
A Constructive Procedure for Finding Good Starting Solutions to the
Network Design Problem with Uncertain Parameters

FERNANDO PÉREZ, ADA M. ALVAREZ AND KARIM DE ALBA

Facultad de Ingeniería Mecánica y Eléctrica,
Universidad Autónoma de Nuevo León,

MONTERREY, NL, MÉXICO

Abstract:- Given a network with a set of nodes and a set of potential edges, we must decide what edges will be
included in the design to satisfy demands between pairs of nodes. Each edge has associated a finite capacity, a
fixed cost and routing costs. Uncertainty will be considered in important input parameters such as demands and
routing costs and will be modeled through scenarios. The objective is to find a network design that is "good" across
all scenarios potentially realizable. At the present time, there exists no exact algorithm that can solve large
instances, common in several applications, in a reasonable period of time. A GRASP is proposed that gives
solutions of acceptable quality.

Key-Words: Robust optimization, Multicommodity network, Capacitated network design, Uncertain data,
Heuristics.

1 Introduction
The network design problem consists of selecting,
from an available set of potential edges, a subset of
them which should be capable of transporting the
demands of various goods. The selection process
involves the minimization of the incurred costs
(selection and routing costs).
One common assumption in this kind of problem
concerns the capacity of the edges, which can be
considered finite or infinite. If capacity is considered
finite, the problem becomes more difficult to solve.
Other important assumption relates to the certainty or
uncertainty of key problem parameters.
Interesting results have been derived for the
deterministic version of the problem, [1, 2, 4, 7], that
is, when all parameters are considered known, but
less effort has been directed towards the problem that
manage uncertainty in some parameters, which is
more realistic but harder and poses considerable
algorithmic challenges.
A common approach is to capture uncertainty using
scenarios and formulating a deterministic equivalent
problem, but it is well known that the solutions to
such “worst-case” or “mean-value” problems are
inadequate.
It is also possible to know (or to estimate) the
probability of occurrence of the random parameters
and then use a stochastic optimization model to solve

it [9]. The stochastic optimization approach recognizes
the presence of multiple data instances that might be
potentially realized in the future and typically the
model will attempt to generate a decision that
optimizes an expected performance measure.
Nevertheless, the decision makers know that for any
potentially realizable scenario they have to live with
the consequences on system performance of the
decision made. Risk averse decision makers are
reasonable more interested in hedging against the risk
of poor system performance for some realizations of
data scenarios than in optimizing expected system
performance over all potential scenarios or just
performance of the most likely scenario. This is
particularly important for decisions of unique nature
and thus encountered only once. Thus the performance
of a decision across all potentially realizable scenarios
is important. A decision will be “robust” with respect
to optimality if it remains “close” to optimal for any
realization of the input data scenarios [8,12]. It has
been used in diverse applications as the capacitated
international sourcing problem [10], capacity
expansion in telecommunications networks [11], etc.
We tackle here a multicommodity capacitated network
design problem on non-directed networks. Each edge
has a finite capacity shared among every commodity
using that edge regardless of the direction of flow.
Uncertainty will be considered on demands of each

 1

commodity and on the transportation costs, and will
be modeled via scenarios.
Gutiérrez, Kouvelis and Kurawarwala [6] address the
uncapacitated version of the multicommodity
network design problem. Taking into account that
there exists no exact algorithm that can solve even
medium-size instances, we propose a constructive
procedure based on GRASP to find a set of “good”
initial solutions to the problem addressed here.

2 Problem Formulation
Let G= (N, A) be the undirected graph underlying the
network to be designed, so we have:
- N : set of nodes.
- A : set of available edges.
- A’ : set of arcs in the network. (For each Aji ∈},{
there are two arcs in A’ : (i , j) and (j , i))
- K: set of commodities. For each k ∈ K, O(k) and
D(k) are their origin and destination points
respectively.
- fij :fixed cost of including edge {i,j} in the design.
- uij :capacity of edge{i,j},which must be shared by
all the commodities moving through it in any
direction.
The uncertainty is modeled in the demand of each
commodity and in the transportation costs via a set of
scenarios S
- ds

k : demand of commodity k under scenario s S∈ .
- cs

ijk : unit costs of sending commodity k through arc
(i, j), under scenario s∈ . S
- ps the probability of occurrence of scenario s.

