
Equivalent Transformations for Invariant Parallel Functions

MARK TRAKHTENBROT
Computer Science Department

Holon Academic Institute of Technology
52 Golomb St., POB 305, Holon 58102

ISRAEL

Abstract: - Monotonic parallel functions were extensively studied in research on semantics of programming
languages. While most of this research concentrated on expressive power of parallel functions, this paper
focuses on development of a rich catalog of equivalent transformations associated with invariant parallel
functions. Such functions are independent of interpretation of their definition domain, and they can be
naturally used as additional control means to enrich models of sequential programs (such as recursive program
schemes). It is shown how the offered transformations can be applied for a variety of goals, such as
regularization of terms and reducing the strength of the used operations.

Key-Words: - Program schemes, Parallel functions, Invariant functions, Equivalent transformations.

1 Introduction
The concept of monotonic function is central to
research on semantics of programming languages,
starting from works by D.Scott in early 70-ies [2].
Parallel monotonic functions were first considered
in paper [1]. Over years, research on parallel
functions concentrated mainly on their impact on
expressive power of languages [1,3-7]. In particular,
the work [7] investigated the use of such functions
in the language of recursive program schemes.
Program schemes use non-interpreted function
symbols along with interpreted ones. Behavior of
interpreted functions used in program schemes
shouldn't depend on interpretation of their definition
domain; this was formalized in [7] in terms of
invariant monotonic functions. Based on this
concept, hierarchies of recursive schemes were
studied that are obtained when the language of
recursive schemes is augmented with various
parallel invariant functions.
 This paper puts focus on another important
aspect in the study of augmented classes of recursive
program schemes, namely on their equivalent
transformations. Such transformations can be
applied for a wide variety of goals: optimization,
simplification, check of equivalence between
different implementations, transformation into
special "regular" forms, reduction of the strength of
used operations, etc. The paper investigates
equivalent transformations for a simple and yet
powerful language of terms in which every
sequential and parallel invariant function can be
expressed. The main objective is to develop a rich
catalog of transformations for manipulations on
terms, in order to match the above goals.

2 Basic Concepts
First, let's shortly recall some well-known concepts.
Let D be any domain, extended with the undefined
value ω that is viewed as a result of non-
terminating computation process. A partial order ⊆
is then defined: non-ω elements are non-
comparable, and ω is less than any other element;
we write yx ≡ when yx ⊆ and xy ⊆ . Finally,
function f is monotonic with respect to ⊆ if:

).,...,(),...,(][11 nnii yyfxxfyxi ⊆→⊆∀
Monotonic functions are classified as sequential and
parallel. Furthermore, a monotonic function f is
called invariant [7] if for any 1-1 mapping
h: DD → such that ωω ≡)(h , the following
holds:))(())(),...,((1 xfhxhxhf n ≡ .
 All functions below are invariant, and they don’t
depend on the nature of domain D:
- equality x = y; gets value ω when ω≡x or ω≡y
(can calculate the arguments in any order)
- conditional function ≡),,(yxif α if α then x else y
is sequential: first calculate α ; if the process
terminates then calculate x or y respectively
- parallel),,(yxIF α with xxxIF ≡),,(ω ; here all
arguments should be calculated in parallel)
- parallel voting function),...,(1 n

m
n xxV

(nmn <<]2/[) : if at least m arguments get the
same non-ω value then m

nV also gets this value;
otherwise ω≡)(xV m

n .

3 Transformation of Terms Over a
Full Basis for Invariant Functions
Recall (see [6]) the following fact:
 Theorem 1. Every invariant function is
expressible as composition of functions IF, 2

3V
(further mentioned just as V), equality predicate =,
variables and the constant ω .
 In other words, functions IF, V, = constitute a
basis in the class of invariant functions. The set of
such terms is denoted as T(IF, V, =). Two terms in
T(IF, V, =) are called equivalent if for any
assignment of values to their variables they produce
the same result in D.
 Below we present a catalog of transformations for
terms in T(IF, V, =), followed by their analysis that
includes warnings against some "obvious"
simplifications that turn out to be "false friends".
 In the sequel, instead of),,(yxIF α we write
IF α then x else y. Latin letters are used to denote
terms in T(IF, V, =) that get values in D , while
Greek letters are used for term with Boolean values.
For example, t could denote the term

