
Algorithm for Rapid Particle Tracing in
Arbitrarily Mixed Meshes

ANDREAS HIEKE
Research Proteomics & Computational Physics

Ciphergen Biosystems, Inc.
6611 Dumbarton Circle, Fremont, CA 94555

USA
+1 (510) 505-2201

Abstract: - An algorithm is described which allows the rapid computation of trajectories of large numbers of
particles in arbitrary meshes. Laplace (Poisson) and Navier-Stokes solutions are given at node points of a
(FEM) mesh consisting of arbitrarily mixed tetrahedral, prismatic, pyramidal, or tetrahedral elements. The
computation of the motion of a particle through such a domain requires, at each time step, knowledge of the
enclosing element. Brute-force search routines would be prohibitively expensive with mesh data sets on the
order of Gbyte, typical numbers of particles ranging from 103 to 105, and trajectory integration time steps
from 103 to 107.

Key-Words: - algorithm, particle tracing, mesh, FEM, ANSYS, enclosing element, tetrahedral decomposition,
 search algorithm, trajectory, GEMIOS

1 Introduction

The area of protein research, known as
“proteomics”, attempts to identify patterns of
proteins (“biomarkers”) which correlate to disease
states. ProteinChip arrays serve to selectively
capture proteins prior to further detailed analysis in
specialized mass spectrometers. A principal and
critical step is the creation of ions of large organic
molecules performed in laser based ion sources
(‘MALDI’ sources; ¼ Nobel Price Chemistry 2002
[1]). Within these sources, ions are subjected to
time dependent electromagnetic fields as well as
collisions with intentionally introduced background
gas molecules in order to reduce the ion
temperature. The particle dynamics in such ion
sources is extremely complex.
A simulation tool was needed which can provide
insight into and a deeper understanding of ion
extraction, collisional cooling and guidance
processes in the presence of background gases

Therefore, an advanced multi-physics simulation
system referred to as GEMIOS (Gas and
Electromagnetic Ion Optical Simulator) has been
implemented which allows the computation of 3D
trajectories and energy exchange of ion
beams/clouds under the influence of 3D time-
dependent external electromagnetic fields in the

presence of 3D rarefied gas flow fields and has
therewith capabilities beyond existing tools [2]-[5].

The fundamentally novel aspect of GEMIOS is that
it combines electromagnetic field solutions and
fluid dynamic field solutions obtained within a
given domain to compute charged particle
trajectories. GEMIOS provides particle energies,
collision rates, translational, thermal, and kinetic
temperatures with spatial and temporal resolution.
GEMIOS utilizes a combination of codes operating
on the same input data set:

- a 3D Monte-Carlo Newtonian Motion and
 Collision module (MC-NMC), FORTRAN

- a 3D Finite Element (FEM) system [ANSYS-
 Multiphysics]

 - a semi-statistical 2D DSMC (Direct Simulation
 Monte Carlo)

The focus of this paper is exclusively on the data
exchange between the FEM module and the MC-
NMC module as well as the critical problem of
rapidly computing trajectories of particles through
arbitrary FEM meshes.

2 Problem Formulation

The Finite Difference Method is particularly simple
and can easily be implemented to obtain solutions

of PDEs (such as Laplace and Poisson equations).
In addition, tracing particles through the resulting
equidistant orthogonal meshes is trivial since based
on the current location of a particle and the
(constant) mesh size the indices of the enclosing
element or cell can instantaneously be obtained.
There are many particle tracing codes which take
advantage of this simple approach, see for example
[6].
However, complicated 3D configurations which
contain relevant features on vastly different scales
are preferably treated using FEM solvers since the
computational requirements for FDM solvers
(which are determined by the level of discretization
which is determined by the smallest feature size in
a model) typically become excessive in such cases.
Even though in general the computational effort per
FEM element is much larger then per FDM cell, the
total effort for a Laplace/Poisson problem can be
lower since FEM meshes are shape-conform and
may use a large range of element sizes.