The model has two types of decision variables. The
first type is a binary variable that models the design
selection, and is defined as yij = 1, if edge {i, j} is
included in the network design, yij = 0, otherwise.
The second type, which will be denoted by xs

ijk is a
continuous variable representing the amount of flow
of commodity k going through arc (i, j) under
scenario s. Note that, although the network is
undirected, the flow is directed.
Suppose that y* is a set of values for the y variables
and that zs is the optimal objective value associated
with the following multicommodity network flow
problem defined for each scenario s :

s
ijk

Kk Aji

s
ijks xczMin

),(
∑ ∑
∈ ∈

= (1)

∑∑
∈∈ 








=−
=

=−
A} i) (j, :{j

s
k

s
k

s
ijk

A} j)(i, :{j

s
ijk

other 0
D(k) i if d
O(k) i if d

 x x (2)

*) (ijij
s
jik

Kk

s
ijk yuxx ≤+∑

∈

 Aji ∈∀ },{ (3)

0≥s

ijkx (4) ´),(, AjiKk ∈∀∈∀

Constraints (2) are the standard flow conservation
constraints, which are imposed for each commodity k
and each node i. Inequalities (3) ensure that the flow of
all commodities through any direction of edge {i, j}
does not exceed the capacity of this edge and prohibit
flow through inactive edges (that is, edges not included
in the design). The usual non-negativity constraints are
set in (4).

Our objective is to find values for the y variables that
minimizes the following function

()()

∑
∑

∑ ∑
+

+

∈

∈

∈ ∈

+







+

Ss
s

2

Ss
sss

Aj} {i,
sijijs p

zE-z p
 z y fp ω

Ss

(5)

where:

} 0)E(z - z : {s S ss ≥=+

∑
∈

=
Ss

sss z p)E(z

This means that our objective function penalizes only
the positive deviations from the expected value, i.e. ,
we penalize those situations in which the objective
value in a given scenario exceeds the expected cost.
Note that ω is a factor that the decision maker can
adjust to give more or less importance to the risk
component of the objective function. The resulting
model becomes a mixed non-linear program for which
we have developed a heuristic procedure based on
GRASP constructions.

3 Solution Method
Our solution method is based on GRASP
constructions. GRASP, or Greedy Randomized
Adaptive Search Procedure, is a metaheuristic that
usually applies a randomized greedy constructive
heuristic. Most GRASP implementations also include a

 2

local search that is used to improve upon the
solutions generated with the randomized greedy
function. Details of the methodology and a survey of
applications can be found in [13].

The design and implementation of heuristics requires
an efficient computational representation of
solutions. This requirement is accomplished here by
splitting a solution into independent elements, one
element by commodity, called blocks of paths and
denoted by Bk. Then, for each commodity k whose
demand will be transported on the network, a block
Bk, formed by one or more paths selected from a list
of shortest paths, is generated. Even though
commodities may share the capacity of the edges, the
blocks of paths are considered independent from each
other.

3.1 Generation of Shortest Paths
The method for constructing a solution begins with
the generation of paths. Therefore, q shortest paths
between each origin-destination pair in the network
are found, where q is a parameter given during
implementation. Three different types of arc lengths
were considered, and in order to assign the same
importance to each type of length, q/3 different paths
were obtained for each one of those different lengths:

() ()













++=

D

D - u
 f C lenght 1. k

k
ij

ijijk
k
ij 1

()




























++=
∑
∑

∈

∈
D

D - u
 f C lenght 2.

Hh

h
Hh

h
ij

ijijk
k
ij 1

() 







++=

´
 f C lenght 3. ij

ijijk
k
ij φ

φ
1

where:

{ }s
kSs

k d max D ∈= Kk ∈∀

()s
ijkijk c E C = = ()∑

∈Ss

s
ijks c p Kk A´,j) (i, ∈∈∀ (6)

The list of q shortest paths for commodity k will be
denoted by LPk .

3.2 Constructing a solution

As it is the case in GRASP implementations, the
constructive phase has two main features: adaptive
greedy measures, and random selection. In addition,
adaptive memory features have been included here, as
proposed by Fleurent and Glover [5] to retain and
analyze the characteristics of selected solutions and so
providing a base for improving later executions of the
constructive process. A set Ssol of r elite solutions is
generated and updated (if necessary) each time a
solution is generated. At first, Ssol contains r “null”
solutions with infinite cost, where r is a parameter
given during implementation. As long as feasible
solutions are being generated, they may replace those
in Ssol .

