

FPGA based Communication Security for Wireless Sensor Networks
Engr. Junaid Majeed

Lecturer, FEST Hamdard University

Abstract
Networks of wireless microsensors for monitoring physical
environments have emerged as an important new application
area for wireless technology. Key attributes of these new types of
networked systems are the severely constrained computational
and energy resources and an ad hoc operational environment.
Information security is increasingly becoming very important.
Encryption and Decryption are very likely to be in many systems
that exchange information to secure, verify, or authenticate data.
Many systems, like the internet, cellular phones, handheld
devices, and E-commerce, involve private and important
information exchange and they need cryptography to make it
secure. This paper is a study of the communication security
aspects of these networks. Resource limitations and specific
architecture of sensor networks call for customized security
mechanisms. There are three possible solutions to accomplish
the cryptographic computation: Software, hardware using
application-specific integrated circuits (ASICs), and Hardware
using field-programmable gate arrays (FPGAs). The software
solution is the cheapest and most flexible one. But, it is the
slowest. The ASICs solution is the fastest. But, it is inflexible,
very expensive, and needs long development time. The FPGAs
solution is flexible, fast, and needs shorter development time.
Elliptic curve cryptography (ECC) needs modular multiplication.
Montgomery multiplication algorithm is a very smart and
efficient algorithm for calculating the modular multiplication. It
replaces the division by a shift and modulus-addition (if needed)
operation, which are much faster. The algorithm is also very
suitable for a hardware implementation. Many designs have been
proposed for fixed precision operands. This scalable
Montgomery multiplier can be configured to meet the design
area-time tradeoff. Also, it can work for any operand precision
up to maximum design memory capability.

1. Introduction
Wireless sensor networks, applied to monitoring physical
environments, have recently emerged as an important application
resulting from the fusion of wireless communications and
embedded computing technologies [1][3][7][10][11]. Sensor
networks consist of hundred or thousands of sensor nodes, low
power devices equipped with one or more sensors. Besides
sensors, a sensor node typically contains signal processing
circuits, microcontrollers, and a wireless transmitter/receiver. By
feeding information about the physical world into the existing
information infrastructure, these networks are expected to lead to
a future where computing is closely coupled with the physical
world and is even used to affect the physical world via actuators.
Potential applications include monitoring remote or inhospitable
locations, target tracking in battlefields, disaster relief networks,
early fire detection in forests, and environmental monitoring.
While recent research has focused on energy efficiency [8],
network protocols [4], and distributed databases, there is much
less attention given to security. The only work that we are aware
of is [5]. However, in many applications the security aspects are

as important as performance and low energy consumption.
Besides the battlefield applications, security is critical in premise
security and surveillance and in sensors in critical systems such
as airports, hospitals, etc. Sensor networks have distinctive
features, the most important ones being constrained energy and
computational resources. To accommodate those differences
existing security mechanisms must be adapted or new ones
created.
Our approach to communication security in sensor networks is
based on a principle stated in [6] that says that data items must be
protected to a degree consistent with their value.
Our main goal is to minimize security related energy
consumption. By offering a range of security levels we ensure
that the scarce resources of sensor nodes are used accordingly to
required protection levels. There are many other important issues
for security in sensor networks, e.g. physical protection of the
sensitive data in sensor nodes, and the system-level security.
However, those topics are outside of the scope of this paper. The
complexity of building tamper-proof circuits that could protect
sensitive information held in a node is described in [2].

1.1 Security Threats
Wireless networks, in general, are more vulnerable to security
attacks than wired networks, due to the broadcast nature of the
transmission medium. Furthermore, wireless sensor networks
have an additional vulnerability because nodes are often placed
in a hostile or dangerous environment where they are not
physically protected.
We list the possible threats to a network if communication
security is compromised:

1. Insertion of malicious code is the most dangerous attack
that can occur. Malicious code injected in the network
could spread to all nodes, potentially destroying the
whole network, or even worse, taking over the network
on behalf of an adversary. A seized sensor network can
either send false observations about the environment to
a legitimate user or send observations about the
monitored area to a malicious user.