The GEMIOS simulator which uses a FEM system
for solid modeling and meshing and provides (on
the same mesh):

- a data set of nbs orthogonal Laplace base
solution (electric potentials and electric fields)
(based on a set of canonical Dirichlet boundary
conditions) from which any arbitrary static or
dynamic electric field configuration is later
obtained by superposition in the MC-NMC
module
- a data sat of Navier-Stokes solutions for gas
pressure, velocity, and temperature of a gas

Said solution data are provided at node points of
first or second order elements as well as at element
center locations. Each node and each element in a
model has a unique number (Fig 2). The used
second order (20 node) elements can assume 4

possible shapes: tetrahedral, prismatic, pyramidal,
or tetrahedral. The nodes of each element (‘I’..’X’
in Fig. 3) are referenced in a specific order such
that the actual shape of the element can be derived.

Fig. 2: Mesh elements and nodes are referenced by
unique numbers determined by the FEM system

Fig. 3: Possible configuration of the second order
element used for electrostatic analysis (from [7])

Fig. 1: Typical appearance of a FEM mesh. The large range of element sizes enables to accurately capture small feature
in the model, e.g. regions with large electric field value. (model shown: tip of a quadrupole)

The computation of the motion of a charged
particle through such a domain (trajectory
integration + collision probability determination)
requires, at each time step, knowledge of the
enclosing nodal tetrahedron and the enclosing
element since the provided field solutions are used
to obtain interpolated values for electric and
pneumatic fields. Specifically, the following
questions arise:

- Which is the closest node to a given point
in space?

- Which are the 4 closest nodes to a given
point in space that form a tetrahedron
which encloses this point?

- Which element encloses a given point?

The naive approach to find the coordinates and
number of the node =ir

�
 [xi,yi,zi] closest to

a given location =r
�

 [x, y, z] would be a brute

force search over all nodes nn in the domain:

Fig. 4: Simple code for brute force search of node
node_drmin closest to point [x,y,z]

With node numbers on the order of 105 to 107 such
an approach is obviously impractical to be applied
more than a few times during a simulation due to
the required CPU times. For example, on a 2.8GHz
Xeon system one measures the following execution
times:

nn =106 ⇒ tCPU=36ms
nn =107 ⇒ tCPU =390ms

Typically, numbers of particles range from 103 to
105 with 103 to 107 integration time steps for each
trajectory. Therefore, it was necessary find an
algorithm which can answer above-mentioned
questions within a few 10-6s.

3 Problem Solution

Fundamentally, there are two approaches to reduce
the required CPU time:

- computing as much as possible outside the
actual tracing routine (avoiding repetitions)

- buying speed with memory (using and storing
knowledge about the mesh)

Both approaches are being used in the MC-NMC
code as outlined below. The FEM system provides
the following, minimally required data:

- the number of nodes nn
- the number of elements ne
- a [ne x 20] matrix NOE[1..ne, 1..20] containing the

node numbers for each element
- 3 ns long vectors x1..ns y1..n z1..n containing the

Cartesian coordinates for each node
- a [ne x 6] matrix EE[1..ne, 1..6] containing the

numbers of the elements with which a given
element shares faces

- 3 ne long vectors xe1..ne ye1..ne ze1..ne containing
the Cartesian coordinates for each element
center

- solution data: Laplace base solutions Φ on

nodes as well as electric field E
�

and Navier-
Stokes solutions data v

�
, p, T at element centers

Step 1: The tracing algorithm starts by reading
these data in an OS independent manner via ASCII
files in order to enable that the FEM code and the
MC-NMC code can run on entirely different
machines, provided they can share one file system.

Step 2: Before the actual tracing starts the
algorithm builds, based on these mesh data,
- a [nn � 200] matrix (lookup table) to find all

elements attached so each node and
- a ne long vector containing the characteristic

length of each element (space diagonal).
The required computational effort is on the order of
a few seconds and small in comparison to the
actual tracing.

