Distributed Agent Architecture for
 Packet Filtering & Monitoring in Networked Computers

Ghulam Ali, Ahmed Rafiq, Dr. Zubair A. Shaikh

Abstract

Paradoxically, every thing that makes computer networks so useful and popular, their ability to enable communication between an ever-increasing numbers of people on a global scale, is also the thing that renders them vulnerable to abuse. For a software to succeed in today’s ever-increasing market, it not only has to function correctly but it also has to be fast, secure, fault tolerant, distributed, easy-to-use, and much more. Customers require new solutions to secure networks that face increasing security threats, as well as to address evolving network environments and new business requirements.

Mobile agents are an effective choice for many applications due to several reasons, including improvements in latency and bandwidth of client-server applications, reducing network load and vulnerabilities assessment. [1].

This paper describes the approach of distributed agent architecture for monitoring, intrusion detection and response in networked computers.

1.
Introduction & Background Study
The central organizing principle of today’s computer communication networks, Remote Procedure Calling (RPC), was conceived in the 1970s and viewed computer-to-computer communication as enabling one computer to call procedures in another. Each message that the network transports either requests or acknowledges a procedure’s performance. A request includes data that are its result. The procedure itself is internal to the computer that performs it.

Two computers whose communication follows the RPC paradigm agree in advance upon the effects of each remotely accessible procedure and the types of its arguments and results. Their agreements constitute a protocol.

A user computer with duties for a server to accomplish orchestrates the work with a series of remote procedure calls. Each call involves a request send from a user to a server and a response sent from the server to the user.

RPC essentially requires that each interaction between the user computer and the server consist of two acts of communication: one to ask the server to perform a procedure and another to acknowledge that the server did so. Because of this, each ongoing series of interactions requires a similarly ongoing series of communications. The clutter is RPC comes from the constant need for reciprocity between the users and a server.
An alternative to RPC is remote programming (RP). The RP paradigm view computer-to-computer communication as enabling one computer not only to call procedures in another, but also to supply the procedures to be performed. With RP, each message that the network transports is composed of a procedure that the receiving the computer is to perform and the data that are that procedure’s arguments. In an important refinement, the sending computer begins or continues a procedure to be performed while the receiving computer continues the procedure using the data send as the procedure’s arguments to define its particular actions, thus defining the procedure’s current state.

Two computers communicating with the RP paradigm agree in advance upon the instructions that are allowed in a procedure and the types of data that are allowed in its state. Their agreements constitute a language. The language includes instructions that allow the procedure to make decisions, examine, and modify its state, and, importantly call procedures provided by the receiving computer. Such procedure calls are local rather than remote. The procedure and its state are termed and its state is termed a mobile agent to emphasize that they represent the sending computer even while they reside at and operate in the receiving computer.

For example, a user computer with work for a server to accomplish sends to the server an agent whose procedure, while there, makes the required requests of the server based upon its state. Deleting the files described in the RPC example, no matter how many, requires just the message that transports the agent between computers. The agent, not the user computer, orchestrates the work, deciding on-site which files should be deleted.

Using the remote programming paradigm, a user’s computer and its server can interact without using the network once the network has transported an agent between them. Thus, an ongoing interaction does not require a series of ongoing communications. This type of interaction appears to achieve the new approach’s requirements of increased sophistication without increased bandwidth. Indeed, RP suggests that in some cases, more can happen with less bandwidth.

Remote programming has important advantage over remote procedure calling that can be seen from two different perspectives: one, quantitative and tactical; the other, qualitative and strategic.

2.
Mobile Agents
The concept of a mobile agent sprang from a critical examination how computers have communicated since the late 1970s. Prompted by the difficulty of the Internet’s then-current architecture to match the pace of the exponential growth of its users, a new approach was needed that would satisfy two seemingly contradictory needs: increasing the sophistication of the possible communication types without strangling the available bandwidth of the Internet’s weaker components[7] .

Although not all applications will need mobile agents, many other applications will find mobile agents the most effective implementation technique for all or part of their tasks.

2.1
Agents’ limitations

Agents are pieces of code that are able to perform complex, autonomous operations, and become truly powerful when they are mobile, meaning that they can travel from one machine or computer network to another. Agents must be both safe from being harmed and incapable of doing any harm to them before they are even sent out into the world [8,9].
They are pieces of code where a computer environment is needed for them to operate. This environment is provided by the habitat. The habitat is a software system running on a computer, and can also be thought of as the runtime environment. It provides the agents with the functionality needed to for code execution, mobility, service management, communication and much more. Another analogy for the habitat is that it acts as an Agent Operating System. Without it, agents would not be able to exist. One or more habitats can run per machine and configure them individually.
Removing this environment would categorize them into a Virus; an Environment can be configured to stop the agents from harming the workstation.