V(IF (V(x,y,z)=u) then x else v , u, z)
while α could stand for

),,(yxV ω = IF (vzyxV =),,() then u else x

The transformations are:
(1) xyyx =↔=
(2) ωω ↔=x
(3) IF α then x else x ↔ x
(4) IF ω then x else y ↔ IF x=y then x else ω
(4') IF ω then x else y ↔ IF x=y then y else ω
(5) IF α then x else (IF α then y else z) ↔
 IF α then (IF α then x else y) else z
(6) IF α then (IF β then x else y)
 else (IF β then t else z) ↔
 IF β then (IF α then x else t)
 else (IF α then y else z)
(7) IF (IF α then β else γ) then x else y ↔
 IF α then (IF β then x else y)
 else (IF γ then x else y)
(8) x = (IF α then y else z) ↔
 IF α then x=y else
 (IF α then (IF z=y then x=y else ω) else x= z)
(9)),,(yxxV ↔ x
(10)),,(),,(yzxVzyxV ↔
(10')),,(),,(zxyVzyxV ↔
(11))),,(,,()),,(,,(ztxVyxVzyxVtxV ↔
(12) ↔),,(ωyxV IF x=y then x else ω

(13) IF (xzyxV =),,() then t else u ↔
 IF x=y then t else (IF x=z then t else
 (IF y=z then u else (IF t=u then t else ω)))
(14) V(IF α then x else y, t, z) ↔
 IF α then),,(ztxV else),,(ztyV
(15) IF (tzyxV =),,() then u else v ↔
V(
IF (xzyxV =),,() then (IF x=t then u else v) else u,
IF (yzyxV =),,() then (IF y=t then u else v) else u,
IF (zzyxV =),,() then (IF z=t then u else v) else u
)
 Theorem 2. For any terms 1τ and 2τ belonging
to T(IF, V, =), if 2τ is obtained from 1τ by
application of one or more of the transformations 1-
15, then 1τ and 2τ are equivalent.
 Proof: Straightforward.

 Let's consider now some nuances related to the
above transformations:
1-2) Note that x=x ↔ true can't be added here,
because if x is equal to ω then x=x is also equal to
ω , and not to true.
4-4') It follows from these rules that:

IF x=y then x else ω ↔ IF x=y then y else ω
Note that a similar "rule":

IF x=y then x else z ↔ IF x=y then y else z
is not correct: if x is equal toω and y=z, then the left
side equals ω , while the right side is equal to z.
5) For sequential function),,(yxif α the following
holds: if α then x else (if α then y else z) ↔
if α then x else z . However, a similar "rule" for
parallel conditional),,(yxIF α is not correct
(consider, for example, the case when α is
undefined, while x, y, z differ fromω and zx = ,

yx ≠). Hence instead our rule (5) is required.
7-8) These rules use two types of function IF: one
that gets values in domain D and another one that
gets Boolean values. Note that terms in T(IF, V, =)
are built using only the first type of IF; boolean
version of IF appears only in intermediate stages of
transformation, when rule (8) is applied.
8) The "obvious" rule x = (IF α then y else z) ↔
IF α then x=y else x=z is not correct. Indeed, ifα is
undefined and x, y, z have pair wise distinct values
that differ fromω , then the term on the left side
equalsω while the one on the right side is false.
8, 14) In general, if we consider composition of an
arbitrary monotonic function f with parallel
conditional IF, then the correct way to commute
between the two is described by the following rule:

f(…,IF α then x else y, …) ↔
IF α then f(…,x,…) else
 (IF α then (IF x=y then f(…,x,…) else f(…,ω ,…))
 else f(…,x,…))
Transformation (8) is an instance of this more
general rule, with the equality predicate standing for
f. Note that sometimes getting the IF out of f can be
done in a simpler way, as seen in our rule (14),
where the voting function V stands for f.