Step 3: The node nstart closest to the initial position

startr
�

 is determined. This is a brute force search but

executed only one time since nstart is identical for all
particles. Also, all elements attached to node nstart

are checked which of them contains a tetrahedron
formed by its nodes which encloses startr

�
.

Step 4: During the actual tracing the algorithm
goes for all particles through the following routine
assuming that in step 3 the enclosing nodal
tetrahedron and the enclosing element for startr

�
 at

t=0 was found:

drmin=1D99
node_drmin=0

 DO i=1,nn
 dx=x-xn(i)

 dy=y-yn(i)
 dz=z-zn(i)
 dr2=dx*dx + dy*dy + dz*dz

 IF (dr2.LT.drmin) THEN
 drmin=dr2

 node_drmin=i
 ENDIF
 ENDDO

=

1

1

1

1

det

444

333

222

111

zyx

zyx

zyx

zyx

Vtet

(0) Particle position at)0(=tr
�

DO
(1) One step of trajectory integration and

collision modeling (field values interpolated
from neighboring elements).

(2) New particle position)(tr
�

 ←)(ttr ∆+�

 t ← t+∆t
(3) Find new enclosing tetrahedron and enclosing

element:
(3.1) · 1st guess: the same tetrahedron
(3.2) · 2nd guess: another tetrahedron within the

 same element (dependent on its shape)
(3.3) · 3rd guess: the element connected to the

 closest node with element center location
 closest to)(tr

�

(3.4) · 4th guess: All elements connected the
 corner nodes of the old enclosing element
 except the one tested as 3rd guess

(4) IF no enclosing element found EXIT LOOP
(the particle left the domain)

ENDDO

The inherent assumption is that at least one time
step is executed within each element which is being
ensured by the trajectory integration routines.
The determination of the enclosing nodal
tetrahedron serves two purposes:
- it provides a way to determine the enclosing

element via tetrahedral decomposition [10]
- it provides a simple means to obtain a local

electric field vector approximation based on
electric potentials on 4 nodes (for low accuracy
tracing only)

It is by far sufficient to use only first order nodes
(letter I through P in Fig. 3) for the tetrahedral
decomposition which reduces the number of
possible configurations significantly.
Thus, there are maximal five test required to find
the enclosing tetrahedron in a given element as
illustrated in Fig.5. The used tetrahedral
decompositions are not unique but adequate since
the primary purpose is to identify the enclosing

Fig. 5: Possible tetrahedral decomposition dependent on
shape of element using only first order nodes: upper left:
tetrahedron (1 test), upper right: pyramid (2 tests), lower
left: prism (3 tests), lower right: hexahedron (5 tests)

element. (It is unnecessary to determine a possible
optimal decomposition scheme since the high
accuracy tracing routines interpolate solutions from
neighboring elements.)
The determination if a point r

�
= [x,y,z] is inside a

tetrahedron formed by nodes at 1r
�

 = [x1, y1 , z1], 2r
�

= [x2, y2 , z2], 3r
�

 = [x3, y3 , z3] and 4r
�

 = [x4, y4 , z4]

can be made as follows: The volume of the
tetrahedron is given by

 (1)

If r
�

 is in fact inside the tetrahedron it decomposes
it into 4 smaller tetrahedrons with the sum of their
volumes equal to the volume Vtet. Allowing for
some finite numerical error ε equation (2) provides
a directly implementable formulation as the Fig. 6
shows. This test can be executed in a few 10-7s.