2.2.
Mobile Agents in Networking

The practicality of mobile agents hinges on realistic security techniques. Transport of mobile agents takes place between mobile agent systems, which are located on heterogeneous platforms, making up an infrastructure that has the potential to scale to the size of any underlying network. Mobile agents can be rapidly deployed, and can respond to each other and their environment. These abilities expose flaws in current security technology.

Mobile agents reduce the need for bandwidth. Very often peers using a distributed protocol establish a communication channel between them, and then perform multiple interactions over this channel.

Mobile agents are asynchronous. Therefore when a mobile agent is dispatched there is no need to wait for it to return. Indeed the original peer does not even need to remain connected to the network while the mobile agents are out. The mobile agents can wait until the original peer is back on the network before attempting to return to it.

3.
Research Methodology

We intended to amalgamate two models, Mobile Agent Technology and Security Systems. A distributed security system able to monitor, detect intrusions and respond accordingly.

This architecture will provide a fault tolerant solution . If a workstation had been compromised, the workstation would be temporarily isolated from the network thus limiting any further damage to the network.

During our research we had studied vulnerabilities in Firewalls and Operating Systems, exploiting them provided a pathway for hackers to compromise even secure systems.

We tried using existing Agent toolkits to design and implement our architecture to cope with all kind of security threats. Alternative approach would be to create our own Agent toolkit and then work on problem in hand [2].
We used the bottom-up strategy while traversing our nodes, learning all the basics and moving up towards higher-level modules so that we wouldn’t face any conceptual errors further into the research.

From implementation perspective:
To accomplish the objectives an incremental approach has been followed. It would involve a series of steps and at the end of each series the functionality of the software has been increased that is we would be working in versions and the end of each series would mean the completion of the corresponding version. The emphasis is on providing a working system after every incremental stage. In addition, as each increment is a stripped down version of the final product covering a small chunk of the requirements, it would help to incorporate additional requirements on completion of a version or to modify the existing requirements that need to be covered in the later versions.

4.
Achievements

The first major task was to choose the right technology. Many of the technologies were checked like Agent Development Kit (ADK) and Aglet Software Development Kit (IBM).
These are well-known available platforms. The above mentioned technologies provide a platform for agent development but ADK2.0 is still in its development phases and has a lot of problems regarding agent movement which is the core essence of our project. ASDK on the other hand is widely tested, used and verified for aglet development.

Aglets provided us with the control we needed to develop a low level application monitoring the OSI Layers.

Mobility of the agents is the core essence of the research. Once agents roam around, the next task will be the security measures.
4.1.
Monitoring & filtering

Once Agents’ mobility tested, this will be easier to monitor remote workstations. The created mobile agents targeted the destination machine. The running processes, resources they were being used, open ports and system status information can easily be obtained from the target machine.

On a remote system, our agent is able to capture, monitor and filter incoming packets into that system.

4.2.
Discovering the flaws in the current Agent toolkits

When an agent migrated into another system, it needed a client on the host machine to receive it. If the client were to be compromised on the host machine, it would render the agent helpless to provide any sort of security.

This led to change in plans in choice of our Agent Toolkit. After further research we discovered that none of the Agent toolkits available were matching our requirements, i.e. to target the host and monitor and filter packets even if agent server is not installed there.(what are your requirements? You should justify which tools and why not) These toolkits are effective in other scenarios but not in the proposed one.

Another problem with the available toolkits is that they are all implemented in java due to its immense support of distributed applications. Our implementation requires low level access and Java does not provide low-level control to its developer directly. That’s why Visual C has been selected that allows an easy access to the hardware. Again it contradicts the object oriented development concept so to overcome this problem JNI was chosen as interface to incorporate the project.
4.3..
Designing our own Agent Architecture

Studying various Agent toolkits, their flaws and our requirements, we developed Agent architecture, flexible enough to incorporate Security modules into it.

Major components of our architecture include Master Agent, Slave Agent, Web Service and Web Client.

Our Master Agent would be an intelligent agent, able to make decision and dispatch different types of Slave Agent. Slave Agent would respond to its duties for example monitoring a particular workstation. It would then email the collected information to our account in XML format making the analyzing of data easier and would also send the information back to its Master.

Our Master Agent would have embedded Web Client in it; the information it receives from its Slave would then be dumped onto a Web Server through the help of our Web Service and Web Client. This would complete the monitoring part. The next step would be to analyze the data collected and act accordingly.

