
Equivalent Transformations for Invariant Parallel Functions  
 

MARK TRAKHTENBROT  
Computer Science Department  

Holon Academic Institute of Technology  
52 Golomb St., POB 305, Holon 58102  

ISRAEL  
  

 
Abstract: - Monotonic parallel functions were extensively studied in research on semantics of programming 
languages. While most of this research concentrated on expressive power of parallel functions, this paper 
focuses on development of a rich catalog of equivalent transformations associated with invariant parallel 
functions. Such functions are independent of interpretation of their definition domain, and they can be 
naturally used as additional control means to enrich models of sequential programs (such as recursive program 
schemes). It is shown how the offered transformations can be applied for a variety of goals, such as 
regularization of terms and reducing the strength of the used operations.  
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1   Introduction  
The concept of monotonic function is central to 
research on semantics of programming languages, 
starting from works by D.Scott in early 70-ies [2]. 
Parallel monotonic functions were first considered 
in paper [1]. Over years, research on parallel 
functions concentrated mainly on their impact on 
expressive power of languages [1,3-7]. In particular, 
the work [7] investigated the use of such functions 
in the language of recursive program schemes. 
Program schemes use non-interpreted function 
symbols along with interpreted ones. Behavior of 
interpreted functions used in program schemes 
shouldn't depend on interpretation of their definition 
domain; this was formalized in [7] in terms of 
invariant monotonic functions. Based on this 
concept, hierarchies of recursive schemes were 
studied that are obtained when the language of 
recursive schemes is augmented with various 
parallel invariant functions.  
     This paper puts focus on another important 
aspect in the study of augmented classes of recursive 
program schemes, namely on their equivalent 
transformations. Such transformations can be 
applied for a wide variety of goals: optimization, 
simplification, check of equivalence between 
different implementations, transformation into 
special "regular" forms, reduction of the strength of 
used operations, etc. The paper investigates 
equivalent transformations for a simple and yet 
powerful language of terms in which every 
sequential and parallel invariant function can be 
expressed. The main objective is to develop a rich 
catalog of transformations for manipulations on 
terms, in order to match the above goals.  

2   Basic Concepts 
First, let's shortly recall some well-known concepts. 
Let D be any domain, extended with the undefined 
value ω  that is viewed as a result of non-
terminating computation process. A partial order  ⊆  
is then defined: non-ω  elements are non-
comparable, and ω  is less than any other element; 
we write yx ≡ when  yx ⊆  and xy ⊆ . Finally, 
function f is monotonic with respect to ⊆  if:  

).,...,(),...,(][ 11 nnii yyfxxfyxi ⊆→⊆∀  
Monotonic functions are classified as sequential and 
parallel. Furthermore, a monotonic function f is 
called invariant [7] if for any 1-1 mapping 
h: DD →  such that ωω ≡)(h , the following 
holds: ))(())(),...,(( 1 xfhxhxhf n ≡ . 
     All functions below are invariant, and they don’t 
depend on the nature of domain D: 
- equality x = y; gets value ω when ω≡x  or ω≡y  
(can calculate the arguments in any order) 
- conditional function  ≡),,( yxif α  if α then x else y  
is sequential: first calculate α ; if the process 
terminates then calculate x or y respectively 
- parallel ),,( yxIF α  with xxxIF ≡),,(ω  ; here all 
arguments should be calculated in parallel) 
- parallel voting function ),...,( 1 n

m
n xxV  

( nmn <<]2/[ ) : if at least m arguments get the 
same non-ω value then m

nV  also gets this value; 
otherwise ω≡)(xV m

n . 
 
 



3   Transformation of Terms Over a 
Full Basis for Invariant Functions 
Recall (see [6]) the following fact: 
    Theorem 1. Every invariant function is 
expressible as composition of functions IF, 2

3V  
(further mentioned just as V), equality predicate =, 
variables and the constant ω .   
    In other words, functions IF, V, = constitute a 
basis in the class of invariant functions. The set of 
such terms is denoted as    T(IF, V, =). Two terms in 
T(IF, V, =) are called equivalent if for any 
assignment of values to their variables they produce 
the same result in D. 
    Below we present a catalog of transformations for 
terms in T(IF, V, =), followed by their analysis that 
includes warnings against  some "obvious" 
simplifications that turn out to be "false friends". 
    In the sequel, instead of ),,( yxIF α  we write     
IF α then x else y. Latin letters are used to denote 
terms in T(IF, V, =) that get values in D , while 
Greek letters are used for term with Boolean values. 
For example, t could denote the term 

