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Abstract  
Networks of wireless microsensors for monitoring physical 
environments have emerged as an important new application 
area for wireless technology. Key attributes of these new types of 
networked systems are the severely constrained computational 
and energy resources and an ad hoc operational environment. 
Information security is increasingly becoming very important. 
Encryption and Decryption are very likely to be in many systems 
that exchange information to secure, verify, or authenticate data. 
Many systems, like the internet, cellular phones, handheld 
devices, and E-commerce, involve private and important 
information exchange and they need cryptography to make it 
secure. This paper is a study of the communication security 
aspects of these networks. Resource limitations and specific 
architecture of sensor networks call for customized security 
mechanisms. There are three possible solutions to accomplish 
the cryptographic computation: Software, hardware using 
application-specific integrated circuits (ASICs), and Hardware 
using field-programmable gate arrays (FPGAs). The software 
solution is the cheapest and most flexible one. But, it is the 
slowest. The ASICs solution is the fastest. But, it is inflexible, 
very expensive, and needs long development time. The FPGAs 
solution is flexible, fast, and needs shorter development time. 
Elliptic curve cryptography (ECC) needs modular multiplication. 
Montgomery multiplication algorithm is a very smart and 
efficient algorithm for calculating the modular multiplication. It 
replaces the division by a shift and modulus-addition (if needed) 
operation, which are much faster. The algorithm is also very 
suitable for a hardware implementation. Many designs have been 
proposed for fixed precision operands. This scalable 
Montgomery multiplier can be configured to meet the design 
area-time tradeoff. Also, it can work for any operand precision 
up to maximum design memory capability. 
 
1. Introduction 
Wireless sensor networks, applied to monitoring physical 
environments, have recently emerged as an important application 
resulting from the fusion of wireless communications and 
embedded computing technologies [1][3][7][10][11]. Sensor 
networks consist of hundred or thousands of sensor nodes, low 
power devices equipped with one or more sensors. Besides 
sensors, a sensor node typically contains signal processing 
circuits, microcontrollers, and a wireless transmitter/receiver. By 
feeding information about the physical world into the existing 
information infrastructure, these networks are expected to lead to 
a future where computing is closely coupled with the physical 
world and is even used to affect the physical world via actuators. 
Potential applications include monitoring remote or inhospitable 
locations, target tracking in battlefields, disaster relief networks, 
early fire detection in forests, and environmental monitoring. 
While recent research has focused on energy efficiency [8], 
network protocols [4], and distributed databases, there is much 
less attention given to security. The only work that we are aware 
of is [5]. However, in many applications the security aspects are 

as important as performance and low energy consumption. 
Besides the battlefield applications, security is critical in premise 
security and surveillance and in sensors in critical systems such 
as airports, hospitals, etc. Sensor networks have distinctive 
features, the most important ones being constrained energy and 
computational resources. To accommodate those differences 
existing security mechanisms must be adapted or new ones 
created. 
Our approach to communication security in sensor networks is 
based on a principle stated in [6] that says that data items must be 
protected to a degree consistent with their value.  
Our main goal is to minimize security related energy 
consumption. By offering a range of security levels we ensure 
that the scarce resources of sensor nodes are used accordingly to 
required protection levels. There are many other important issues 
for security in sensor networks, e.g. physical protection of the 
sensitive data in sensor nodes, and the system-level security. 
However, those topics are outside of the scope of this paper. The 
complexity of building tamper-proof circuits that could protect 
sensitive information held in a node is described in [2]. 
 
1.1 Security Threats 
Wireless networks, in general, are more vulnerable to security 
attacks than wired networks, due to the broadcast nature of the 
transmission medium. Furthermore, wireless sensor networks 
have an additional vulnerability because nodes are often placed 
in a hostile or dangerous environment where they are not 
physically protected. 
We list the possible threats to a network if communication 
security is compromised: 

1. Insertion of malicious code is the most dangerous attack 
that can occur. Malicious code injected in the network 
could spread to all nodes, potentially destroying the 
whole network, or even worse, taking over the network 
on behalf of an adversary. A seized sensor network can 
either send false observations about the environment to 
a legitimate user or send observations about the 
monitored area to a malicious user. 

2. Interception of the messages containing the physical 
locations of sensor nodes allows an attacker to locate 
the nodes and destroy them. The significance of hiding 
the location information from an attacker lies in the fact 
that the sensor nodes have small dimensions and their 
location cannot be trivially traced. Thus, it is important 
to hide the locations of the nodes. In the case of static 
nodes, the location information does not age and must 
be protected through the lifetime of the network. 