[image: image1.png]))
sennt| \gensy gy WobService
i sty

. —
M

Web Server

Fig: Agent Toolkit in .NET Framework
Working on current Agent toolkits, designing our own Agent architecture led us to believe that we could develop our own agent toolkit in the .NET Framework. Keeping our architecture in mind, we developed a primitive Agent Toolkit with a Stealth Client.

We chose this platform because it is truly platform independent, provides immense support for all sorts of new technology for eg. Web services, mobile applications, XML support etc.

4.
Discussion & Future work
Existing systems have their limitations namely, flexibility, autonomy, adaptability and distribution. While there are several areas of work presented here that require further investigation. Two interested areas are still there to be concentrated: Firstly, we would like to assess the performance of our proposed solution in a large uncontrolled network, because so far all our testing has been in a controlled laboratory. Secondly, we would like to develop more mobile agents that are more application specific and which deal with increasingly complex resources that are defined using XML.

5.
Conclusion

In fact, the autonomy given to the agent reduces considerably the implication of the security manager in security management and makes its administration easier. A new architecture using intelligent mobile agents is outlined. Here we are in position to say that mobile agents do provide a viable means of performing network security analysis as well as some other complex tasks.

The next step would be to analyze the data collected and act accordingly.

6.
References

[1] Crosbie, M. and E. Spafford, “Defending a Computer System using Autonomous Agents”, Proceedings of the 18th National Information Systems Security Conference, October 1995.

[2] C. Kaufman, R. Perlman, and M. Speciner, Network Security: Private Communication in a Public World, Englewood Cliffs, NJ: Prentice Hall PTR, 1995.
[3] Jai Sundar Balasubramaniyan, Ganesh Krishnan, Eugene Spafford, Karyl Stein, Aurobindo Sundaram, Software Agents for Intrusion Detection, COAST Laboratory Technical Report, Department of Computer Sciences, Purdue University, May 15, 1997.

[4] 7th IEEE International Conference and Workshop on the Engineering of Computer Based Systems April 03 - 07, 2000 Edinburgh, Scotland. J. Pikoulas, M. Mannion, W. Buchanan , Napier University.

[5] Stallings, W., Network Security Essentials: Applications and Standards, Prentice Hall, Upper Saddle River, New Jersey, 1999.
[6] Mark Crosbie and Eugene Spafford, , Active Defense of a Computer System using Autonomous Agents, COAST Laboratory Technical Report, Department of Computer Sciences, PurdueUniversity, February 15, 1995.

[7] B. Blakley, “The Emperor’s Old Armor,” Proc. New Security Paradigms Wksp., 1996.
[8] R. S. Gray, “Agent Tcl: A flexible and secure mobile-agent system,” Proc. 1996 Tcl/Tk Wksp., July 1996, pp. 9–23.

[9] Barrus, J. and N. Rowe, “A Distributed Autonomous-Agent

Network-Intrusion Detection and Response System”,Proceedings of the Command and Control Research and
Technology Symposium, Monterey, CA, June 1998.

[10]Distributed Agents Projects http://dsonline.computer.org/agents/agentsprojects.htm
5. Aglet community http://aglets.sourceforge.net/
[11]Wiley , Computer Security Handbook, Chapter Two.

[12] GrassHopper. WWW: http://www.ikv.de
[13] Agent Development Kit, www.tryllian.com.

[14] Gunter Karjoth, Danny B. Lange and Mitsuru Oshima, A Security Model for Aglets, IEEE Internet Computing, 1997

[15] Antisniff Technical Details

http://www.securitysoftwaretech.com/antisniff/tech-paper.html
[16] Robert Graham’s Sniffing FAQ:

http://www.robertgraham.com/pubs/sniffing-faq.html
[17] Dsniff Frequently Asked Questions

http://www.monkey.org/~dugsong/dsniff/faq.html
[18] J. Vitek, M. Serrano, and D. Thanols, “Security and Communication in Mobile Object Systems,” Mobile Object Systems: Toward the Programmable Internet, J. Vitek and C. Tschudin, Eds., Springer-Verlag, 1997.

[19] Danny B. Lange and Mitsuru Oshima, Java Agent API: Programming and Deploying Agents with Java, to be published by Addison-Wesley, Fall 1997, a working draft, "Programming Mobile Agents in Java," is available at http://www.trl.ibm.co.jp/aglets/whitepaper.html
[20] http://www.cert.org/tech_tips/home_networks.html.

_1146547644