V( IF (V(x,y,z)=u) then x else v , u, z)  
while  α  could stand for  

),,( yxV ω = IF ( vzyxV =),,( ) then u else x  
 

The transformations are: 
(1) xyyx =↔=  
(2) ωω ↔=x  
(3) IF α  then x else x ↔  x  
(4) IF ω  then x else y ↔  IF x=y then x else ω  
(4') IF ω  then x else y ↔  IF x=y then y else ω  
(5) IF α  then x else (IF α  then y else z) ↔  
       IF α  then (IF α  then x else y) else z 
(6) IF α  then (IF β  then x else y)  
               else (IF β  then t else z)      ↔  
       IF β  then (IF α  then x else t)  
                 else (IF α  then y else z) 
(7) IF (IF α  then β else γ ) then x else y  ↔  
       IF α  then (IF β  then x else y)  
                else (IF γ  then x else y) 
(8) x = (IF α  then y else z)  ↔  
        IF α  then x=y else  
        (IF α  then (IF z=y then x=y else ω ) else x= z) 
(9) ),,( yxxV ↔  x 
(10) ),,(),,( yzxVzyxV ↔  
(10') ),,(),,( zxyVzyxV ↔  
(11) )),,(,,()),,(,,( ztxVyxVzyxVtxV ↔  
(12) ↔),,( ωyxV  IF x=y then x else ω  
 

(13) IF ( xzyxV =),,( ) then t else u    ↔  
          IF x=y then t else (IF x=z then t else 
           (IF y=z then u else (IF t=u then t else ω )))  
(14) V(IF α  then x else y, t, z)    ↔  
          IF α  then ),,( ztxV  else ),,( ztyV  
(15) IF ( tzyxV =),,( ) then u else v  ↔  
V( 
IF ( xzyxV =),,( ) then (IF x=t then u else v) else u, 
IF ( yzyxV =),,( ) then (IF y=t then u else v) else u, 
IF ( zzyxV =),,( ) then (IF z=t then u else v) else u 
) 
    Theorem 2. For any terms 1τ  and 2τ  belonging 
to T(IF, V, =), if  2τ  is obtained from 1τ  by 
application of one or more of the transformations 1-
15, then 1τ  and 2τ  are equivalent. 
    Proof: Straightforward. 
 
    Let's consider now some nuances related to the 
above transformations: 
1-2) Note that  x=x ↔  true can't be added here, 
because if x is equal to ω  then x=x is also equal to 
ω , and not to true. 
4-4') It follows from these rules that: 

IF x=y then x else ω  ↔  IF x=y then y else ω  
Note that a similar "rule": 

IF x=y then x else z ↔  IF x=y then y else z 
is not correct: if x is equal toω  and y=z, then the left 
side equals ω , while the right side is equal to z. 
5) For sequential function ),,( yxif α the following 
holds:     if α then x else (if α then y else z) ↔        
if α then x else z . However, a similar "rule" for 
parallel conditional ),,( yxIF α  is not correct 
(consider, for example, the case when α  is 
undefined, while x, y, z differ fromω  and zx = , 

yx ≠ ).  Hence instead our rule (5) is required. 
7-8) These rules use two types of function IF: one 
that gets values in domain D and another one that 
gets Boolean values. Note that terms in T(IF, V, =) 
are built using only the first type of IF; boolean 
version of IF appears only in intermediate stages of 
transformation, when rule (8) is applied. 
8) The "obvious" rule x = (IF α  then y else z) ↔  
IF α  then x=y else x=z is not correct. Indeed, ifα is 
undefined and x, y, z have pair wise distinct values 
that differ fromω , then the term on the left side 
equalsω  while the one on the right side is false.  
8, 14) In general, if we consider composition of an 
arbitrary monotonic function f with parallel 
conditional IF, then the correct way to commute 
between the two is described by the following rule:  
 



f(…,IF α  then x else y, …) ↔  
IF α  then f(…,x,…) else  
   (IF α  then (IF x=y then f(…,x,…) else f(…,ω ,…)) 
             else f(…,x,…) )  
Transformation (8) is an instance of this more 
general rule, with the equality predicate standing for 
f. Note that sometimes getting the IF out of f can be 
done in a simpler way, as seen in our rule (14), 
where the voting function V stands for f. 
 