4 Transformation of Terms into a
Regular Form
Denote by T(V) the set of all terms obtained by
composition of the voting function V, variables and
the constant ω . We define the set TreeT(IF, V, =)
of tree-terms as follows:
1)),,()(=∈→∈ VIFTreeTxVTx
2))(, VTyx ∈ , →=∈),,(, VIFTreeTtz
 IF x=y then t else z),,(=∈ VIFTreeT
Clearly, every term in TreeT(IF, V, =) can be
represented as a tree in which leaves correspond to
terminals of the term (that belong to T(V)), while
other nodes correspond to the term's tests. For
example, for term:
 IF(V(x,y,z) = x) then y else
 (IF z=x then V(y,z,t) else t)
we get the following tree:

 xzyxV =),,(

 false true

 z = x y

 false true

 t),,(tzyV

Here xzyxV =),,(and xz = are tests, while yt,
and),,(tzyV are terminals.
 Let's now define a set of so called regular terms.
It contains all terms),,(=∈ VIFTreeTτ such that
every test in τ is either the constant ω , or has the
form yx = where yx, are variables over D.
 Theorem 3. Every term in T(IF, V, =) can be
transformed into an equivalent regular term using
the transformation rules 1-15 defined in section 3.
 Proof. In fact, to transform a term into equivalent
regular term it is enough to apply the rules
1,2,7,8,10,10',13-15. This is achieved in several
steps:

 (a) The goal of the first one is to eliminate all
occurrences of function IF appearing in argument
positions of function V or of the equality predicate.
For this, rules 8 and 14 are applied while possible
(taking into account that arguments of V and = can
be switched using rules 1, 10 and 10'.
 (b) Rule 7 is then applied while possible; clearly,
this results in a tree-term from TreeT(IF, V, =).
 (c) Occurrences of function V in tests of a tree-
term are eliminated during the bottom-up traverse of
the tree (from its leaves to the root). Each time
occurrence of V in a test is found, we either apply
rule 13, or rule 15 followed by three applications of
rule 13. After that, rule 14 is applied repeatedly to
eliminate those occurrences of IF inside V that could
have been created in the case when rule 15 is used.
Note that after processing of one test containing V,
several new such tests can appear (e.g. when rule 13
is applied, and),,(wutVx ≡), However, the number
of occurrences of V in each of these tests as at least
by one smaller than the number of its occurrences in
the original test. This ensures termination of this
process after a finite number of iterations.
 (d) The obtained tree is again traversed bottom-
up, and so on. This way it is guaranteed that each
time a term of the form IF (V(x,y,z) = t) then u else v
is processed, there is no occurrence of V in tests of
terms u and v.
 (e) In the obtained term, simplifications according
to rule 2 are performed, finally leading to a regular
term, as required. Q.E.D.

5 More Transformations: Relying on
Relations Between Variables
Based on Theorem 3, only regular terms are
considered in the sequel.
 Recall [6] that to compute the value of term τ
under interpretation I (i.e. under some assignment of
values to all variables), a so called computing sub-
tree IQ of the term's tree Q is considered. The root

IQ coincides with the root of Q; if value of a test
already included in IQ is equal to true, false or ω ,
then its true-descendant, false-descendant, or both
descendants are also included in IQ . If all terminals
in IQ get the same value then τ gets this value;
otherwise its value under I is ω .
 Note that every node p in Q is reachable from its
root under some interpretation I, i.e. is included in

IQ for some I (at least when all variables have
valueω , i.e. are undefined). Moreover, if node p
contains a test yx = then it is possible to determine

those values that this test can get when p is reached.
This clearly depends on the tests traversed in the
path from Q's root to p, and on descendants of these
tests selected to continue the traverse. Without going
into further details, we'd like only to note the
following:
 (a) Assume that the true-(false-) descendant of a
test yx = was selected in the path leading from this
test to p. If p is reachable under interpretation I then
the value of yx = in p under I may equal true
(false) or ω , but not false (true).
 (b) Assume that the true-descendant of a test

yx = was selected in the path leading from this test
to p, and then later in this path the false-descendant
of another occurrence of yx = was selected. If p is
reachable under interpretation I then the value of

yx = in p under I equals ω .
 (c) Generalizing the above, assume that selection
of descendant for some test s contradicts to the
selection already made earlier in this path for other
tests kss ,...,1 (for example, true-descendants of

yx = and zy = were selected, but false-
descendant was selected for zx =). If p is
reachable under interpretation I then the value of at
least one of the tests kss ,...,1 in p under I equals ω .
 Let's now add more transformation rules,
denoting by pt the sub-term of t that corresponds to
the sub-tree of t's tree with root p).
(16) Let pt be of the form IF yx = then z else ω ,
and value of yx = in p is not equal to true. Then

pt ↔ ω .