3. Besides the locations of sensor nodes, an adversary can 
observe the application specific content of messages 
including message IDs, timestamps and other fields. 
Confidentiality of those fields in our example 
application is less important then confidentiality of 
location information, because the application specific 



data does not contain sensitive information, and the 
lifetime of such data is significantly shorter. 

4. An adversary can inject false messages that give 
incorrect information about the environment to the user. 
Such messages also consume the scarce energy 
resources of the nodes. This type of attack is called 
sleep deprivation torture in [9]. 

 
1.2 Modular Multiplier 
Modular Multiplication is a time-consuming arithmetic operation 
because it involves multiplication as well as division. Modular 
exponentiation can be performed as a sequence of modular 
multiplications. Speeding the modular multiplication will have a 
great impact on the speed of modular exponentiation. Modular 
exponentiation and modular multiplication are heavily used in 
current cryptographic systems. Well known cryptographic 
algorithms, such as RSA [16] and Diffie-Hellman key exchange 
[15], require modular exponentiation operations. Digital 
Signature Standard (DSS) cryptography [17] as well as Elliptic 
curve cryptography (ECC) [18] need modular multiplication. 
Montgomery multiplication algorithm [12] is a very smart and 
efficient algorithm for calculating the modular multiplication. It 
replaces the division by a shift and modulus-addition (if needed) 
operation, which are much faster. The algorithm is also very 
suitable for a hardware implementation. Many designs have been 
proposed for fixed –precision operands. A word-based 
Montgomery multiplication algorithm [13] has been proposed 
later and the scalable Montgomery multiplier is based on this 
modified algorithm. This multiplier can be configured to meet 
the design area-time tradeoff. Also, it can work for any operand 
precision up to the maximum design memory capability. 
 
1.2.1. Montgomery Multiplication (MM) Algorithm 
Before we describe the Montgomery multiplication algorithm, 
we will introduce the following definitions and notations. 
• M is the modulus of the modular multiplication 
• X is the multiplier of the modular multiplication 
• Xi is a single bit of X at position i 
• Y is the multiplicand of the modular multiplication 

• N is the number of bits in each operand 
• r is a constant equal to 2N 
• S is the partial product of the modular multiplication 
• Si is a single bit of S at position i 
The Montgomery multiplication algorithm calculates the 
following result 
MM(X, Y) = XYr -1 mod M, 
Where r = 2N and M is an integer in the range 2N-1 ≤ M ≤ 2N-1 
such that gcd(r, M) = 1. 
The algorithm transforms an integer in the range [0, M-1] to 
another integer in the same range called the image or the M-
residue of the integer.  
The following steps show how Modular multiplication can be 
calculated using a series of Montgomery multiplication  
1. Images of X and Y are calculated as 
 X =MM(x,r2)= Xr mod M 
  Y =MM(Y,r2) = Yr mod M 
2. Image of C is calculated as 
C = MM(X,Y)=MM(Xr,Yr)=XYr mod M 
3. Modular multiplication is calculated as 
C = MM(C,1 )= C Mod M= XY mod M 
Figure 1.1 shows the three steps mentioned above. 
Algo1.1 shows the radix-2 MM algorithm. The algorithm –as we 
said before- is very smart since it replaces the division by 
shifting and addition, which are faster and more efficient. The 
partial product S is initialized to zero. Then, for each iteration in 
the algorithm, a bit of the multiplier X is multiplied by the 
multiplicand Y. 
The X bits are scanned one bit at a time starting from the least 
significant bit. If the partial sum S is odd then M needs to be 
added. This makes the partial sum even because M is odd since 
gcd(r, M) = 1. Adding M will not affect the modular 
multiplication results because it is the modulus. S is then shifted 
one bit position to the right. After all the iterations are executed, 
S is compared with M to see if it is outside the range [0,M-1] 
(i.e., if it greater than M). If so then M is subtracted from S to 
have it in the range. By the end, S will hold the Montgomery 
multiplication result of X and Y. 

