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Abstract:- Given a network with a set of nodes and a set of potential edges, we must decide what edges will be 
included in the design to satisfy demands between pairs of nodes. Each edge has associated a finite capacity, a 
fixed cost and routing costs. Uncertainty will be considered in important input parameters such as demands and 
routing costs and will be modeled through scenarios. The objective is to find a network design that is "good" across 
all scenarios potentially realizable. At the present time, there exists no exact algorithm that can solve large 
instances, common in several applications, in a reasonable period of time. A GRASP is proposed that gives 
solutions of acceptable quality.   
 
Key-Words: Robust optimization, Multicommodity network, Capacitated network design, Uncertain data, 
Heuristics. 
 

1 Introduction  
The network design problem consists of selecting, 
from an available set of potential edges, a subset of 
them which should be capable of transporting the 
demands of various goods. The selection process 
involves the minimization of the incurred costs 
(selection and routing costs). 
One common assumption in this kind of problem 
concerns the capacity of the edges, which can be 
considered finite or infinite. If capacity is considered 
finite, the problem becomes more difficult to solve. 
Other important assumption relates to the certainty or 
uncertainty of key problem parameters.  
Interesting results have been derived for the 
deterministic version of the problem, [1, 2, 4, 7], that 
is, when all parameters are considered known, but 
less effort has been directed towards the problem that 
manage uncertainty in some parameters, which is 
more realistic but harder and poses considerable 
algorithmic challenges.  
A common approach is to capture uncertainty using 
scenarios and formulating a deterministic equivalent 
problem, but it is well known that the solutions to 
such “worst-case” or “mean-value” problems are 
inadequate. 
It is also possible to know (or to estimate) the 
probability of occurrence of the random parameters 
and then use a stochastic optimization model to solve 

it [9]. The stochastic optimization approach recognizes 
the presence of multiple data instances that might be 
potentially realized in the future and typically the 
model will attempt to generate a decision that 
optimizes an expected performance measure. 
Nevertheless, the decision makers know that for any 
potentially realizable scenario they have to live with 
the consequences on system performance of the 
decision made. Risk averse decision makers are 
reasonable more interested in hedging against the risk 
of poor system performance for some realizations of 
data scenarios than in optimizing expected system 
performance over all potential scenarios or just 
performance of the most likely scenario. This is 
particularly important for decisions of unique nature 
and thus encountered only once. Thus the performance 
of a decision across all potentially realizable scenarios 
is important. A decision will be “robust” with respect 
to optimality if it remains “close” to optimal for any 
realization of the input data scenarios [8,12]. It has 
been used in diverse applications as the capacitated 
international sourcing problem [10], capacity 
expansion in telecommunications networks [11], etc. 
We tackle here a multicommodity capacitated network 
design problem on non-directed networks. Each edge 
has a finite capacity shared among every commodity 
using that edge regardless of the direction of flow. 
Uncertainty will be considered on demands of each 
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commodity and on the transportation costs, and will 
be modeled via scenarios. 
Gutiérrez, Kouvelis and Kurawarwala [6] address the 
uncapacitated version of the multicommodity 
network design problem. Taking into account that 
there exists no exact algorithm that can solve even 
medium-size instances, we propose a constructive 
procedure based on GRASP   to find a set of “good” 
initial solutions to the problem addressed here. 

2 Problem Formulation  
Let G= (N, A) be the undirected graph underlying the 
network to be designed, so we have: 
- N : set of nodes. 
- A : set of available edges.  
- A’  : set of arcs in the network. (For each Aji ∈},{  
there are two arcs in A’  : (i , j) and (j , i) ) 
- K: set of commodities. For each k ∈ K, O(k) and 
D(k) are their origin and destination points 
respectively.  
- fij :fixed cost of including edge {i,j} in the design. 
- uij :capacity of edge{i,j},which must be shared by 
all the commodities moving through it in any 
direction.  
The uncertainty is modeled in the demand of each 
commodity and in the transportation costs via a set of 
scenarios S  
- ds

k : demand of commodity k under scenario s S∈  . 
- cs

ijk : unit costs of sending commodity k through arc 
(i, j), under scenario  s∈  .  S
- ps the probability of occurrence of scenario s. 
 
