by the
OMG, named MDA, which defines a general
architecture and technologies that are the foundation
of MDD. Although this effort has already produced
results, it is still a work in progress.
It is possible to characterize MDD as the next step for
software development, after the third generation
programming languages, which use compilers to
automatically translate source code into binary code.
The MDD/MDA vision is compatible and develops
Jacobson’s vision [4]. Jacobson foresees an
environment in which the team can focus on the
creative tasks of software development – related to
business logic definition. Very specialized software
tools would supply the other tasks, defined by
Jacobson as non-creative.

4 The agile community view
For the last years, a group of the software engineering
community gathered to provide a new approach for
software development, named light, or agile. They
developed many software development processes.
The most popular is the Extreme Programming (XP)
[2]. This community created a non-governmental
organization called The Agile Alliance
(www.agilealliance.com), with aims to develop and
disseminate their ideas.
The agile processes do not intend to be a recipe for
software of any size and complexity. It is focused on
small to medium duration software projects, with
teams of 10 people maximum, physically close to
each other while working on the project.

These processes oppose the conventional approach
for software development in many ways. They are not
very prescriptive, are highly iterative, and are adept
of low level of ceremony: demand very little
documentation and formalism [5].
Regarding software design (the focus of this paper),
the agile processes do not emphasize visual
modeling. In fact, it is quite the opposite. They call
their approach to design “evolutionary design”. It
recommends incremental design, informally
conceived (not using graphical diagrams, like UML
ones), and directly expressed in the code. XP, for
instance, does not forbid the elaboration of UML
diagrams, but, in practice, discourages it [2].
XP states that the preferential way to communicate is
talking, not graphic diagrams, although it accepts that
documents are created in the end of the project, to
register information useful to maintenance teams.
During a project, if the team is comfortable with
diagrams, they can be informally used (on a
blackboard, for instance), but not kept for future use
nor updated.
Below, we briefly present some of the most important
practices of XP.
Metaphor – it is considered by XP a synonym of
software architecture. But while architecture is
generally expressed graphically, a metaphor is
expressed textually, like a story. It must define a
coherent general theme that both customers and
developers understand.
Refactoring – continuously redesign the software, to
improve its response to change. Refactoring does not
change software’s functionality, but it’s internal
structure. When new functionality needs to be added,
the first step is always refactoring, to simplify the
functionality’s increment.
Test first – develop some functionality tests before
implement it. Automate these tests. After that, code
the functionality and immediately apply the tests.
Continuous integration – build the software every two
hours, so that it is possible to identify integration
problems as soon as possible.
Martin Fowler [3] argues that the practices mentioned
above – specially test first and continuous integration,
but also refactoring – enable XP’s evolutionary
design approach, because they reduce the cost of
changing the implemented code, neutralizing the
perception that the cost of a change in the software
grows exponentially along the software’s life cycle.
“With XP, it is possible to reduce the cost of
changing, so that a change in any point of time will
have the same cost” [8].

5 Analyzing the approaches presented
This section presents an analysis of strengths and
weaknesses of each view presented before. The
industry view will not be analyzed, because it only
describes, in general, the actual situation and
problems of software development.

5.1 The traditional Software Engineering

Community view
Strengths
Following well-established software engineering best
practices in a systematic way effectively increases the
success rate (achieving cost and schedule targets,
product quality) of software projects.
Jacobson’s vision of a UML centered software
development supported by powerful tools is gaining
ground, although it still needs effort to become not
just a vision, but a reality. OMG’s vision goes in the
same direction, prioritizing the use of UML and
automatic transformation tools. Companies like IBM,
Compuware and others are investing a lot to provide
the adequate concepts and tools that will make that
vision real.
Software projects of high size and complexity need a
higher level of ceremony [5].
Prescriptive software engineering processes can be
more flexible and dynamic than their detractors
suppose. A process like RUP calls itself a process
framework and, as such, needs to be configured for
the specific needs and constraints of each project
where it is used. There are light versions of RUP, of
lower ceremony, more adequate for smaller and not
so complex projects.

Weaknesses
For many big companies in which software is not the
core business but represents a large part of the
business (like financial institutions, for instance),
developers frequently lack the culture and the
expertise to build software models. [1] argues that
UML modeling is impracticable for a whole
generation of developers who will still be working for
a long time.
Designing software, although conceptually and
didactically very interesting, requires a large effort
that is not feasible in many situations
Complex projects need specialized roles. Those who
play the role of designers obviously focus on design.
After some time, they loose contact with the most
recent implementation techniques and resources,
making their models – especially models with a lot of
technological information – not respected by
specialists in a specific technological platform. These
will have their own ideas, frequently effectively more

evolved, about how to solve implementation
problems [3].

