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Abstract— Modeling of Electric Motors coupled to complex nonlinear mechanical system is a challenging 
task.  However, high performance control of electric drives systems requires accurate models of 
mechanical loads.  Gray-Box models using neural networks are used here to identify the electrical 
machine-mechanical load system of an electric drive.  The use of this approach for electric drive 
identification is illustrated with a DC motor drive system driving an unknown static load.  Simulation 
results are presented to demonstrate the capability of the proposed approach. 
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1. Introduction 
Modern control strategies for electric drives 
require accurate knowledge of the machine 
parameters and the dynamic characteristics of the 
actuated load.  In general, we have a good 
understanding of the dynamics of the electrical 
drive while good models of the mechanical load 
are not available because of poor knowledge or 
load complexity. 

A methodology to overcome these problems 
based on gray-box modeling is presented in this 
work.  In gray-box modeling, a system is 
partitioned into two components.  One component 
is well understood from physics principles.  This is 
the case of the electrical model of an electric drive.  
The second component of the model is unknown 
or partially unknown.  To model this part of the 
system, a black-box model is used.  In this work 
an integrated gray-box model is proposed 
developed and studied in the modeling of a DC 
motor drive system. Neural networks are used to 
construct the black-box model for the mechanical 
load.  The reason to use neural networks is their 
adaptive and nonlinear nature.    

The work is presented here as follows. First, the 
concept of gray-box models is introduced.  Then 
the case study is presented and simulation studies 
are used to illustrate the underlying concepts.  The 
problems found and the tools used are discussed.  

Finally, the concluding points and future work are 
presented. 

2. Gray-Box Modeling 
In modeling complex dynamic systems, scientists 
and engineers often face the fact that physics-
based models of all system components are not 
available due to poor understanding of the 
component dynamics or their complexity.  The 
gray-box modeling methodology helps to address 
this problem by combining prior physical 
knowledge with the simplicity of black box model 
structure [1] to take as much advantage as possible 
of the available physical information. We will 
describe the gray-box model structure used in this 
research next.   

Let us assume that the system of interest can be 
modeled by a state space representation 

 
( ) ( ) ( )( )ttt u,xfx =&  (1)

 
Let us further assume that the system can be split 
in two additive components,  

 
( ) ( ) ( )( ) ( ) ( )( )ttttt u,xhu,xgx +=&  (2)

 

where g(· ) is the known part of the system and h( · 
) is the unknown part. For identification purposes, 



the unknown component is substituted by a black 
box model leading to the gray-box model structure 

( ) ( ) ( )( ) ( ) ( )( )ttBBttt uxuxgx ,, +=&  (3)
 
where BB(x(t), u(t)) is the black box component of 
the model. Other architectures are possible. 
Parameter estimation is applied to (3) using any 
standard parameter estimation method. In this 
paper, we use neural networks for the black box 
component of the gray-box model. 

3. Case Study  

3.1 DC Motor Drive System 
Our main interest is to study the capabilities of the 
gray-box modeling approach for electric drive 
modeling. For this purpose, the identification of a 
permanent magnet DC motor driving a nonlinear 
static load is studied. A schematic of the system is 
presented in Figure 1.  
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Fig. 1. Schematic of the DC drive system  

Table 1: Expressions for case study loads. 
Case f(ω) 
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here Ra, La, are the armature resistance and 
inductance, and Ka is the back EMF/torque 
constant;  ia(t), and va(t) are the armature current, 
and voltage; Jm, and Bm represent the inertia, and 

viscous friction coefficients; τL(ω) is the speed 
dependent load torque; and ω(t) is the rotor speed.  
 
The state space model for the DC motor drive 
system is: 
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In our study, we will consider two different loads 
in which τL(ω) will be function of the speed but 
this dependency will be assumed to be unknown. 
The expressions for the three loads under 
consideration are presented in Table 1. These 
loads are found in typical applications of electric 
drives.  The load parameters in all the cases are 
such that the load torque equals rated torque at 
rated speed. The load parameters are given in 
Table 2. 

Table 2: Load Parameters. 
Case Parameter Values 
Nonlinear 
Friction 

µ=1 N-m, α=1 rad/sec,  
β=3 N-m 

Fan Load µ=0.039 N-m s2/rad2 

3.2 The Gray-Box Model 
In our modeling work, the static load will be 
assumed to be an unknown static function of the 
speed. Based on (3), a gray-box model for the 
drive is given by. 
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where NN(ω) is the black box model using the 
neural network.. The selection of the neural 
network model structure for this case is intuitive. 
The speed dependent loads under consideration are 
odd functions that suggest the use of neural 
networks with hyperbolic tangent basis functions. 