(16') Let pt be of the form IF yx = then ω else z,
and value of yx = in p is not equal to false. Then

pt ↔ω .

(17) Let pt be of the form IF yx = then u else w ,
and value of yx = in p is equal to ω . Then

pt ↔ IF ω then u else w.
(18) Let p be such terminal of term t that contains
sub-term V(x,y,z) , and value of yx = in p is not
equal to true. Then the following holds in p:
 V(x,y,z) ↔ IF zx = then z else
 (IF zy = then z else ω)
 Note that application of rule 18 may lead to a
non-tree and even non-regular term (for example if
terminal p contains term V(V(x,y,z),u,w)) . However,
in such cases regularization can again be performed,
according to Theorem 3.

6 Reducing the Strength of Used
Operations
As was shown in [6], function V can not be
expressed as composition of conditional IF and the
equality predicate = , so that T(IF, =) is a proper
subset of T(IF, V, =). In other words, in general case
it is impossible to eliminate occurrences of V from
terms in T(IF, V, =). The following Theorem 4,
along with Theorem 3, establishes an important
class of terms in which such elimination is possible.
 Theorem 4. Suppose that V appears only in tests
of term),,(=∈ VIFTreeTτ . Thenτ can be
transformed into an equivalent regular term with no
occurrences of V in it.
 Proof. Application (as described above) of rules
15, 13 and 14 to a term of the form
IF (tzyxV =),,() then u else w leads to a regular
term in which all terminals are of the form V(u,u,w)
or V(w,w,u) – up to the order of the arguments. But
then rule 9 (taking into account 10 and 10') allows to
eliminate such occurrences of V. Hence if there were
no V's in terms u and w then the obtained regular
term also doesn't contain any occurrence of V.
Q.E.D.
 In some cases, even though full elimination of V
can not be achieved, it is possible at least to reduce
the number of occurrences of V . For example, this
can be done when rule 18 is applicable. Another
example is shown below (for simplicity we skip all
steps where rules 10 and 10' are applied):
 V(V(x,y,z,),y,V(x,y,t)) →←11 V(t,y,V(x,y,V(x,y,z)))
→←11 V(t,y,V(x,z,V(x,y,y))) →←9 V(V(x,y,z),y,t)

7 Conclusion
Invariant parallel functions can be naturally used in
various types of program schemes (e.g. in recursive
schemes) to enrich their control means. As shown in
author's earlier publications, use of such functions in
sequential recursive schemes leads to a rich
hierarchy of extended schemes. This paper studies
equivalent transformations associated with invariant
parallel functions. A rich catalog of transformations
is developed for terms over a full basis in the class
of invariant functions. It is then shown how they can
be applied for a variety of goals, such as
regularization of terms and reducing the strength of
the used operations. The offered transformations can
be further used in program schemes for
optimization, simplification, check of equivalence
between different implementations, etc.

References:
[1] M. Paterson M. and C.Hewitt, Comparative

schematology. Record of Project MAC
Conference on Concurrent Systems and
Parallel Computation, ACM, 1970, pp. 119-
128

[2] D. Scott, Outline of a mathematical theory of
 computation. Technical Monograph PRG-2,
Oxford University, Oxford, 1970

[3] A.Stoughton, Interdefinability of parallel
operations in PCF. Theoretical Computer
Science, Vol. 79, No.2, 1991, pp.357-358.

[4] M.Escardo, M.Hofmann, T.Streicher, On the
non-sequential nature of the interval-domain
model of exact real-number computation,
Workshop on Domains V, Darmstadt,
September 1999

[5] M.Trakhtenbrot, On representation of sequential
and parallel functions. Proceedings of Fourth
Symposium on Mathematical Foundations of
Computer Science, LNCS Vol.32, 1975,

 pp. 411-417.
[6] M. Trakhtenbrot, Relationships between classes

of monotonic functions, Theoretical Computer
Science, Vol.2, No.2, 1976, pp.225-247

[7] M. Trakhtenbrot, Parallel functions in recursive
program schemes, WSEAS Transactions on
Mathematics, Vol.2, No.2, 2003, pp.151-155.