 
Figure1.1. Modular Multiplication using MM 

 
 

Figure 1.2. FPGA general structure 

 
 
Step 
1. S = 0 
2. for i = 0 to N-1 
S = S + Xi*Y 
if S is ODD then S = S + M 

S = S/2 
3. If S ≥ M then S = S – M 
Algo. 1.1. Radix-2 MM algorithm 
 
1.3. Field Programmable Gate Arrays (FPGAs) 
Field programmable gate arrays (FPGAs) are programmable 
chips. Figure 1.2 shows a general structure of an FPGA chip. The 



FPGA is an array of configurable logic blocks (CLBs). It has also 
input/output blocks to provide the interface between the chip pins 
and the internal signals. The signals from all blocks are 
connected to each other using wires, which in turn connected to 
each other by programmable routing switches. The CLBs have 
the logic resources that are necessary to implement various 
combinational and sequential logic functions. Normally, a CLB 
has look-up tables (LUTs), multiplexers, and flip-flops. The 
programming of all resources (CLBs, IOBs, and routing 
switches) is done using RAM, EPROM, EEPROM, or Anti-fuse 
technologies. 
For our work, we are using Xilinx Spartan-II FPGAs, which are 
programmed using RAM technology. 
 
1.4. Literature Review for Montgomery Multiplication 
A systolic array design for modular multiplication base on 
Montgomery algorithm has been presented in [22]. The design 
can generate one modular multiplication every clock cycle with 
latency equal to 2N+2 cycles, where N is the operand size. This 
design is useful when consecutive modular multiplications are 
needed like in RSA cryptography. 
A radix-2 word-based Montgomery multiplication algorithm and 
a scalable Montgomery multiplication architecture based on it 
have been presented in [13]. The scalable Montgomery multiplier 
has no limit on the operand size since it processes the operands 
word by word. Also, it exploits the parallelism in the algorithm 
by using multiple processing elements in a pipelined fashion. The 
scalable multiplier can be configured by selecting the word size 
and the number of processing elements in the pipeline that best 
meet the area and time requirements of the system. ASICs 
designs, implementations and analysis of one radix-2 and two 
radix-8 scalable Montgomery multipliers have been presented in 
[19]. The radix-2 design has been based on the algorithm 
presented in [13]. The radix-8 designs have been based on high 
radix word-based Montgomery multiplication algorithm 
developed also in [19] based on the algorithm in [13]. The study 
shows that after some number of processing elements, adding 
more elements will increase the total execution time. The study 

also was trying to optimize for two operand sizes at the same 
time. 
FPGAs that are in-system programmable were investigated in 
[21] to find the key architectural criteria for implementing high 
performance wide-operand addition. FPGA architecture for high 
performance wide-operand modular multiplication has been also 
proposed. This architecture is intended for high performance 
cryptography. 
A modular exponentiation architecture that combines high radix 
Montgomery multiplication with systolic array was derived in 
[20]. This design performs 1024-bit RSA operation in 3.1 ms 
using 45.6 MHz clock frequency. This design was implemented 
on one Xilinx XC40250XV FPGA. 
 
2. Design  
To implement any design on an FPGA chip, the designer should 
be aware of the design development tools (i.e., the CAD tools) 
and the target FPGA technology. An ASIC design that is 
efficient in terms of area and/or speed for some ASIC tools and 
technology is not necessarily efficient for some FPGA tools and 
technology. Same thing applies when considering tools and 
technologies from different vendors. What is efficient for Xilinx 
FPGAs might not be efficient for Altera FPGAs. Even this 
applies to different tools and technologies from the same vendor. 
For example, a design that is implemented using Foundation 2.1i 
tools from Xilinx and efficient for the XC4000 FPGAs might not 
be efficient when using Xilinx ISE4.1 tools and Spartan-II 
FPGAs as the target technology. So, the key is to understand how 
to let the tools interpret the design description efficiently and 
optimize it as much as possible. Also, to understand the target 
FPGA chip and make good use of its resources. 
 
2.1. Xilinx Spartan-II FPGAs 
Spartan-II FPGA is made mainly of five kinds of elements: 
Input/Output blocks (IOBs), Configurable logic blocks (CLBs), 
block random-access memories (Block RAMs), Delay-locked 
loops (DLLs), and versatile multi-level interconnect structure. A 
block diagram of Spartan-II FPGA is shown in Figure 2.1. 