3.3 Nonlinear Least Squares Parameter 
Estimation 

Physical parameter estimates and network weights 
are computed by minimizing a quadratic cost 
function. The nonlinear least-squares parameter 
estimation problem can be formulated as the 
optimization problem: 



( )θminargθ̂ S
θ

=  (6)

where θ̂  is the estimate of θ and  
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is the quadratic cost function that measures the 
two norm of the model prediction error. The 
standard method to compute the parameter 
estimate is given by the Gauss-Newton method. 
 

The Gauss Newton method is an iterative 
method of the form 
 

( ) ( ) ( )aaa1a pθ̂θ̂ )(γ+=+  (8)
 
where )(ˆ aθ  is the estimate at the a-th iteration, γ(a) 
is the step size, and p(a) is the Gauss-Newton 
search direction computed by solving the linear 
least squares problem 
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where r(a) is the residual vector and J(a) is the 
Jacobian at the a-th iteration given by 
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A problem during the parameter estimation 

problem is that of ill conditioning due to the 
overparameterization (large number of weights) of 
the neural network that results in a nearly singular 
Jacobian. To deal with this difficulty, we used the 
truncated singular value decomposition of the 
Jacobian where small singular values are set equal 
to zero when solving (9). This results in improved 
convergence and more stable results. For 
derivations of the Jacobian and details on ill-
conditioning problems see [7,8] for more details. 

4. Simulation Results 
For the case of study, the parameters of the DC 
drive systems are given it Table 3 [5]. The motor 
is a 220 V, 550 rpm and 1hp permanent magnet 
DC motor. The experiment is conducted in open 

loop with no current loops or speed feedback. The 
armature excitation voltage is shown in Figure 2. 
This provides an operating speed range from ±57 
rad/sec. 

For experimental purposes the DC drive is 
simulated under the rated operation conditions 
using the Matlab software package.  The 
simulated data is collected and used in the 
estimation of the model parameters.   

We will examine 4 candidate models based on 
(5) where the mechanical equation is modified as 
follows 
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Fig. 2: Excitation Voltage for Open Loop Experiments. 

 
Explicit viscous friction term: 
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All load  torque embedded in the neural network: 
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We also considered 2 and 3 layer feedforward 
neural networks given by 
 

( ) ( ) 2112NN bbWtanhW ++ω=ω  (13)
 

( ) ( )( ) 321123NN bbbWtanhWtanhW +++ω=ω (14)

 
where Wi and bi represent the ith layer weight 
matrix and bias vector.   

The 49 elements of the gray model parameter 
vector is given by  
 

[ ]T1n1nmmaaa rsrsrsrsJBKLR ddWWˆˆˆˆˆθ KK=

 
where the bias and weight matrices of the network 
are arranged as a row string vectors rs(⋅).  



Combination of (11) and (13) is model A, (11) and 
(13) is model B, (12) and (13) is model C, and 
(12) and (14) is model D.  

The parameters were computed using the Gauss 
Newton method modified with the Truncated 
Singular Value Decomposition described 
previously. A maximum of 11 iterations was set as 
a stopping criterion. Our results were compared in 
terms of the error in the estimate of the physical 
parameters and in the approximation of the neural 
network to the nonlinear load curve. 
Table 3: PARAMETERS OF THE MOTOR AND INITIALIZATION 
VALUES. 

 
 

 
Actual Value 

 
Initial 
Estimate 

Armature Resistance Ra 7.56 Ω 6.4260 Ω 
Armature Inductance La 0.055 H 0.0468 H 

Torque Coefficient Ka 3.475 N-m/A 3.0233 N-m/A 
Viscous Friction Coeff. 
Bm 

0.03475 N-m-
s 

0.0313 N-m-s 

Inertia Jm 0.06 Kg-m2 0.0612 Kg-m2 

4.1 Initialization 
An important part of the identification is 
initialization of the network to reduce the initial 
approximation error. This was done by pre-
training the network to data taken during steady-
state operation and with prior estimates of Ka and 
Bm.  

In all cases, the physical parameters were 
initialized to the values shown in Table 3. 

4.2 Fan Load 
The estimated values for this case are shown in 
Table 4. We only show the estimates for the 
physical parameters, which are compared to actual 
values as away to evaluate the goodness of the 
identified model. We can see that the only bad 
estimate was that of Bm. It is our belief that this is 
because the network tries to fit the viscous torque 
as part of the load torque causing errors in that 
parameter estimate.  