2. Interception of the messages containing the physical
locations of sensor nodes allows an attacker to locate
the nodes and destroy them. The significance of hiding
the location information from an attacker lies in the fact
that the sensor nodes have small dimensions and their
location cannot be trivially traced. Thus, it is important
to hide the locations of the nodes. In the case of static
nodes, the location information does not age and must
be protected through the lifetime of the network.

3. Besides the locations of sensor nodes, an adversary can
observe the application specific content of messages
including message IDs, timestamps and other fields.
Confidentiality of those fields in our example
application is less important then confidentiality of
location information, because the application specific

data does not contain sensitive information, and the
lifetime of such data is significantly shorter.

4. An adversary can inject false messages that give
incorrect information about the environment to the user.
Such messages also consume the scarce energy
resources of the nodes. This type of attack is called
sleep deprivation torture in [9].

1.2 Modular Multiplier
Modular Multiplication is a time-consuming arithmetic operation
because it involves multiplication as well as division. Modular
exponentiation can be performed as a sequence of modular
multiplications. Speeding the modular multiplication will have a
great impact on the speed of modular exponentiation. Modular
exponentiation and modular multiplication are heavily used in
current cryptographic systems. Well known cryptographic
algorithms, such as RSA [16] and Diffie-Hellman key exchange
[15], require modular exponentiation operations. Digital
Signature Standard (DSS) cryptography [17] as well as Elliptic
curve cryptography (ECC) [18] need modular multiplication.
Montgomery multiplication algorithm [12] is a very smart and
efficient algorithm for calculating the modular multiplication. It
replaces the division by a shift and modulus-addition (if needed)
operation, which are much faster. The algorithm is also very
suitable for a hardware implementation. Many designs have been
proposed for fixed –precision operands. A word-based
Montgomery multiplication algorithm [13] has been proposed
later and the scalable Montgomery multiplier is based on this
modified algorithm. This multiplier can be configured to meet
the design area-time tradeoff. Also, it can work for any operand
precision up to the maximum design memory capability.

1.2.1. Montgomery Multiplication (MM) Algorithm
Before we describe the Montgomery multiplication algorithm,
we will introduce the following definitions and notations.
• M is the modulus of the modular multiplication
• X is the multiplier of the modular multiplication
• Xi is a single bit of X at position i
• Y is the multiplicand of the modular multiplication

• N is the number of bits in each operand
• r is a constant equal to 2N
• S is the partial product of the modular multiplication
• Si is a single bit of S at position i
The Montgomery multiplication algorithm calculates the
following result
MM(X, Y) = XYr -1 mod M,
Where r = 2N and M is an integer in the range 2N-1 ≤ M ≤ 2N-1
such that gcd(r, M) = 1.
The algorithm transforms an integer in the range [0, M-1] to
another integer in the same range called the image or the M-
residue of the integer.
The following steps show how Modular multiplication can be
calculated using a series of Montgomery multiplication
1. Images of X and Y are calculated as
 X =MM(x,r2)= Xr mod M
 Y =MM(Y,r2) = Yr mod M
2. Image of C is calculated as
C = MM(X,Y)=MM(Xr,Yr)=XYr mod M
3. Modular multiplication is calculated as
C = MM(C,1)= C Mod M= XY mod M
Figure 1.1 shows the three steps mentioned above.
Algo1.1 shows the radix-2 MM algorithm. The algorithm –as we
said before- is very smart since it replaces the division by
shifting and addition, which are faster and more efficient. The
partial product S is initialized to zero. Then, for each iteration in
the algorithm, a bit of the multiplier X is multiplied by the
multiplicand Y.
The X bits are scanned one bit at a time starting from the least
significant bit. If the partial sum S is odd then M needs to be
added. This makes the partial sum even because M is odd since
gcd(r, M) = 1. Adding M will not affect the modular
multiplication results because it is the modulus. S is then shifted
one bit position to the right. After all the iterations are executed,
S is compared with M to see if it is outside the range [0,M-1]
(i.e., if it greater than M). If so then M is subtracted from S to
have it in the range. By the end, S will hold the Montgomery
multiplication result of X and Y.