 
Figure 2.1. Spartan-II FPGA block diagram 

 
Figure 2.2. Data dependencies in the MWR2MM 

 
The CLBs can be configured to realize the logic functions. On 
the left and the right sides of the chip there are block RAMs that 
can be configured to realize RAMs or FIFOs as explained in [23] 
and [24]. For each four rows of CLBs, there are two block 

RAMs: one on the left side and one on the right side. Each block 
RAM is 4 Kbits. The IOBs surround the CLBs and the block 
RAMs to provide the interface between the package pins and the 
internal signals. The versatile multi-level interconnect structure is 
configured to provide the necessary interconnection and routing 



among the various blocks as well as among the cells inside the 
blocks themselves. The DLLs provide multiple minimal-skew 
clock signals. The programming (i.e., the FPGA configuration) 
of all elements is done by SRAM. This means that a Spartan-II 
needs to be reprogrammed every time the power is off. This is 
not so bad as you might think because it does not take more than 
10 seconds to program the largest chip of this family, which is 
the same one we have on our prototyping board. 
 
2.2. VHDL Coding for the FPGA Synthesis Tool 
In this work, we are using Xilinx synthesis technology (XST). 
Designs are constructed of combinatorial logic and macros. XST 
has a set of predefined macros like multiplexers, adders, latches, 
flip-flops, counters, finite state machines (FSMs), and RAMs. 
Macros can greatly help the tool optimize the design. So, it is 
important that the generated VHDL code describe the design in 
such a way that the tool infers the appropriate macros. XST 
passes through two phases while synthesizing the VHDL code. In 
the first phase, it tries to infer as many macros as possible. In the 
second phase, it tries to low level optimize the design by either 
preserving the macros (inferred in the first phase) as separate 
blocks or merge them with the surrounding logic. For example, a 
2-to-1 mux might be merged with other combinational logic to 
get better synthesis results. However, the designer can force XST 
to preserve a macro by setting synthesis constraints. 
 
2.3. Multiple Word Radix-2 Montgomery Multiplication 
(MWR2MM) 
Algorithm and Architecture 
This algorithm and its general architecture were proposed in [14]. 
The algorithm is derived from the original Montgomery 
algorithm proposed in [13]. It deals with the input operands and 
the result of the multiplication as group of bits (words) instead of 
handling them at once. This makes it easier and more efficient 
for both software and hardware implementation. As we know, 
numbers in cryptography are very long. For RSA cryptography, 
1024-bit numbers are used. This is expected to increase in the 
future because the computing power is increasing and it might be 
possible to crack the code in a reasonable amount of time. The 
algorithm shown in Algo. 2.1 is equivalent to the MWR2MM 
algorithm proposed in [14]. Another reason behind its suitability 
for hardware is that one processing unit can be reused in an 
iterative manner until all the whole operands are processed. This 
is particularly useful where the area available in the chip for such 
operation is limited. 
The notation used in this algorithm follows the following rules. 
Subscripts are used to index bits and superscripts to index words. 
Higher index indicates a more significant bit or word. Let n be 
the operand size in bits, m the operand size in words, and w the 
word size. This means that 
m =  n / w  
The operand X is scanned bit-by-bit so it is represented as 
X = xn-1…x1x0 
Y, M, and S are scanned word-by-word. So they are represented 
as 
Y = Ym…Y1Y0   where Yi is word number i of Y 
M = Mm…M1M0  where Mi is word number i of M 
S = Sm…S1S0   where Si is word number i of S 
A range of bits in a word is represented, for example, as Si  w-
1…1 where this represents the bits from w-1 down to 0 of the 
word i of S. 

Concatenation of groups of bits is performed, for example, as 
(Sj0 , Sj-1w-1…1) 
Step 
1 S = 0 
2 for i = 0 to n-1 
3 (C, S0) := xiY0 + S0 
4 if S0 is odd then 
5 (C, S0) := (C, S0) + M0 
6 for j = 1 to m-1 
7 (C, Sj) := C + xiYj + Mj + Sj 
8 Sj-1 := (Sj0 , Sj-1w-1…1) 
9 end for 
10 Sm-1 := (C , Sm-1w-1…1) 
11 else 
12 for j = 1 to m-1 
13 (C, Sj) := C + xiYj + Sj 
14 Sj-1 := (Sj0 , Sj-1w-1…1) 
15 end for 
16 Sm-1 := (C , Sm-1w-1…1) 
17 end if 
18 end for 
Algo 2.1. MWR2MM algorithm 
 
The algorithm differs from the original Montgomery 
multiplication algorithm in the sense that the operands are 
processed word by word. It is shown in [14], that the carry 
variable C must be in the set {0,1,2} because its maximum Cmax 
needs to satisfy the following containment condition 
3(2w –1) + Cmax ≤ Cmax2w + 2w –1 
This results in Cmax ≥ 2. Thus, Cmax =2 satisfies the condition. 
 