The constructive mechanism produces a solution
incorporating one element (i.e. a path) at a time, so in
each step of the process, there is at hand a partial
solution. An element that can be selected as part of a
partially constructed solution is called a candidate
element. To determine which element will be selected
to be included in a partial solution a greedy function is
used. In order to introduce some randomness to this
procedure a restricted candidate list (RCL) is used for
each commodity. This list, from which an element is
randomly selected, is formed by high quality elements,
that is, candidate elements with the best values of their
greedy function. The length of this list has been
considered fixed.

Once an element has been added to the partially
constructed solution, the values of the greedy function
must be reevaluated. This makes the procedure acquire
the adaptivity feature that characterizes it.

3.2.1 Evaluating the paths

The selection of a path must answer the following
question: “which paths are most likely to be selected
from our set of q shortest paths?”
In order to learn from previously generated solutions
and previously selected paths, some sort of evaluation
is needed. Let value(σ*, p) be the function which
evaluates the benefit of including path p in σ*, the
solution being created. This function is defined in
such a way that larger values correspond to better
choices. Now, let’s define the function intensity(σ*, p),
larger values of it means that this choice occurs more
frequently in the best members of Ssol.
An evaluation that takes into account both value and
intensity of a choice may be defined as a monotone
increasing function of its arguments as follows:

 3

E (σ*, p) = λ value(σ*, p) + intensity(σ*, p) (7)

Different values of λ in the will cause more emphasis
on the diversity or on the intensity term which in turn
will guide the selection of paths. Below we describe
each of this functions.

To define the function value other measures must
first be established. Let C(Bk, p) be the function that
represents the cost of assigning path p to Bk:

 (8) () 0

Ss ppath j) (i,
ij

s
k

s
ijks

k f´ d´ c p),C(B ω+











+= ∑ ∑

∈ ∈

p

Where:

()()

∑
∑

+

+

∈

∈=

Ss
s

Ss

s
ijk

s
ijks

p

z-Ez p
 ω ω

2

0

and p is any path from LPk ; f′ij equals fij if edge {i, j}
has not yet been used, or 0 if it already has. u′ij is the
residual capacity of edge {i, j}; d′sk is the residual
demand for commodity k (that is, the portion of the
demand for commodity k waiting to be transported)
under scenario s, and . s

k
s
ijk

s
ijk dcz ´= () s

ijk
Ss

s
s
ijk zpzE ∑

∈

=

The cost of this partially constructed solution σ* if
path p is assigned to Bk can be obtained as follows:

 (9) () () (∑∑∑
== =

+=
p

l
k

k-

m

b

l
m

k , lBC , lBC σ*, pT
m

1

1

1 1

)

where Gm is the set of paths contained in each Bm.
Define now best_cost(LPk) = min{T (σ*,l) : l ∈ LPk}
as the minimal cost in that list. The cost of each path
is normalized considering best_cost(LPk) in such a
way that the value of the function defined for each p
belonging to that list is calculated as:

value(σ*, p) = best_cost(LPk) / T (σ*, p) (10)

It can be noticed that function value(σ*, p) will take
values in the range [0,1].

Consider now the set Ssol of elite solutions. Let
Cost(σ) be the cost of a solution measured by the
value of its objective function. Define best_cost(Ssol)
= min {Cost(σ):σ∈ Ssol }. The cost of each solution
in set Ssol is then normalized in the same way that
was done for paths. Therefore, a function Value is
defined for each solution in Ssol as follows:

Value(σ) = best_cost(Ssol) / Cost(σ) (11)

This value represents a crude measure of the “strength”
of paths in σ. Now, define the intensity function of
assigning path p to the new solution σ*. This function
will take into account the frequency of this path in set
Ssol.

() σσ
σ

 p *,intensity
}Bp S{ k

sol

()∑
∈|∈

= Value (12)

Paths in LPk are ordered according to their evaluation
function (7) .