The model has two types of decision variables. The 
first type is a binary variable that models the design 
selection, and is defined as yij = 1, if edge {i, j} is 
included in the network design, yij = 0, otherwise. 
The second type, which will be denoted by xs

ijk is a 
continuous variable representing the amount of flow 
of commodity k going through arc (i, j) under 
scenario s. Note that, although the network is 
undirected, the flow is directed.  
Suppose that y* is a set of values for the y variables 
and that zs is the optimal objective value associated 
with the following multicommodity network flow 
problem defined for each scenario s : 
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Constraints (2) are the standard flow conservation 
constraints, which are imposed for each commodity k 
and each node i. Inequalities (3) ensure that the flow of 
all commodities through any direction of edge {i, j} 
does not exceed the capacity of this edge and prohibit 
flow through inactive edges (that is, edges not included 
in the design). The usual non-negativity constraints are 
set in (4). 
 
Our objective is  to find values for the y variables that 
minimizes the following function   
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This means that our objective function penalizes only 
the positive deviations from the expected value, i.e. , 
we penalize those situations in which the objective 
value in a given scenario exceeds the expected cost. 
Note that ω  is a factor that the decision maker can 
adjust to give more or less importance to the risk 
component of the objective function. The resulting 
model becomes a mixed non-linear program for which 
we have developed a heuristic procedure based on 
GRASP constructions.  
 
3 Solution Method 
Our solution method is based on GRASP 
constructions. GRASP, or Greedy Randomized 
Adaptive Search Procedure, is a metaheuristic that 
usually applies a randomized greedy constructive 
heuristic. Most GRASP implementations also include a 
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local search that is used to improve upon the 
solutions generated with the randomized greedy 
function. Details of the methodology and a survey of 
applications can be found in [13]. 

The design and implementation of heuristics requires 
an efficient computational representation of 
solutions. This requirement is accomplished here by 
splitting a solution into independent elements, one 
element by commodity, called blocks of paths and 
denoted by Bk. Then, for each commodity k whose 
demand will be transported on the network, a block 
Bk, formed by one or more paths selected from a list 
of shortest paths, is generated. Even though 
commodities may share the capacity of the edges, the 
blocks of paths are considered independent from each 
other.  

 
3.1 Generation of Shortest Paths 
The method for constructing a solution begins with 
the generation of paths. Therefore, q shortest paths 
between each origin-destination pair in the network 
are found, where q is a parameter given during 
implementation. Three different types of arc lengths 
were considered, and in order to assign the same 
importance to each type of length, q/3 different paths 
were obtained for each one of those different lengths: 

( ) ( )













++=   

D

D - u 
     f  C   lenght  1. k

k
ij

ijijk
k
ij 1  

( )




























++=
∑
∑

∈

∈   
D

D - u 
     f  C   lenght  2.

Hh

h
Hh

h
ij

ijijk
k
ij 1  

( ) 







++=

´
    f  C   lenght  3. ij

ijijk
k
ij φ

φ
1  

 

where: 

{ }s
kSs

k d  max  D ∈=   Kk ∈∀

( )s
ijkijk c  E  C =  = ( )∑

∈Ss

s
ijks c  p  Kk A´,j) (i, ∈∈∀  (6) 

The list of q shortest paths for commodity k will be 
denoted by LPk . 

 
3.2 Constructing a solution 

As it is the case in GRASP implementations, the 
constructive phase has two main features: adaptive 
greedy measures, and random selection. In addition, 
adaptive memory features have been included here, as 
proposed by Fleurent and Glover [5] to retain and 
analyze the characteristics of selected solutions and so 
providing a base for improving later executions of the 
constructive process. A set Ssol of r elite solutions is 
generated and updated (if necessary) each time a 
solution is generated. At first, Ssol contains r “null” 
solutions with infinite cost, where r is a parameter 
given during implementation. As long as feasible 
solutions are being generated, they may replace those 
in Ssol . 