2.3.1. Parallelism in the MWR2MM Algorithm 
From the algorithm shown in Algo 2.1, we can see that there is 
data dependency in the steps performed among the j-indexed 
loops. This is because the previous word of S is not generated 
until the least significant bit of the current word of S is known. 
So, it is not possible to do parallel processing on them. They 
need to be executed serially but for the i-indexed loop, it is 
possible to start the next loop once the least significant word of S 
(S0) of the current i-iteration is generated. But, we should note 
that S0 of the current i-iteration is generated when the least 
significant bits of S1 are generated, for the reason just mentioned 
above. This causes two-cycle delay until we can feed S0 to the 
next i-iteration. But, we can still start it though and thus 
parallelism is possible among the i-indexed loops. Figure 2.2 
shows the data dependencies of the algorithm and their timing. 
Each i-indexed iteration can be executed using one processing 
element. The processing element is capable of performing the 
operations in steps 3 through 17 in Algo.2.1. These operations 
include checking weather M should be added or not to the result. 
This information is kept until the end of the iteration, which 
basically consists in adding the operands and the carry word-by-
word in a serial manner. 
2.3.2. The Scalable Architecture 
The scalable architecture that implements the MWR2MM 
algorithm was also proposed in [14]. It is scalable in the sense 
that the word size (w) and the number of processing elements can 
be chosen by the designer, i.e., these hardware parameters can be 
chosen to meet the area, speed, and power requirements within 
the resources available to the design. Figure 2.3 shows a general 
organization that uses pipelining to exploit the parallelism in the 
MWR2MM algorithm. Virtually, we would like to make the 



word size (w) as large as possible. But, this might cause several 
problems. One of them is the speed degradation because of high 
fan-out signals, long wires, and big area required for the 
processing unit. The area given to the multiplier might be small 
and limited. This kind of multiplier allows us to investigate the 
trade-off between the area and the speed. 
Increasing the number of pipeline stages as much as we might 
not be useful as one might think. This was discussed in [19]. This 
is because the number of clock cycles the multiplier needs to 
execute the MWR2MM algorithm depends not only on the 
number of stages but also on the operand size and the word size. 

It is shown in [19] that this multiplier will take the following 
number of cycles to execute the MWR2MM algorithm. 
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        if ( n/W  +1) >  2*K 
 
Where K is the number of processing element in the pipeline, n is 
the operand precision, w is the word size, and  x  is the ceiling 
integer of x. 
 

 
Figure 2.3. Radix-2 Scalable Montgomery Multiplier 

 
Figure 2.4. Design of MWR2MM processing element 

 
2.4. Design of the Processing Element 
This design of the processing element, shown in Figure 2.4 is 
very similar in functionality to the first one. However, the major 
difference is that instead of using carry-save adders (CSAs) 
Xilinx carry-propagate adders (CPAs) are used. The objective of 
this other design is to examine the effect of using the dedicated 
fast carry logic (FCL) inside the Spartan-II FPGA chip on the 
speed of the (CPAs). 
CPAs that make use of the FCL show much better performance 
than those that don’t use it. By using CPAs instead of CSAs, we 
expect to reduce the area of the processing element because we 
don’t need to have S in two registers (as in the CSA form). This 
also, will reduce the size of the inter-stage register. So, we expect 
a reduction in the overall area needed for the pipeline because of 
these two expected reductions. Also, we expect the speed of the 
design to be comparable to the speed of the design that uses 
CSAs. The impact in the area and speed of the processing 
element is presented and analyzed in next Section. 

 
3. Experimental Results and Analysis 
This scalable radix-2 Montgomery multiplier pipeline is 
composed out of processing elements. In the following three 
subsections, we will present the implementation results and study 
how its area, clock cycle time (CCT), and total execution time 
(TET) change for each configuration. 
 