Figure1.1. Modular Multiplication using MM

Figure 1.2. FPGA general structure

Step
1. S = 0
2. for i = 0 to N-1
S = S + Xi*Y
if S is ODD then S = S + M

S = S/2
3. If S ≥ M then S = S – M
Algo. 1.1. Radix-2 MM algorithm

1.3. Field Programmable Gate Arrays (FPGAs)
Field programmable gate arrays (FPGAs) are programmable
chips. Figure 1.2 shows a general structure of an FPGA chip. The

FPGA is an array of configurable logic blocks (CLBs). It has also
input/output blocks to provide the interface between the chip pins
and the internal signals. The signals from all blocks are
connected to each other using wires, which in turn connected to
each other by programmable routing switches. The CLBs have
the logic resources that are necessary to implement various
combinational and sequential logic functions. Normally, a CLB
has look-up tables (LUTs), multiplexers, and flip-flops. The
programming of all resources (CLBs, IOBs, and routing
switches) is done using RAM, EPROM, EEPROM, or Anti-fuse
technologies.
For our work, we are using Xilinx Spartan-II FPGAs, which are
programmed using RAM technology.

1.4. Literature Review for Montgomery Multiplication
A systolic array design for modular multiplication base on
Montgomery algorithm has been presented in [22]. The design
can generate one modular multiplication every clock cycle with
latency equal to 2N+2 cycles, where N is the operand size. This
design is useful when consecutive modular multiplications are
needed like in RSA cryptography.
A radix-2 word-based Montgomery multiplication algorithm and
a scalable Montgomery multiplication architecture based on it
have been presented in [13]. The scalable Montgomery multiplier
has no limit on the operand size since it processes the operands
word by word. Also, it exploits the parallelism in the algorithm
by using multiple processing elements in a pipelined fashion. The
scalable multiplier can be configured by selecting the word size
and the number of processing elements in the pipeline that best
meet the area and time requirements of the system. ASICs
designs, implementations and analysis of one radix-2 and two
radix-8 scalable Montgomery multipliers have been presented in
[19]. The radix-2 design has been based on the algorithm
presented in [13]. The radix-8 designs have been based on high
radix word-based Montgomery multiplication algorithm
developed also in [19] based on the algorithm in [13]. The study
shows that after some number of processing elements, adding
more elements will increase the total execution time. The study

also was trying to optimize for two operand sizes at the same
time.
FPGAs that are in-system programmable were investigated in
[21] to find the key architectural criteria for implementing high
performance wide-operand addition. FPGA architecture for high
performance wide-operand modular multiplication has been also
proposed. This architecture is intended for high performance
cryptography.
A modular exponentiation architecture that combines high radix
Montgomery multiplication with systolic array was derived in
[20]. This design performs 1024-bit RSA operation in 3.1 ms
using 45.6 MHz clock frequency. This design was implemented
on one Xilinx XC40250XV FPGA.

2. Design
To implement any design on an FPGA chip, the designer should
be aware of the design development tools (i.e., the CAD tools)
and the target FPGA technology. An ASIC design that is
efficient in terms of area and/or speed for some ASIC tools and
technology is not necessarily efficient for some FPGA tools and
technology. Same thing applies when considering tools and
technologies from different vendors. What is efficient for Xilinx
FPGAs might not be efficient for Altera FPGAs. Even this
applies to different tools and technologies from the same vendor.
For example, a design that is implemented using Foundation 2.1i
tools from Xilinx and efficient for the XC4000 FPGAs might not
be efficient when using Xilinx ISE4.1 tools and Spartan-II
FPGAs as the target technology. So, the key is to understand how
to let the tools interpret the design description efficiently and
optimize it as much as possible. Also, to understand the target
FPGA chip and make good use of its resources.

2.1. Xilinx Spartan-II FPGAs
Spartan-II FPGA is made mainly of five kinds of elements:
Input/Output blocks (IOBs), Configurable logic blocks (CLBs),
block random-access memories (Block RAMs), Delay-locked
loops (DLLs), and versatile multi-level interconnect structure. A
block diagram of Spartan-II FPGA is shown in Figure 2.1.