  
4   Transformation of Terms into a 
Regular Form  
Denote by T(V) the set of all terms obtained by 
composition of the voting function V, variables and 
the constant ω .  We define the set TreeT(IF, V, =) 
of tree-terms as follows: 
1) ),,()( =∈→∈ VIFTreeTxVTx  
2) )(, VTyx ∈ , →=∈ ),,(, VIFTreeTtz  
       IF x=y then t else z  ),,( =∈ VIFTreeT   
Clearly, every term in TreeT(IF, V, =) can be 
represented as a tree in which leaves correspond to 
terminals of the term (that belong to T(V) ), while 
other nodes correspond to the term's tests. For 
example, for term:  
   IF(V(x,y,z) = x) then y  else  
                                    (IF z=x then V(y,z,t) else t)  
we get the following tree: 
 
                              xzyxV =),,(  
 
                        false         true 
 
                 z = x                     y 
 
           false              true    
   
              t                 ),,( tzyV  
 
Here  xzyxV =),,(  and  xz =  are tests, while yt,  
and ),,( tzyV  are terminals. 
    Let's now define a set of so called regular terms. 
It contains all terms ),,( =∈ VIFTreeTτ  such that 
every test in τ  is either the constant ω , or has the 
form yx =  where yx,  are variables over D. 
    Theorem 3. Every term in T(IF, V, =) can be 
transformed into an equivalent regular term using 
the transformation rules 1-15 defined in section 3. 
    Proof. In fact, to transform a term into equivalent 
regular term it is enough to apply the rules 
1,2,7,8,10,10',13-15. This is achieved in several 
steps: 

    (a) The goal of the first one is to eliminate all 
occurrences of function IF appearing in argument 
positions of function V or of the equality predicate. 
For this, rules 8 and 14 are applied while possible 
(taking into account that arguments of V and = can 
be switched using rules 1, 10 and 10'.   
    (b) Rule 7 is then applied while possible; clearly, 
this results in a tree-term from TreeT(IF, V, =). 
    (c) Occurrences of function V in tests of a tree- 
term are eliminated during the bottom-up traverse of 
the tree (from its leaves to the root). Each time 
occurrence of V in a test is found, we either apply 
rule 13, or rule 15 followed by three applications of 
rule 13. After that, rule 14 is applied repeatedly to 
eliminate those occurrences of IF inside V that could 
have been created in the case when rule 15 is used. 
Note that after processing of one test containing V, 
several new such tests can appear (e.g. when rule 13 
is applied, and ),,( wutVx ≡ ), However, the number 
of occurrences of V in each of these tests as at least 
by one smaller than the number of its occurrences in 
the original test. This ensures termination of this 
process after a finite number of iterations.   
    (d) The obtained tree is again traversed bottom-
up, and so on. This way it is guaranteed that each 
time a term of the form IF (V(x,y,z) = t) then u else v 
is processed, there is no occurrence of V in tests of 
terms u and v.  
    (e) In the obtained term, simplifications according 
to rule 2 are performed, finally leading to a regular 
term, as required. Q.E.D. 
 
 
5   More Transformations: Relying on 
Relations Between Variables 
Based on Theorem 3, only regular terms are 
considered in the sequel. 
    Recall [6] that to compute the value of term τ  
under interpretation I (i.e. under some assignment of 
values to all variables), a so called computing sub-
tree IQ  of the term's tree Q is considered. The root 

IQ  coincides with the root of Q; if value of a test 
already included in IQ  is equal to true, false or ω , 
then its true-descendant, false-descendant, or both 
descendants are also included in IQ . If all terminals 
in IQ  get the same value then  τ  gets this value; 
otherwise its value under I is ω . 
    Note that every node p in Q is reachable from its 
root under some interpretation I, i.e. is included in  