The constructive mechanism produces a solution 
incorporating one element (i.e. a path) at a time, so in 
each step of the process, there is at hand a partial 
solution. An element that can be selected as part of a 
partially constructed solution is called a candidate 
element. To determine which element will be selected 
to be included in a partial solution a greedy function is 
used. In order to introduce some randomness to this 
procedure a restricted candidate list (RCL) is used for 
each commodity. This list, from which an element is 
randomly selected, is formed by high quality elements, 
that is, candidate elements with the best values of their 
greedy function. The length of this list has been 
considered fixed. 

Once an element has been added to the partially 
constructed solution, the values of the greedy function 
must be reevaluated. This makes the procedure acquire 
the adaptivity feature that characterizes it.  

3.2.1 Evaluating the paths 

The selection of a path must answer the following 
question: “which paths are most likely to be selected 
from our set of q shortest paths?” 
In order to learn from previously generated solutions 
and previously selected paths, some sort of evaluation 
is needed. Let value(σ*, p) be the function which 
evaluates the benefit of including path p in σ*, the 
solution being created. This function  is defined in 
such a way that larger values  correspond to better 
choices. Now, let’s define the function intensity(σ*, p), 
larger values of it means that this choice occurs more 
frequently in the best members of Ssol. 
An evaluation that takes into account both value and 
intensity of a choice may be defined as a monotone 
increasing function of its arguments as follows: 
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E (σ*, p) = λ value(σ*, p) + intensity(σ*, p)        (7) 

Different values of λ in the will cause more emphasis 
on the diversity or on the intensity term which in turn 
will guide the selection of paths. Below we describe 
each of this functions. 

To define the function value other measures must 
first be established. Let C(Bk, p) be the function that 
represents the cost of assigning path p to Bk:    
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where Gm is the set of paths contained in each Bm. 
Define now best_cost(LPk) = min{T (σ*,l) : l ∈ LPk} 
as the minimal cost in that list. The cost of each path 
is normalized considering best_cost(LPk) in such a 
way that the value of the function defined for each p 
belonging to that list is calculated as: 

value(σ*, p) = best_cost(LPk) / T (σ*, p)   (10) 

It can be noticed that function value(σ*, p) will take 
values in the range [0,1]. 

Consider now the set Ssol of elite solutions. Let 
Cost(σ) be the cost of a solution measured by the 
value of its objective function. Define best_cost(Ssol) 
= min {Cost(σ):σ∈ Ssol }. The cost of each solution 
in set Ssol  is then normalized in the same way that 
was done for paths. Therefore, a function Value is 
defined for each solution in Ssol as follows: 

Value(σ) = best_cost(Ssol) / Cost(σ)    (11) 

This value represents a crude measure of the “strength” 
of paths in σ. Now, define the intensity function of 
assigning path p to the new solution σ*. This function 
will take into account the frequency of this path in set 
Ssol.  
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Paths in LPk are ordered according to their evaluation 
function (7) . 
 
3.2.2 Construction of RCLk and Selection of Paths 
from LPk 
A fixed length for the RCLk is considered and only 
those best evaluated paths, according to function (7) 
are included. Experiments showed that a 10% of q is 
appropiate. 
In addition to what has been said, and in order to give 
the best evaluated paths a greater opportunity of being 
selected, E(s*, p) will be mapped into positive values 
over RCLk. Then the probability of selecting path p 
from RCLk, denoted Π(s*, p), is established to be 
strongly biased toward choosing the members of RCLk 
with larger E(s*, p) values. 

 For each path in RCLk, the probability of being 
selected is defined as follows: 
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3.2.3 Updating Set  of Elite Solutions 

The constructive process will be guided by using the 
set Ssol  of elite solutions. Initially, Ssol  contains r 
“null” solutions with infinite cost, where “r” is a 
parameter given during the implementation phase. First 
“r” generated solutions by GRASP take place in Ssol . 
From that moment on, any solution being created will 
replace some other in Ssol  if the following is achieved: 
it is better than the best solution in Ssol  or else, it is 
better than the worst solution in Ssol  but distant enough 
from the rest of solutions in Ssol . 

The distance between two solutions considers how 
many different paths are in each of the solutions and  is 
defined as follows: 
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where ti is the characteristic vector of solution si 
corresponding to the paths (taken from LPk) included 
in the block of paths for each commodity k.  hi is the 
number of paths used in solution i.  