Figure 2.1. Spartan-II FPGA block diagram

Figure 2.2. Data dependencies in the MWR2MM

The CLBs can be configured to realize the logic functions. On
the left and the right sides of the chip there are block RAMs that
can be configured to realize RAMs or FIFOs as explained in [23]
and [24]. For each four rows of CLBs, there are two block

RAMs: one on the left side and one on the right side. Each block
RAM is 4 Kbits. The IOBs surround the CLBs and the block
RAMs to provide the interface between the package pins and the
internal signals. The versatile multi-level interconnect structure is
configured to provide the necessary interconnection and routing

among the various blocks as well as among the cells inside the
blocks themselves. The DLLs provide multiple minimal-skew
clock signals. The programming (i.e., the FPGA configuration)
of all elements is done by SRAM. This means that a Spartan-II
needs to be reprogrammed every time the power is off. This is
not so bad as you might think because it does not take more than
10 seconds to program the largest chip of this family, which is
the same one we have on our prototyping board.

2.2. VHDL Coding for the FPGA Synthesis Tool
In this work, we are using Xilinx synthesis technology (XST).
Designs are constructed of combinatorial logic and macros. XST
has a set of predefined macros like multiplexers, adders, latches,
flip-flops, counters, finite state machines (FSMs), and RAMs.
Macros can greatly help the tool optimize the design. So, it is
important that the generated VHDL code describe the design in
such a way that the tool infers the appropriate macros. XST
passes through two phases while synthesizing the VHDL code. In
the first phase, it tries to infer as many macros as possible. In the
second phase, it tries to low level optimize the design by either
preserving the macros (inferred in the first phase) as separate
blocks or merge them with the surrounding logic. For example, a
2-to-1 mux might be merged with other combinational logic to
get better synthesis results. However, the designer can force XST
to preserve a macro by setting synthesis constraints.

2.3. Multiple Word Radix-2 Montgomery Multiplication
(MWR2MM)
Algorithm and Architecture
This algorithm and its general architecture were proposed in [14].
The algorithm is derived from the original Montgomery
algorithm proposed in [13]. It deals with the input operands and
the result of the multiplication as group of bits (words) instead of
handling them at once. This makes it easier and more efficient
for both software and hardware implementation. As we know,
numbers in cryptography are very long. For RSA cryptography,
1024-bit numbers are used. This is expected to increase in the
future because the computing power is increasing and it might be
possible to crack the code in a reasonable amount of time. The
algorithm shown in Algo. 2.1 is equivalent to the MWR2MM
algorithm proposed in [14]. Another reason behind its suitability
for hardware is that one processing unit can be reused in an
iterative manner until all the whole operands are processed. This
is particularly useful where the area available in the chip for such
operation is limited.
The notation used in this algorithm follows the following rules.
Subscripts are used to index bits and superscripts to index words.
Higher index indicates a more significant bit or word. Let n be
the operand size in bits, m the operand size in words, and w the
word size. This means that
m =  n / w 
The operand X is scanned bit-by-bit so it is represented as
X = xn-1…x1x0
Y, M, and S are scanned word-by-word. So they are represented
as
Y = Ym…Y1Y0 where Yi is word number i of Y
M = Mm…M1M0 where Mi is word number i of M
S = Sm…S1S0 where Si is word number i of S
A range of bits in a word is represented, for example, as Si w-
1…1 where this represents the bits from w-1 down to 0 of the
word i of S.

Concatenation of groups of bits is performed, for example, as
(Sj0 , Sj-1w-1…1)
Step
1 S = 0
2 for i = 0 to n-1
3 (C, S0) := xiY0 + S0
4 if S0 is odd then
5 (C, S0) := (C, S0) + M0
6 for j = 1 to m-1
7 (C, Sj) := C + xiYj + Mj + Sj
8 Sj-1 := (Sj0 , Sj-1w-1…1)
9 end for
10 Sm-1 := (C , Sm-1w-1…1)
11 else
12 for j = 1 to m-1
13 (C, Sj) := C + xiYj + Sj
14 Sj-1 := (Sj0 , Sj-1w-1…1)
15 end for
16 Sm-1 := (C , Sm-1w-1…1)
17 end if
18 end for
Algo 2.1. MWR2MM algorithm

The algorithm differs from the original Montgomery
multiplication algorithm in the sense that the operands are
processed word by word. It is shown in [14], that the carry
variable C must be in the set {0,1,2} because its maximum Cmax
needs to satisfy the following containment condition
3(2w –1) + Cmax ≤ Cmax2w + 2w –1
This results in Cmax ≥ 2. Thus, Cmax =2 satisfies the condition.