5.2 The agile community view

Strengths
Questioning conventional wisdom is, in itself,
strength, because it dismantles established dogmas
and analyses the problem from a different point of
view. The emphasis that the agile community put on
that subject provides valuable insights for managers,
developers and theorists.
Techniques like refactoring, test first, and others,
have already proved their value.
Clearly defining the reason for the elaboration of
each model (modeling for communication, modeling
for documentation) underlines the cost/benefit of
modeling and establishes clear rules to define
modeling scope and its place in the development
cycle.
Agile processes know that they are not useful in any
situation. They clearly state that they should be used
in not very big projects in which change is an
important requirement.

Weaknesses
Delaying part of the modeling effort to the end of the
project (modeling to communicate to the maintenance
team) doesn’t sound very good, because, in the end of
the project, usually the team is committed with other
projects or with solving problems of the present
project. Not documenting at all is what usually
happens if we think that modeling is just useful for
documentation.
[3] criticizes XP’s approach about the definition of a
software architecture (that concept is absent of XP
and is criticized by it). The establishment of software
architecture in the initial phases of a project is useful,
to stimulate the use of mature patterns and to define
central and complex aspects that it would be difficult
to change later. Using UML diagrams is useful for
those comfortable with them.
[4] argues that the agile processes approach works
well for highly qualified teams. Although the agile
processes don’t intend to reach all the developers
community, this question is a weakness when we
consider a broader perspective of the software
industry, which can’t count only on the professionals
who are on the top of the pyramid.
The agile approach demands that developers have a
wide and deep knowledge of the software code.
Again, on a broader perspective, it is not feasible for
big organizations, where there is always a turnover.

Some of the agile processes, like XP, are not very
specific about how design is done. Others, like Agile
Modeling [1] were created do fill that gap.

5 Conclusion
The traditional approach of the software engineering
community, prioritizing visual modeling, effectively
adds value to software development. Its best practices
are conceptually incontestable. The benefits of visual
modeling are increased if we explicitly define why
the model is being built, like some in the agile
community recommend.
Formalism not necessarily is weakness. It can be
strength, for big and complex systems, and big and
complex organizations.
On the other hand, the resistance of the software
industry to adopt visual modeling in large scale
means that, to a certain extent, the traditional vision
failed. Software engineering needs to evolve, so that
the gap between best practices and real practices can
be reduced, and the success rate of software projects
in industrial scale can increase.
Agile processes are valid in specific situations, but
they also carry conception deficiencies, and are
focused on a restrict universes: small to medium
projects with development teams with very specific
profiles.
In a short sentence: visual modeling and more
prescriptive processes are useful do deal with
complexity; while agile processes deal with the need
of flexibility.
The MDD/MDA approach may still redefine the
course of software engineering, like third generation
languages did, some decades ago. More probably,
though, it will be used in a more restrict universe
(like agile processes). It is possible, too, that it fails,
being adopted by very few organizations and
projects. It still needs to prove its value.

References:
[1] Ambler, Scott. Agile Model Driven Development

is Good Enough. IEEE Software. September-
October 2003.

[2] Beck, Kent. Extreme Programming Explained.
Addison-Wesley. 2000.

[3] Fowler, Martin. Is Design Dead?
http://martinfowler.com/articles/designDead.html.

[4] Jacobson, Ivar. Not Every Light Process Is Agile.
www.therationaledge.com.

[5] Kroll, Per; Kruchten, Philippe. The Rational
Unified Process Made Easy: A Practitioner’s
Guide to the RUP. Addison-Wesley. 2003.

[6] Greenfield, Jack; Short, Keith. Software
Factories: Assembling Applications with Patterns,

Models, Frameworks, and Tools. Wiley
Publishing Inc. 2004.

[7] Smith, John. A Comparison of RUP and XP.
Rational Software White Paper. 2002.

[8] Astels, David; Miller, Granville; Novak,
Miroslav. Extreme Programming: Guia Prático.
Editora Campus, 2002.

[9] Lindvall, Mikael; Muthig, Dirk; Dagnino, Aldo;
Wallin, Cristina; Stupperich, Michael; Kiefer,
David; May, John; KähKönen, Tuomo. Agile
Software Development in Large Organizations.
IEEE Computer. December 2004. pg 26-33.

[10] [AM, 2005a]. Agile Modeling. Agile Modeling
and eXtreme Programming.
http://www.agilemodeling.com/essays/agileModel
ingXP.htm.

[11] [AM, 2005b]. Agile Modeling. Overview of The
Values, Principles, and Practices of Agile
Modeling (AM).
http://www.agilemodeling.com/#ValuesPrinciples
Practices.

[12] MDA Guide Version 1.0.1. Object Management
Group. Needham, Mass., EUA, july 2003.
Available in <http://www.omg.org/cgi-
bin/doc/omg/03-06-01.pdf>.