Figures 3 and 4 compare the load torque 
characteristic with the identified characteristic 
using the neural network plus viscous damping 
combination as in models A and B and the 
network by itself as in models C and D. In both 
cases the identified load shows good agreement 
within the range of speeds where the system was 
excited ±57 rad/sec. Figures 5 and 6 show 
validation results where the performance of the 

identified model and actual system are compared 
in a transient different from that used for 
identification. Models B and D have the worst 
performance in terms of prediction error. Models 
B and D are the ones where a three layer network 
is used. 
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Fig. 3: Estimated and actual fan characteristics. 
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Fig. 4: Estimation error for fan characteristic. 
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Fig. 5: Validation results for identified drive with fan load. 
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Fig. 6: Model prediction error with validation data. 
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Fig. 7: Estimated versus actual friction load characteristic. 
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Fig. 8: Error in friction load characteristic estimation. 

4.3 Nonlinear Friction Load 
The physical parameter estimates for this case are 
shown in Table 5. Results are similar to those for 
the fan load. We observe low errors in all 
estimates except Bm. The estimated load 
characteristic and corresponding estimation error 
are shown in Fig. 7 and 8. This is a harder model 
to estimate because of the discontinuity at the 
origin. There is where the largest errors occur in 

all cases. The best-fit overall is achieved by model 
B, which is the model with the largest number of 
parameters. Model B includes viscous friction and 
a three-layer network. It is reasonable to expect 
that the larger number of degrees of freedom can 
handle the modeling of friction better. Validation 
runs shown in Figs. 9 and 10 show in general 
relatively good agreement for all models with best 
performance for model B and worst performance 
for model D. 

0 0.5 1 1.5 2 2.5 3-20
-15
-10

-5
0
5

10
15
20

time (sec)

C
ur

re
nt

 (A
m

ps
)

0 0.5 1 1.5 2 2.5 3-30
-20
-10

0
10
20
30
40
50
60

time (sec)

Sp
ee

d 
(r

ad
/s

ec
)

System
Model A
Model BModel C
Model D

System
Model A
Model BModel C
Model D

 
Fig. 9: Validation results for friction load case. 

4.4 Comparison between model 
structures 

All models in general did a good job in fitting the 
data. Two aspects are important to evaluate the 
closeness to actual system structure achieved by 
including the viscous friction term and the higher 
number of degrees of freedom achieved by 2 or 
three layers. When comparing structure including 
the viscous friction term always resulted in a 
model with better characteristics A performs better 
than C and B performs better than D regardless of 
the load, which points out to the fact that the 
closer the model structure to the actual physical 
structure, the better should be the model 
performance.  

In terms of the number of degrees of freedom, 
we get mixed results depending on the 
characteristics of the load. In the case of the 
continuous load, the extra number of degrees of 
freedom seems to worsen the identification: A 
does better than B and C does better than D.  In 
the case of the discontinuous load, we get mixed 
results where B does better than A but C does 
better than D. It will be beneficial to investigate 
how pruning methods can help in this kind of 
situation. 



 
Table 4:  Physical Parameter Estimates for the Fan Load Case. 

Model aR̂  %err aL̂  %err aK̂  %err mB̂  %err mĴ  %err 
A 7.586 0.347 0.05484 0.291 3.4733 0.0484 0.03476 7.815 0.0677 0.3812
B 7.583 0.311 0.05482 0.320 3.4735 0.0426 0.0232 33.12 0.0677 0.3812
C 7.581 0.289 0.05480 0.359 3.4736 0.0398 - - 0.0678 0.2925
D 7.581 0.289 0.05486 0.237 3.4736 0.0398 - - 0.0678 0.2925

 
Table 5:  Physical Parameter Estimates for the Friction Load Case. 

Model aR̂  %err aL̂  %err aK̂  %err mB̂  %err mĴ  %err
A 7.580 0.277 0.05494 0.117 3.4744 0.0177 0.03344 3.753 0.0678 0.330 
B 7.581 0.282 0.0550 0.010 3.4744 0.0162 0.2795 19.55 0.0677 0.4319 
C 7.5807 0.273 0.0548 0.273 3.4743 0.019 - - 0.0679 0.2251 
D 7.5848 0.328 0.0549 0.216 3.4742 0.021 - - 0.0678 0.3451 
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Fig. 10: Error in model prediction for validation case. 

5. Conclusions  
The modeling approach presented illustrates the 
potential of gray-box modeling for identification 
of electric drives with unknown mechanical loads. 
The convenience of this model is that the 
identified physical parameters give information 
about the physical system while the neural 
network based black-box model part would allow 
to model different types of loads independently of 
their actual form and therefore can be used for 
self-tuning or self-calibration of electric drives. A 
self-calibration procedure would be able to tune 
drive performance for multiple mechanical loads 
with no need for detailed load modeling. 
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