2.3.1. Parallelism in the MWR2MM Algorithm
From the algorithm shown in Algo 2.1, we can see that there is
data dependency in the steps performed among the j-indexed
loops. This is because the previous word of S is not generated
until the least significant bit of the current word of S is known.
So, it is not possible to do parallel processing on them. They
need to be executed serially but for the i-indexed loop, it is
possible to start the next loop once the least significant word of S
(S0) of the current i-iteration is generated. But, we should note
that S0 of the current i-iteration is generated when the least
significant bits of S1 are generated, for the reason just mentioned
above. This causes two-cycle delay until we can feed S0 to the
next i-iteration. But, we can still start it though and thus
parallelism is possible among the i-indexed loops. Figure 2.2
shows the data dependencies of the algorithm and their timing.
Each i-indexed iteration can be executed using one processing
element. The processing element is capable of performing the
operations in steps 3 through 17 in Algo.2.1. These operations
include checking weather M should be added or not to the result.
This information is kept until the end of the iteration, which
basically consists in adding the operands and the carry word-by-
word in a serial manner.
2.3.2. The Scalable Architecture
The scalable architecture that implements the MWR2MM
algorithm was also proposed in [14]. It is scalable in the sense
that the word size (w) and the number of processing elements can
be chosen by the designer, i.e., these hardware parameters can be
chosen to meet the area, speed, and power requirements within
the resources available to the design. Figure 2.3 shows a general
organization that uses pipelining to exploit the parallelism in the
MWR2MM algorithm. Virtually, we would like to make the

word size (w) as large as possible. But, this might cause several
problems. One of them is the speed degradation because of high
fan-out signals, long wires, and big area required for the
processing unit. The area given to the multiplier might be small
and limited. This kind of multiplier allows us to investigate the
trade-off between the area and the speed.
Increasing the number of pipeline stages as much as we might
not be useful as one might think. This was discussed in [19]. This
is because the number of clock cycles the multiplier needs to
execute the MWR2MM algorithm depends not only on the
number of stages but also on the operand size and the word size.

It is shown in [19] that this multiplier will take the following
number of cycles to execute the MWR2MM algorithm.

C =
   

    







−++
++

)1(*2)1/(*/
1/*/*2

KwnKn
wnKKn

 if ( n/W  +1) ≤ 2*K

 if ( n/W  +1) > 2*K

Where K is the number of processing element in the pipeline, n is
the operand precision, w is the word size, and  x  is the ceiling
integer of x.

Figure 2.3. Radix-2 Scalable Montgomery Multiplier

Figure 2.4. Design of MWR2MM processing element

2.4. Design of the Processing Element
This design of the processing element, shown in Figure 2.4 is
very similar in functionality to the first one. However, the major
difference is that instead of using carry-save adders (CSAs)
Xilinx carry-propagate adders (CPAs) are used. The objective of
this other design is to examine the effect of using the dedicated
fast carry logic (FCL) inside the Spartan-II FPGA chip on the
speed of the (CPAs).
CPAs that make use of the FCL show much better performance
than those that don’t use it. By using CPAs instead of CSAs, we
expect to reduce the area of the processing element because we
don’t need to have S in two registers (as in the CSA form). This
also, will reduce the size of the inter-stage register. So, we expect
a reduction in the overall area needed for the pipeline because of
these two expected reductions. Also, we expect the speed of the
design to be comparable to the speed of the design that uses
CSAs. The impact in the area and speed of the processing
element is presented and analyzed in next Section.

3. Experimental Results and Analysis
This scalable radix-2 Montgomery multiplier pipeline is
composed out of processing elements. In the following three
subsections, we will present the implementation results and study
how its area, clock cycle time (CCT), and total execution time
(TET) change for each configuration.