3.2.2 Construction of RCLk and Selection of Paths
from LPk
A fixed length for the RCLk is considered and only
those best evaluated paths, according to function (7)
are included. Experiments showed that a 10% of q is
appropiate.
In addition to what has been said, and in order to give
the best evaluated paths a greater opportunity of being
selected, E(s*, p) will be mapped into positive values
over RCLk. Then the probability of selecting path p
from RCLk, denoted Π(s*, p), is established to be
strongly biased toward choosing the members of RCLk
with larger E(s*, p) values.

 For each path in RCLk, the probability of being
selected is defined as follows:

∑
∈

=Π

kRCLl

lsE
psEps

)*,(
)*,()*,((13)

3.2.3 Updating Set of Elite Solutions

The constructive process will be guided by using the
set Ssol of elite solutions. Initially, Ssol contains r
“null” solutions with infinite cost, where “r” is a
parameter given during the implementation phase. First
“r” generated solutions by GRASP take place in Ssol .
From that moment on, any solution being created will
replace some other in Ssol if the following is achieved:
it is better than the best solution in Ssol or else, it is
better than the worst solution in Ssol but distant enough
from the rest of solutions in Ssol .

The distance between two solutions considers how
many different paths are in each of the solutions and is
defined as follows:

()
21

21

21 ,
hh

tt

ss
Kk LPp

jj
k

j

+

−

=
∑ ∑
∈ ∈

δ

 4

where ti is the characteristic vector of solution si
corresponding to the paths (taken from LPk) included
in the block of paths for each commodity k. hi is the
number of paths used in solution i.

3.3 Improving a solution
Once a block of paths is completed for a new solution
being created, a routine called “improvement routine”
is then executed. Basically, the improvement routine
consists on sorting the paths to obtain a better
distribution with lower cost, if this were possible.

4 Computational Experiment
C was used as the programming language to
implement the procedures, which were run on a
SUNTM Ultra 10 computer with SolarixTM r.7
operating system. The optimal solutions of each
scenario were obtained using Cplex 8.0 .
A total of 20 instances with 20 nodes, 140 edges (280
arcs), 10 commodities and 10 scenarios were
generated to carry out the experiment. The following
parameters were used:

s
kd Uniformly distributed in the range [60,100].
s
ijkc Uniformly distributed in the range [60, 100].

uij Uniformly calculated in the following range:
0.8 ,1.2k kD D ⋅ ⋅ 

A ratio r is calculated for each problem. This ratio

takes into account the fixed and variable costs and is

used to classify the generated instances according to

the relative importance of the former over the latter.

∑∑
∑

∈∈

∈=

Aji

s
ijk

Kk

s
k

Aji
ij

s

cd

f
Kratio cost fixed

),(

),(

For instances with predominant fixed costs (f) this
ratio varies between 1 and 1.5 ; for instances with
predominant variable costs (v) varies between 10 and
12.
Loosely and tightly capacitated instances were
obtained applying the following capacity ratio:

∑
∑

∈

∈=

Aji
ij

Kk

s
k

s

u

d
Aratiocapacity

),(

and the ranges considered were: (6-8) for loose
instances(l) and (12-16) for tight instances (t).

For each one of the instances the procedure was tested
and the network design obtained is evaluated in each
scenario and compared to the optimal solution in this
scenario.
The first column shows the name of each instance.
Column 2 and 3 show the expected cost, across all
scenarios, of the optimal solutions found by Cplex, and
of the solutions found by our procedure respectively.
The percentages shown in column 4 are the expected
deviations across all scenarios.

GRASP GRASP

Instance Expected Cost Expected Cost Vs. CPLEX 1

201010fl01 939,726.26 940,174.13 0.05%
201010fl02 1,256,226.46 1,398,482.88 11.32%
201010fl03 945,933.69 1,018,115.63 7.63%
201010fl04 1,090,628.81 1,156,137.88 6.01%
201010fl05 1,162,295.69 1,162,857.50 0.05%

Average "fl" 5.01%
201010vl01 201,019.00 217,889.50 8.39%
201010vl02 197,683.03 204,936.69 3.67%
201010vl03 172,621.19 173,479.80 0.50%
201010vl04 183,960.64 192,547.72 4.67%
201010vl05 176,044.25 177,474.84 0.81%

Average "vl" 3.61%
201010ft01 2,488,105.76 2,556,587.50 2.75%
201010ft02 2,404,639.78 2,622,363.00 9.05%
201010ft03 2,435,707.04 2,563,850.00 5.26%
201010ft04 2,203,944.35 2,403,081.00 9.04%
201010ft05 2,329,129.67 2,526,654.75 8.48%

Average"ft" 6.92%
201010vt01 316,599.11 333,445.44 5.32%
201010vt02 327,795.00 351,654.97 7.28%
201010vt03 341,061.99 355,966.50 4.37%
201010vt04 342,302.61 356,045.78 4.01%
201010vt05 314,085.75 356,282.22 13.43%

Average "vt" 6.88%

Total Average 5.61%

CPLEX 1

Table 1.