3.1. Area 
Figure 3.1 shows the area of the design versus the word size. We 
will stop at 16-bit word size because of the lack of I/O pins. The 
number of stages is fixed to 28 so that we can later compare it 
with the first design. The last configuration of 16-bit word and 28 
stages takes 1782 slices, which is about 76% of the slices in the 
FPGA chip. This allows us to test a wide range of pipeline 
configurations as we were trying for the first design. 
 



word size (bits) 
Figure 3.1.  Area vs. word size, number of stages = 28 

 
 

Figure 3.2. Area vs. number of stages, word size = 16 bit 

 
Figure 3.3. Clock cycle time vs. word size, number of stages = 

28 

 
Figure 3.4: Clock cycle time vs. number of stages, word size = 16 

bit 

Figure 3.5 Total execution time vs. number of stages, word 
size = 16 bit 

 
Figure 3.6.  Total execution time vs. number of stages, word size 

= 16 bit 
 
From Figure 3.2, we can see that the area increases almost 
linearly as we increase the word size. For each additional bit, the 
design needs about 4.7% of the slices (110 slices) on the average. 
As before, the length of the multiplexers, CPAs, and word 
registers is linearly dependent on the word size. Moreover, the 
optimization goal was again for speed. 
Figure 3.2 shows the area versus the number of stages. The word 
size is fixed to 16 bits for the same reason mentioned above. The 
Figure shows that the area increases almost linearly as the 
number of stages increases. For each additional stage, the design 
needs about 2.7% of the slices (63 slices) on the average. 
 
3.2. Clock Cycle Time (CCT) 

These CPAs are implemented using fast carry logic (FCL) chains 
that require their slices be adjacent to each other in the chip. So, 
this puts limitation on the power of the PAR tool in optimizing 
design because it cannot easily move things around inside the 
chip. It has to keep the slices containing the carry chains 
adjacent. This is how Spartan-II architecture is designed. 
Figure 3.3 shows the clock cycle time versus the word size. It 
shows that the CCT increases when the word size increases. The 
fastest configuration among the results is the one with 4-bit word 
size. It can run at 105MHz maximum frequency. The slowest is 
the 16-bit. It can run on 87MHz maximum frequency. The first 
reason why this happens is that as we increase the word size the 
carry chains become longer. This means the number of logic 
levels increases causing more logic delay. The second main 
reason is that there is more limitation on the PAR tool because it 



has to place these carry chains in adjacent slices. This causes less 
efficient placement and routing and thus more routing delay. For 
this design, more delay comes from the logic than the routing. 
The logic delay is about 60% of the total delay while the routing 
is about 40%. Figure 3.4 shows the clock cycle time versus the 
number of stages. Because this design takes less area than the 
first one we are able to fit designs with up to 36 stages. The 
Figure shows that increasing the number of stages increases the 
CCT. This is mainly because of the second reason mentioned 
above. As the design gets bigger, the chip gets more crowded. 
Thus, the PAR tool will have less placement and routing options 
as it is trying to keep the carry chains in adjacent slices. Even 
though there is an increase in the CCT as we increase the number 
of stages, the tool is still doing good and satisfactory 
optimization. The 4-stage design, which takes 9% of the slices 
and runs on 92MHz, is only about 7% faster than the 36-stage 
design, which takes 98% of the slices and runs 85MHz. The 
optimization techniques were also used here and helped the tools 
during the optimization process. 
 
3.3. Total Execution Time (TET) 
The fastest configuration is identified by the total execution time 
(TET). The TET values for four operand sizes: 128, 256, 1024, 
and 2048 as we change the number of stages are shown in Table 
3.1. The word size is set to 16 bits. 
Figures 3.5 and 3.6 show total execution time versus the number 
of stages. For 128-bit operand size, the minimum TET occurs 
when the number of stages is 8. But, we recommend 8 stages 
because we will loose 0.7% in speed and we will gain 31% in 
area. For 256-bit operand size, the minimum TET occurs when 
the number of stages is 16. But, we recommend 8 stages because 
we will loose 2.3% in speed and we will gain 22% in area. For 
both of them we can see that increasing the number of stages 
(increasing the design size) does not help. On the contrary, it 
becomes slower. For the large operands, 1024 and 2048 bits, the 
largest design that can be implemented in the chip gives the best 
TET. If we assume that designs of more than 36 stages can be 
implemented then we may find a large number of stages for 
which the performance (TET) starts to drop (TET increases). 
 