3.1. Area
Figure 3.1 shows the area of the design versus the word size. We
will stop at 16-bit word size because of the lack of I/O pins. The
number of stages is fixed to 28 so that we can later compare it
with the first design. The last configuration of 16-bit word and 28
stages takes 1782 slices, which is about 76% of the slices in the
FPGA chip. This allows us to test a wide range of pipeline
configurations as we were trying for the first design.

word size (bits)
Figure 3.1. Area vs. word size, number of stages = 28

Figure 3.2. Area vs. number of stages, word size = 16 bit

Figure 3.3. Clock cycle time vs. word size, number of stages =

28

Figure 3.4: Clock cycle time vs. number of stages, word size = 16

bit

Figure 3.5 Total execution time vs. number of stages, word
size = 16 bit

Figure 3.6. Total execution time vs. number of stages, word size

= 16 bit

From Figure 3.2, we can see that the area increases almost
linearly as we increase the word size. For each additional bit, the
design needs about 4.7% of the slices (110 slices) on the average.
As before, the length of the multiplexers, CPAs, and word
registers is linearly dependent on the word size. Moreover, the
optimization goal was again for speed.
Figure 3.2 shows the area versus the number of stages. The word
size is fixed to 16 bits for the same reason mentioned above. The
Figure shows that the area increases almost linearly as the
number of stages increases. For each additional stage, the design
needs about 2.7% of the slices (63 slices) on the average.

3.2. Clock Cycle Time (CCT)

These CPAs are implemented using fast carry logic (FCL) chains
that require their slices be adjacent to each other in the chip. So,
this puts limitation on the power of the PAR tool in optimizing
design because it cannot easily move things around inside the
chip. It has to keep the slices containing the carry chains
adjacent. This is how Spartan-II architecture is designed.
Figure 3.3 shows the clock cycle time versus the word size. It
shows that the CCT increases when the word size increases. The
fastest configuration among the results is the one with 4-bit word
size. It can run at 105MHz maximum frequency. The slowest is
the 16-bit. It can run on 87MHz maximum frequency. The first
reason why this happens is that as we increase the word size the
carry chains become longer. This means the number of logic
levels increases causing more logic delay. The second main
reason is that there is more limitation on the PAR tool because it

has to place these carry chains in adjacent slices. This causes less
efficient placement and routing and thus more routing delay. For
this design, more delay comes from the logic than the routing.
The logic delay is about 60% of the total delay while the routing
is about 40%. Figure 3.4 shows the clock cycle time versus the
number of stages. Because this design takes less area than the
first one we are able to fit designs with up to 36 stages. The
Figure shows that increasing the number of stages increases the
CCT. This is mainly because of the second reason mentioned
above. As the design gets bigger, the chip gets more crowded.
Thus, the PAR tool will have less placement and routing options
as it is trying to keep the carry chains in adjacent slices. Even
though there is an increase in the CCT as we increase the number
of stages, the tool is still doing good and satisfactory
optimization. The 4-stage design, which takes 9% of the slices
and runs on 92MHz, is only about 7% faster than the 36-stage
design, which takes 98% of the slices and runs 85MHz. The
optimization techniques were also used here and helped the tools
during the optimization process.

3.3. Total Execution Time (TET)
The fastest configuration is identified by the total execution time
(TET). The TET values for four operand sizes: 128, 256, 1024,
and 2048 as we change the number of stages are shown in Table
3.1. The word size is set to 16 bits.
Figures 3.5 and 3.6 show total execution time versus the number
of stages. For 128-bit operand size, the minimum TET occurs
when the number of stages is 8. But, we recommend 8 stages
because we will loose 0.7% in speed and we will gain 31% in
area. For 256-bit operand size, the minimum TET occurs when
the number of stages is 16. But, we recommend 8 stages because
we will loose 2.3% in speed and we will gain 22% in area. For
both of them we can see that increasing the number of stages
(increasing the design size) does not help. On the contrary, it
becomes slower. For the large operands, 1024 and 2048 bits, the
largest design that can be implemented in the chip gives the best
TET. If we assume that designs of more than 36 stages can be
implemented then we may find a large number of stages for
which the performance (TET) starts to drop (TET increases).