 (2)

ε<

+

+

+

+

−

1

1

1

1

det

1

1

1

1

det

1

1

1

1

det

1

1

1

1

det

1

1

1

1

det

333

222

11‘1

444

222

111

444

333

111

444

333

222

444

333

222

111

zyx

zyx

zyx

zyx

zyx

zyx

zyx

zyx

zyx

zyx

zyx

zyx

zyx

zyx

zyx

zyx

zyx

zyx

zyx

zyx

Fig. 7: Meshed FEM domain of a 5-electrode ion
generation system coupled to a quadrupole using a large
range of element sizes and different element shapes (3/4
of the model + one quadrupole rod are shown)

The described algorithm reduces the CPU time
required for finding the next enclosing element
during tracing to values equal or smaller than the
CPU time necessary for trajectory integration and
collision treatment. Specifically, this includes:
- temporal updates of time-dependent electric

fields from orthogonal Laplace base solutions,

- interpolation of fields using neighboring
elements,

- determination of local ion/gas molecule
collision probability (incl. Monte Carlo
temperature sampling)

- collision treatment: determination of post-
collisional ion velocity vector incl. Monte
Carlo sampling of scattering angles

Slightly dependent on the model configuration and
tracing parameters, the CPU time for one such
trajectory integration time step including updating
the enclosing nodal tetrahedron and enclosing
element is on average tCPU=5·10-6s … 8·10-6s on a
XEON 2.8GHz system. This allows, for example,
to compute 103 trajectories each with 104 time steps
in less than one minute.
Details of the multi-stage Monte Carlo collision
treatment are beyond the scope of this paper and
will be reported elsewhere. Fig. 7 shows a practical
example of a complex FEM mesh used to model an
ion source coupled to a RF quadrupole ion quide.
Noteworthy in terms of tracing is the considerable
range of element sizes in combination with mixed
element shapes. Using the discussed algorithm,
Fig. 8 depicts computed ion trajectories through the
domain shown in Fig. 7 based on time-dependent
electric as well as pneumatic fields.

 D= ABS(x1*y2*z3 - x1*y2*z4 - x1*y3*z2 + x1*y3*z4 + x1*y4*z2 - x1*y4*z3 +&
 - x2*y1*z3 + x2*y1*z4 + x2*y3*z1 - x2*y3*z4 - x2*y4*z1 + x2*y4*z3 +&

 + x3*y1*z2 - x3*y1*z4 - x3*y2*z1 + x3*y2*z4 + x3*y4*z1 - x3*y4*z2 +&
 - x4*y1*z2 + x4*y1*z3 + x4*y2*z1 - x4*y2*z3 - x4*y3*z1 + x4*y3*z2)

 D1=ABS(x *y2*z3 - x *y2*z4 - x *y3*z2 + x *y3*z4 + x *y4*z2 - x *y4*z3 +&
 - x2*y *z3 + x2*y *z4 + x2*y3*z - x2*y3*z4 - x2*y4*z + x2*y4*z3 +&

 + x3*y *z2 - x3*y *z4 - x3*y2*z + x3*y2*z4 + x3*y4*z - x3*y4*z2 +&
 - x4*y *z2 + x4*y *z3 + x4*y2*z - x4*y2*z3 - x4*y3*z + x4*y3*z2)

 D2=ABS(x1*y *z3 - x1*y *z4 - x1*y3*z + x1*y3*z4 + x1*y4*z - x1*y4*z3 +&
 - x *y1*z3 + x *y1*z4 + x *y3*z1 - x *y3*z4 - x *y4*z1 + x *y4*z3 +&
 + x3*y1*z - x3*y1*z4 - x3*y *z1 + x3*y *z4 + x3*y4*z1 - x3*y4*z +&
 - x4*y1*z + x4*y1*z3 + x4*y *z1 - x4*y *z3 - x4*y3*z1 + x4*y3*z)

 D3=ABS(x1*y2*z - x1*y2*z4 - x1*y *z2 + x1*y *z4 + x1*y4*z2 - x1*y4*z +&
 - x2*y1*z + x2*y1*z4 + x2*y *z1 - x2*y *z4 - x2*y4*z1 + x2*y4*z +&

 + x *y1*z2 - x *y1*z4 - x *y2*z1 + x *y2*z4 + x *y4*z1 - x *y4*z2 +&
 - x4*y1*z2 + x4*y1*z + x4*y2*z1 - x4*y2*z - x4*y *z1 + x4*y *z2)