IQ  for some I (at least when all variables have 
valueω , i.e. are undefined). Moreover, if node p 
contains a test yx =  then it is possible to determine 



those values that this test can get when p is reached. 
This clearly depends on the tests traversed in the 
path from Q's root to p, and on descendants of these 
tests selected to continue the traverse. Without going 
into further details, we'd like only to note the 
following: 
    (a) Assume that the true-(false-) descendant of a 
test yx =  was selected in the path leading from this 
test to p. If p is reachable under interpretation I then 
the value of  yx =  in p under I may equal true 
(false) or ω , but not false (true). 
    (b) Assume that the true-descendant of a test 

yx =  was selected in the path leading from this test 
to p, and then later in this path the false-descendant 
of another occurrence of yx =  was selected. If p is 
reachable under interpretation I then the value of  

yx =  in p under I equals ω . 
    (c) Generalizing the above, assume that selection 
of descendant for some test s contradicts to the 
selection already made earlier in this path for other 
tests kss ,...,1  (for example, true-descendants of 

yx =  and zy =  were selected, but false-
descendant was selected for zx = ).  If p is 
reachable under interpretation I then the value of at 
least one of the tests kss ,...,1  in p under I equals ω . 
    Let's now add more transformation rules, 
denoting by pt the sub-term of t that corresponds to 
the sub-tree of t's tree with root p). 
(16) Let pt be of the form IF yx =  then z else ω , 
and value of yx =  in p is not equal to true. Then 

pt ↔ ω . 

(16') Let pt be of the form IF yx =  then ω else z, 
and value of yx =  in p is not equal to false. Then 

pt ↔ω . 

(17) Let pt be of the form IF yx =  then u else w , 
and value of yx =  in p is equal to ω . Then     

pt ↔  IF ω then u else w. 
(18) Let p be such terminal of term t that contains 
sub-term V(x,y,z) ,  and value of yx =  in p is not 
equal to true. Then the following holds in p: 
       V(x,y,z) ↔  IF zx = then z else  
                               (IF zy =  then z else ω ) 
    Note that application of rule 18 may lead to a 
non-tree and even non-regular term (for example if 
terminal p contains term V(V(x,y,z),u,w)) . However, 
in such cases regularization can again be performed, 
according to Theorem 3. 
  

 
6   Reducing the Strength of Used 
Operations 
As was shown in [6], function V can not be 
expressed as composition of conditional IF and the 
equality predicate = , so that T(IF, =) is a proper 
subset of T(IF, V, =). In other words, in general case 
it is impossible to eliminate occurrences of V from 
terms in T(IF, V, =). The following Theorem 4, 
along with Theorem 3, establishes an important 
class of terms in which such elimination is possible. 
    Theorem 4. Suppose that V appears only in tests 
of term ),,( =∈ VIFTreeTτ . Thenτ can be 
transformed into an equivalent regular term with no 
occurrences of V in it.  
    Proof. Application (as described above) of rules    
15, 13 and 14 to a term of the form                    
IF ( tzyxV =),,( ) then u else w leads to a regular 
term in which all terminals are of the form V(u,u,w) 
or V(w,w,u) – up to the order of the arguments. But 
then rule 9 (taking into account 10 and 10') allows to 
eliminate such occurrences of V. Hence if there were 
no V's in terms u and w then the obtained regular 
term also doesn't contain any occurrence of V. 
Q.E.D.    
    In some cases, even though full elimination of V 
can not be achieved, it is possible at least to reduce 
the number of occurrences of V . For example, this 
can be done when rule 18 is applicable. Another 
example is shown below (for simplicity we skip all 
steps where rules 10 and 10' are applied): 
 V(V(x,y,z,),y,V(x,y,t))  →←11   V(t,y,V(x,y,V(x,y,z))) 
→←11  V(t,y,V(x,z,V(x,y,y))) →←9  V(V(x,y,z),y,t) 

 
 
7   Conclusion 
Invariant parallel functions can be naturally used in 
various types of program schemes (e.g. in recursive 
schemes) to enrich their control means. As shown in 
author's earlier publications, use of such functions in 
sequential recursive schemes leads to a rich 
hierarchy of extended schemes. This paper studies 
equivalent transformations associated with invariant 
parallel functions. A rich catalog of transformations 
is developed for terms over a full basis in the class 
of invariant functions. It is then shown how they can 
be applied for a variety of goals, such as 
regularization of terms and reducing the strength of 
the used operations. The offered transformations can 
be further used in program schemes for 
optimization, simplification, check of equivalence 
between different implementations, etc.   
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