Stages 128-bit 256-bit 1024-bit 2048-bit
4 3191 11874 180676 716950
8 2859 6065 90591 359123
12 3062 6135 63410 249493
16 2954 5920 47070 185833
20 3258 6073 38801 151256
24 3362 6189 32379 126963
28 3312 6636 28379 110794
32 2033 6077 24702 95923
36 3441 6895 25094 86597
 Table 3.1: Total Execution times (ns), word size= 16 bit

4. Conclusion
4.1. Comparison with ASIC Implementation: Behavioral Not
Quantitative
In this section, we will compare our FPGA implementation of the
this design against the ASIC implementation of similar design
presented in [19]. As we said earlier, we will approach the
comparison in a behavioral manner not quantitative manner.
ASIC and FPGA are two different technology and they have
different design methodologies. For the work presented in [19],

Mentor Graphics tools have been used and the target ASIC
technology has been set to AMI05_slow. But for our work Xilinx
ISE4.1.03 has been used and the target technology has been set
to Spartan-II. Regarding the area, both implementations show
that the area increases linearly as we increase the word size
and/or the number of stages. Regarding the clock cycle time
(CCT), our FPGA implementation shows much better immunity
as we increase the word size and/or the number of stages. For 16-
bit word size, our FPGA implementation becomes only less than
5% slower (CCT changes from 7.7 ns to 8.1 ns) as we increase
the number of stages from 4 to 26. For the same word size, the
ASIC implementation becomes 43% slower (CCT changes from
8.1 ns to 14.3 ns) if we increase the number of stages from 4 to
26. For 28 stages, our FPGA implementation becomes about 8%
slower (CCT changes from 7.7 ns to 8.4 ns) as we increase the
word size from 8 bits to 16 bits. For 26 stages (even less than
28), the ASIC implementation becomes about 48% slower (CCT
changes from 7.4 ns to 14.3 ns) as we increase the word size
from 8 bits to 16 bits. Regarding the total execution time, both
implementation, FPGA and ASIC, show the same kind of curves
for small operands and for large operands. Also, both of them
show that the total execution time will increase if we increase the
number of stages beyond some number.

4.2. Scalable Versus Fixed
In this section, we rely on a very interesting experiment we have
done. We tried to synthesize a pipeline of only one single big
processing element that has 1024- bit word size (can handle
1024-bit operands). Then, we tried a pipeline of 32 processing
elements (each one is 32-bit word size). The processing elements
are from the first version. The synthesis tool took very long time
to synthesize them (one night for each). The synthesis result
show that the pipeline of the single processing element needs
2231 slices (94% of the total slices) and has 9.576 ns clock cycle
time. So, it can be fit in the FPGA we have and it runs on 104
MHz. Whereas, the other pipeline needs 5199 slices (2847 slices
more than available in the chip) and has 9.376 ns (can run on 106
MHz). This large area requirement is because of the pipeline
registers. If these two pipelines can be implemented, we expect
the PAR tools to enhance the performance by 10% as it was
doing for the large designs that can be implemented. This gives
us a strong indication that a fixed design of Montgomery
multiplier is much smaller than the scalable one if they both have
process the same number of bits. It also can run at very close
speed. These conclusions are correct in our case and we think
they are correct for other FPGA and ASIC technologies and other
design tools if the designer applies good optimization techniques
and if the tools are good enough to support such techniques.
However, the scalable design is very useful when we have very
limited area because even one small processing element can still
execute the algorithm but in longer time.

4.3. Concluding Remarks
In this work, we have FPGA-based prototyping environment that
can be used to test the functionality of the Montgomery
multiplier (MM) hardware at the circuit level. The MM hardware
can also be reconfigured using this environment by loading to the
FPGA chip the best design configuration.
In this work, we have also discovered the advantages and
disadvantages of using redundant carry-save adders (CSAs) and
non-redundant fast carry-propagate adders (CPAs). We have
reached to the conclusion that for high-end speed, the CSAs are

better. But for limited chip area, the CPAs are better. We have
also proven that fast CPAs using FCL available in some FPGA
technologies can significantly improve the performance. We
have also explored the FPGA design techniques that improve the
design performance.
The experiment indicates that the fixed design is better than the
scalable design when a lot of chip area and bandwidth are
available. But in applications where area and bandwidth are very
limited, the scalable design is better.