 D4=ABS(x1*y2*z3 - x1*y2*z - x1*y3*z2 + x1*y3*z + x1*y *z2 - x1*y *z3 +&
 - x2*y1*z3 + x2*y1*z + x2*y3*z1 - x2*y3*z - x2*y *z1 + x2*y *z3 +&
 + x3*y1*z2 - x3*y1*z - x3*y2*z1 + x3*y2*z + x3*y *z1 - x3*y *z2 +&
 - x *y1*z2 + x *y1*z3 + x *y2*z1 - x *y2*z3 - x *y3*z1 + x *y3*z2)

 sum_D_parts=D1+D2+D3+D4

 IF ((abs(D-sum_D_parts)) .LT. 1D-14) THEN
 tetrahedron_encloses=.TRUE.
 enclosing_tetrahedron_in_this_element=.TRUE.

 ENDIF

Fig. 6: Code according to equation (2) to test if point [x,y,z] is enclosed a tetrahedron formed by nodes at [x1, y1 , z1],
[x2, y2 , z2], [x3, y3 , z3], and [x4, y4 , z4] which can be executed in a few 10-7s

4 Conclusion

An algorithm has been described which allows the
rapid computation of particle trajectories through
mixed tetrahedral, prismatic, pyramidal, and
tetrahedral meshes. It is conceivable to further
accelerate this algorithm by building an additional
lookup table which contains for each node the
number of the element with its center location
closest to the node location.
Currently, this element is determined as part of the
2nd guess routine. However, for the particular
application discussed here, the possible
acceleration is negligible in comparison to the
constant computational effort required for each
time step. If the GEMIOS code were to be used for
tracing in electromagnetic fields only (no
collisions) the suggested additional lookup table
would be beneficial.

References:
[1] http://www.nobel.se/chemistry/laureates/2002/
[2] Andreas Hieke: “GEMIOS – a 64-Bit multi-

physics Gas and Electromagnetic Ion Optical
Simulator”, Proceedings of the 51st
Conference on Mass Spectrometry and Allied
Topics, Montreal, Canada, June 2003

[3] Andreas Hieke: “Theoretical and Implemen-
tational Aspects of an Advanced 3D Gas and
Electromagnetic Ion Optical Simulator
Interfacing with ANSYS Multiphysics”,
International Congress on FEM Technology
2003, Potsdam, Germany, November 2003

[4] Andreas Hieke: “Development of an
Advanced Simulation System for the Analysis
of Particle Dynamics in LASER based Protein
Ion Sources”, Technical Proceedings of the
2004 Nanotechnology Conference and Trade
Show, Boston, MA, March 2004, Vol. 1, page
180-184, nanotech2004.com

[5] Andreas Hieke: "3D electro-pneumatic Monte-
Carlo simulations of ion trajectories and
temperatures during RF quadrupole injection
in the presence of gas flow fields",
Proceedings of the 52nd ASMS Conference on
Mass Spectrometry , Nashville, TN, May
2004

[6] www.simion.com
[7] ANSYS Inc., Theory Reference Manual V8.0

www.ansys.com
[8] G. Ramos, W. Enright: “Interpolation of

Surfaces over Scattered Data”, Proceedings of
IASTED Conference on Visualization,
Imaging and Image Processing VIIP’2001,
Marbella, Spain, September 3-5 2001

[9] Isaac Amidror: “Scattered data interpolation
methods for electronic imaging systems: a
survey”, Journal of Electronic Imaging, Vol.
11 No. 2, April 2002, pp. 157-176

[10] David N. Kenwright and David A. Lane:
“Optimization of Time-Dependent Particle
Tracing Using Tetrahedral Decomposition”,
Proceedings of the 6th conference on
Visualization, IEEE Visualization , 1995, pp.
321-328

Fig. 8: Simulation of ion trajectories through the domain shown in Fig. 7 using the described tracing algorithm and based
on simultaneous consideration of electric DC and RF fields and gas flow fields; ¾ of the solid model is shown