5 Conclusions
In this paper, the robust network design problem with
finite capacities was addressed. Solving this kind of
problems is a difficult, but an important task and more
research in this area has to be undertaken.
Computational experiments have shown that the
proposed procedure is effective when tackling a
network design problem with considerable uncertainty
in data. Size, number of commodities and tight
capacities make this problem very difficult to solve.
Results show that fixed costs are highly relevant when
solving instances with this characteristic. When fixed
costs are not very high, impact in results is not very
relevant.

 5

To the best of our knowledge, no other techniques
have been used to solve this model, and the tested
procedure represents a great advance. Nevertheless it
is important to keep in mind that the solutions found
by the procedure developed here are considered
initial solutions , so suitable post-processing routines
can be designed to improve them.

Acknowledgements
This work has been partially supported by Conacyt
under grant 36669-A

References:
[1] Karim de Alba, Ada Álvarez , José Luis González

Velarde, Grasp with Adaptive Memory
Programming for Finding Good Starting Solutions
to the Multicommodity Capacited Network
Design Problem. In Interfaces in Computer
Science and Operations Research, H. Bhargava
and Nong Ye (Eds), Kluwer, 2001, pp. 121-138

[2] Balakrishnan A., Magnanti T.L., A dual ascent
procedure for large-scale uncapacitated network
design, Operations Research, Vol. 37, No. 5,
1989 pp. 716-740.

[3] CPLEX Optimization, Inc., Incline Village, NV.
ILOG CPLEX 8.0, Reference Manual, 2002

[4] Crainic, T.G., Frangioni, A., and Gendron, B.
Bundle-based relaxation metods for
multicommodity capacitated fixed-charge network
design problems. Publication CRT-98-45, Centre
de recherche sur le
transports, Université de Montreal, 1998.

[5] Fleurent C. and Glover F., Improved Constructive
Multistart Strategies for the Quadratic Assignment
Problem Using Adaptive Memory, Journal on
Computing, Vol. 11 No. 2, 1999, pp.198-204.

[6] Gutierrez, G.J., Kouvelis P., Kurawala A.A., A
Robutness Approach to Uncapacitated Network
Design Problems, European Journal of
Operational Research, Vol. 94, No.2, 1996,
pp.362-376.

[7] Holmberg K, Yuan D, A Lagrangean Heuristic
Based Branch-and-Bound Approach for the
Capacitated Network Design Problem, Operations
Research, Vo9l. 48, 2000, pp. 461-481.

[8] Kouvelis P., Yu G, Robust Discrete Optimization
and its Applications, Kluwer Academic
Publishers, 1997.

[9] Kubo M., Kasugi H., The Probabilistic Network
Design Problem, Journal of Operations Research,
Society of Japan, Vol. 35, No. 3, 1992, pp. 256-
271.

[10] Laguna, M., González-Velarde J.L., A Benders-
based Heuristic for the Robust Capacitated
Internacional Sourcing Problem, To appear in IIE
Transactions.

[11] Laguna M. Applying Robust Optimization to
Capacity Expansion of One Location in
Telecommunications with Demand Uncertainty,
Management Science, Vol. 44, no. 11, 1997, pp.
S101-S110.

 [12] Mulvey J.M., Vanderbei R.J., Zenios S.A.,
Robust Optimization of Large-Scale Systems,
Operations Research, Vol. 43. 1995, pp. 264-281.

[13] Pitsoulis L.S. and Resende M., Greedy
Randomized Adaptive Search Procedures, In
Handbook of Applied Optimization, P. M. Pardalos
and M. G. C. Resende (Eds.), Oxford University
Press, 2002, pp. 168-182.

 6