 

3.3 Improving a solution 
Once a block of paths is completed for a new solution 
being created, a routine called “improvement routine” 
is then executed. Basically, the improvement routine 
consists on sorting the paths to obtain a better 
distribution with lower cost, if this were possible.  

 
4 Computational Experiment   
C was used as the programming language to 
implement the procedures, which were run on a 
SUNTM Ultra 10 computer with SolarixTM r.7 
operating system. The optimal solutions of each 
scenario were obtained using Cplex  8.0 . 
A total of 20 instances with 20 nodes, 140 edges (280 
arcs), 10 commodities and 10 scenarios were 
generated to carry out the experiment. The following 
parameters were used: 

s
kd   Uniformly distributed in the range [60,100].  
s
ijkc  Uniformly distributed in the range [60, 100]. 

uij Uniformly calculated in the following range:  
0.8 ,1.2k kD D ⋅ ⋅   

A ratio r is calculated for each problem. This ratio 

takes into account the fixed and variable costs and is 

used to classify the generated instances according to 

the relative importance of the former over the latter.  
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For instances with predominant fixed costs (f) this 
ratio varies between 1 and 1.5 ; for instances with 
predominant variable costs (v) varies between 10 and 
12. 
Loosely and tightly capacitated instances were 
obtained applying the following capacity ratio: 
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and the ranges considered were: (6-8) for loose 
instances(l) and (12-16) for tight instances (t). 

For each one of the instances the procedure was tested 
and the network design obtained is evaluated in each 
scenario and compared to the optimal solution in this 
scenario.  
The first column shows the name of each instance. 
Column 2 and 3 show the expected cost, across all 
scenarios, of the optimal solutions found by Cplex, and 
of the solutions found by our procedure respectively. 
The percentages shown in column 4 are the expected 
deviations across all scenarios. 
 

GRASP GRASP

Instance Expected Cost Expected Cost Vs. CPLEX 1

201010fl01 939,726.26 940,174.13 0.05%
201010fl02 1,256,226.46 1,398,482.88 11.32%
201010fl03 945,933.69 1,018,115.63 7.63%
201010fl04 1,090,628.81 1,156,137.88 6.01%
201010fl05 1,162,295.69 1,162,857.50 0.05%

Average "fl" 5.01%
201010vl01 201,019.00 217,889.50 8.39%
201010vl02 197,683.03 204,936.69 3.67%
201010vl03 172,621.19 173,479.80 0.50%
201010vl04 183,960.64 192,547.72 4.67%
201010vl05 176,044.25 177,474.84 0.81%

Average "vl" 3.61%
201010ft01 2,488,105.76 2,556,587.50 2.75%
201010ft02 2,404,639.78 2,622,363.00 9.05%
201010ft03 2,435,707.04 2,563,850.00 5.26%
201010ft04 2,203,944.35 2,403,081.00 9.04%
201010ft05 2,329,129.67 2,526,654.75 8.48%

Average"ft" 6.92%
201010vt01 316,599.11 333,445.44 5.32%
201010vt02 327,795.00 351,654.97 7.28%
201010vt03 341,061.99 355,966.50 4.37%
201010vt04 342,302.61 356,045.78 4.01%
201010vt05 314,085.75 356,282.22 13.43%

Average "vt" 6.88%

Total Average 5.61%

CPLEX 1

Table 1. 
 
5 Conclusions 
In this paper, the robust network design problem with 
finite capacities was addressed. Solving this kind of 
problems is a difficult, but an important task and more 
research in this area has to be undertaken. 
Computational experiments have shown that the 
proposed procedure is effective when tackling a 
network design problem with considerable uncertainty 
in data. Size, number of commodities and tight 
capacities make this problem very difficult to solve. 
Results show that fixed costs are highly relevant when 
solving instances with this characteristic. When fixed 
costs are not very high, impact in results is not very 
relevant.  
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To the best of our knowledge, no other techniques 
have been used to solve this model, and the tested 
procedure represents a great advance. Nevertheless it 
is important to keep in mind that the solutions found 
by the procedure developed here are considered 
initial solutions , so suitable post-processing routines 
can be designed to improve them. 
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