Stages 128-bit 256-bit 1024-bit 2048-bit 
4 3191 11874 180676 716950 
8 2859 6065 90591 359123 
12 3062 6135 63410 249493 
16 2954 5920 47070 185833 
20 3258 6073 38801 151256 
24 3362 6189 32379 126963 
28 3312 6636 28379 110794 
32 2033 6077 24702 95923 
36 3441 6895 25094 86597 
 Table 3.1: Total Execution times (ns), word size= 16 bit 
 
4. Conclusion  
4.1. Comparison with ASIC Implementation: Behavioral Not 
Quantitative 
In this section, we will compare our FPGA implementation of the 
this design against the ASIC implementation of similar design 
presented in [19]. As we said earlier, we will approach the 
comparison in a behavioral manner not quantitative manner. 
ASIC and FPGA are two different technology and they have 
different design methodologies. For the work presented in [19], 

Mentor Graphics tools have been used and the target ASIC 
technology has been set to AMI05_slow. But for our work Xilinx 
ISE4.1.03 has been used and the target technology has been set 
to Spartan-II. Regarding the area, both implementations show 
that the area increases linearly as we increase the word size 
and/or the number of stages. Regarding the clock cycle time 
(CCT), our FPGA implementation shows much better immunity 
as we increase the word size and/or the number of stages. For 16-
bit word size, our FPGA implementation becomes only less than 
5% slower (CCT changes from 7.7 ns to 8.1 ns) as we increase 
the number of stages from 4 to 26. For the same word size, the 
ASIC implementation becomes 43% slower (CCT changes from 
8.1 ns to 14.3 ns) if we increase the number of stages from 4 to 
26. For 28 stages, our FPGA implementation becomes about 8% 
slower (CCT changes from 7.7 ns to 8.4 ns) as we increase the 
word size from 8 bits to 16 bits. For 26 stages (even less than 
28), the ASIC implementation becomes about 48% slower (CCT 
changes from 7.4 ns to 14.3 ns) as we increase the word size 
from 8 bits to 16 bits. Regarding the total execution time, both 
implementation, FPGA and ASIC, show the same kind of curves 
for small operands and for large operands. Also, both of them 
show that the total execution time will increase if we increase the 
number of stages beyond some number. 
 
4.2. Scalable Versus Fixed 
In this section, we rely on a very interesting experiment we have 
done. We tried to synthesize a pipeline of only one single big 
processing element that has 1024- bit word size (can handle 
1024-bit operands). Then, we tried a pipeline of 32 processing 
elements (each one is 32-bit word size). The processing elements 
are from the first version. The synthesis tool took very long time 
to synthesize them (one night for each). The synthesis result 
show that the pipeline of the single processing element needs 
2231 slices (94% of the total slices) and has 9.576 ns clock cycle 
time. So, it can be fit in the FPGA we have and it runs on 104 
MHz. Whereas, the other pipeline needs 5199 slices (2847 slices 
more than available in the chip) and has 9.376 ns (can run on 106 
MHz). This large area requirement is because of the pipeline 
registers. If these two pipelines can be implemented, we expect 
the PAR tools to enhance the performance by 10% as it was 
doing for the large designs that can be implemented. This gives 
us a strong indication that a fixed design of Montgomery 
multiplier is much smaller than the scalable one if they both have 
process the same number of bits. It also can run at very close 
speed. These conclusions are correct in our case and we think 
they are correct for other FPGA and ASIC technologies and other 
design tools if the designer applies good optimization techniques 
and if the tools are good enough to support such techniques. 
However, the scalable design is very useful when we have very 
limited area because even one small processing element can still 
execute the algorithm but in longer time. 
 
4.3. Concluding Remarks 
In this work, we have FPGA-based prototyping environment that 
can be used to test the functionality of the Montgomery 
multiplier (MM) hardware at the circuit level. The MM hardware 
can also be reconfigured using this environment by loading to the 
FPGA chip the best design configuration. 
In this work, we have also discovered the advantages and 
disadvantages of using redundant carry-save adders (CSAs) and 
non-redundant fast carry-propagate adders (CPAs). We have 
reached to the conclusion that for high-end speed, the CSAs are 



better. But for limited chip area, the CPAs are better. We have 
also proven that fast CPAs using FCL available in some FPGA 
technologies can significantly improve the performance. We 
have also explored the FPGA design techniques that improve the 
design performance. 
The experiment indicates that the fixed design is better than the 
scalable design when a lot of chip area and bandwidth are 
available. But in applications where area and bandwidth are very 
limited, the scalable design is better. 
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