5.Bibliography
[1] H. Abelson et. al., “Amorphous Computing”, Communication
of ACM, vol.43, vol. 5, May 2000, pp. 74-82.
[2] R. Anderson, M. Kuhn, “Tamper resistance—a Cautionary
Note”, In Proceedings of the Second USENIX Workshop on
Electronic Commerce, 1996.
[3] G. Borriello, R. Want, “Embedding the Internet: Embedded
Computation Meets the World Wide Web”, Communication of
ACM, vol.43, no.5, May 2000, pp. 59-66.
[4] D. Estrin, R. Govindan, J. Heidemann, “Embedding the
Internet: Introduction”, Communications of the ACM, vol.43,
no.5, May 2000, pp. 38-41.
[5] A. Perrig, R. Szewczyk, V. Wen, D. Culler, J. D. Tygar,
“SPINS: Security Protocols for Sensor Networks”, MOBICOM
2001, Rome, Italy, June 2001.
[6] C. P. Pfleeger, “Security in Computing”, Second Edition,
Prentice Hall, 1997.
[7] G. J. Pottie, W. J. Kaiser, “Embedding the Internet: Wireless
Integrated Network Sensors”, Communications of ACM, vol.43,
no.5, May 2000, pp.51-58.
[8] J. Rabaey, J. Ammer, J. L. da Silva, D. Patel, “PicoRadio:
Adhoc Wireless Networking of Ubiquitous Low-Energy
Sensor/Monitor Nodes”, Workshop on VLSI, April 2000.
[9] F. Stajano, R. Anderson, “The Resurrecting Duckling:
Security Issues for Ad-hoc Wireless Networks”, 3rd AT&T
Software Symposium, Middletown, NJ, October 1999.
[10] G. S. Sukhatme, M. J. Mataric, “Embedding the Internet:
Embedding Robots into the Internet”, Communication of ACM,
vol.43, vol.5, May 2000, pp.67-73.
[11] D. Tennenhouse, “Embedding the Internet: Proactive
Computing”, Comm. of ACM vol.43, no.5, May 2000, pp. 43-50.
[12] P.L. Montgomery, “Modular Multiplication without Trial
Division,” Mathematics of Computation, vol. 44, no. 170, pp.
519-521, April 1985.
[13] A.F. Tenca, C.K. Koc, “A Scalable Architecture for
Montgomery Multiplication,” in Cryptographic Hardware and
Embedded Systems, Ed. 1999, number 1717 in Lecture Notes in
Computer Science, pp. 94-108, Springer, Berlin, Germany.
[14] A.F. Tenca, C.K. Koc, E. Savas, “A Scalable and Unified
Multiplier Architecture for Finite Fields GF(p) and GF(2m),” in
Cryptographic Hardware and Embedded Systems, Ed. 2000,
Lecture Notes in Computer Science, pp. 94-108, Springer,
Berlin, Germany.
[15] M.E. Hellman, W. Diffie, “New Directions on
Cryptography,” IEEE transactions on Information Theory, vol.
22, pp. 644-654, November 1976.
[16] L. Adelman, R.L. Rivest, A. Shamir, “A Method for
Obtaining Digital Signature and Public-Key Cryptosystems,”
Comm. ACM, vol. 21, no. 2, pp. 120-126, February 1978.
[17] National Institute for Standard and Technology, “Digital
Signature Standard (DSS),” Tech. Rep., FIPS PUB 186-2,
January 2000.

[18] N. Koblitz, “Elliptic Curve Cryptosystems,” Mathematics of
Computation, vol. 48, no. 177, pp. 203-209, January 1987.
[19] G. Todorov, “ASIC Design, Implementation, and Analysis
of A Scalable High-Radix Montgomery Multiplier,” MS thesis,
Oregon State University, December 2000.
[20] T. Blum, C. Paar, “Montgomery Modular Exponentiation on
Reconfigurable Hardware,” in IEEE 14th Symposium on
Computer Arithmetic. 1999, pp. 70-77, IEEE Computer Society
Press, Los Alamitos, CA.
[21] A.J. Elbirt and C. Paar, “Towards an FPGA Architecture
Optimized for Public-Key Algorithms,” SPIE’s Symposium on
Voice, Video, and Communications, September 1999.
[22] C.D. Walter, “Systolic Modular Multiplication,”, IEEE
Transactions on Computers, vol42, no.3, pp. 376-378, 1993.
[23] Xilinx, “Using Block SelectRAM+ Memory in Spartan-II
FPGAs," Xilinx Application Note XAPP173, December 2000.
[24] Xilinx, “High speed FIFOs in Spartan-II FPGAs," Xilinx
Application Note XAPP175, November 1999.

