Gene Expression and Handling Genetic Algorithm and Its Application in Engineering Optimization

LONGFU LUO

College of Electrical & Information Engineering

Hunan University, Changsha, 410082, P.R. China

LIMING DAI*

Industrial Systems Engineering, University of Regina

Regina, Saskatchewan, S4S 0A2, Canada

http://uregina.ca/~dailimli/
Abstract: The present work introduces a Gene Expression and Handling Genetic Algorithm (GEHGA) with comparison to the traditional genetic algorithm and the gene expression genetic algorithm. GEHGA includes engineering experience and design knowledge as additional two gene controlling generic operators in performing the design optimization. With the inclusion of the engineering design experience and knowledge, this algorithm improves the quality of the initial population and provides the capability of generating better generic elements in later generations. GEHGA therefore provides better convergence. Application of GEHGA in an industrial design optimization demonstrates the advantages of the present algorithm. In industrial design optimizations of the real world, the existence of gene-like information is evident. Hence, the application of GEHGA in engineering practice is highly prospective.

Key-Words: - Engineering design optimization, generic algorithm, gene expression, gene information, gene control.

1 Introduction

The studies of genetic algorithm originated from the investigation on organic evolution. By adjusting the external environment during evolution, gene carries, utilizes and transmits information from one generation to the others. The expressions of gene’s basic function are: reproduction, mutation, recombination and transmission of DNA. Like gene, the traditional genetic algorithms [1-2] developed a set of genetic operators: hybridization, mutation, recombination and reproduction. Many researchers have enhanced the generic algorithms through solving their specific problems [3-10]. However, in practicing industrial design optimizations, the constraints are restricted and the generic algorithms may lead to oscillatory evolution processes and cause difficulties for convergence. It is believed that the algorithm merely simulating the external information of the genetic evolution caused such difficulties, which lead to the damage of the gene structural blocks with the algorithm operators of crossover and mutation. With recognition of these difficulties, researchers developed Gene Expression Genetic Algorithm (GEGA) [11] which considers the information exchange streams inside the organic cells, as well as the gene expression inside tissues—from DNA to RNA, and then to molecule of protein. With the application of GEGA, divergence and oscillation problems are eliminated in solving the engineering design optimization problems with strictly constraints. However, the premature convergence in processing the optimization or local convergent is still remaining as a problem. In carefully examining the genetic operators in GEGA, one may find that the operators are in lack of capacities for generating new and better generic elements. This causes uniformity instead of diversity in population.

In real engineering design practice, engineers usually implement numerous design methodologies and techniques. Empirical formulas, existing feasible but not necessarily optimal design methods and data, as well as the designs of similar products are usually available to the designers or can be referred in designing new products. If such information can be utilized to the utmost level, design optimization process will become much more efficient, and the problems of result divergence and oscillation can be significantly reduced in processing the optimization.

Based on extensive investigations and evaluations, the present research develops a Gene Expression and Handling Genetic Algorithm (GEHGA) on the basis of GEGA. GEHGA intends to maximize the utilization of the existing information such as practical design knowledge, existing feasible relationships of design parameters and engineering experience in the optimizing processes. Application of GEHGA in practice has shown its advantage of fast convergence and effective performance in engineering optimization.

2 Features of GEGA’s data structure
2.1 Gene expression genetic algorithm:
GEGA ()

{initial sampling space;

searching suitable relationship in sampling space;

while (NOT_TERMINATE)

{StringSelect; //searching for suitable chromosomes in sampling space

ClassSelect; //searching for suitable cluster in sampling space

Recombination; //generating new individual by recombination

Evaluate; //evaluation

2.2 Features of GEGA’s data structure:

Each individual in GEGA is called a chromosome and a chromosome is a string of symbols. Each chromosome comprises a number of individual structures called gene. Different from chromosomes of traditional genetic algorithms, gene in GEGA is also a data structure, including alleles, values of gene, locus and positions of gene. Alleles can be any symbol in a set of symbols, as if chromosome’s gene in the traditional algorithm. Loci are used to evaluate the space relation and are non-negative integers except their initial values being set as –1 and 0.

3 Gene Expression and Handling Genetic Algorithm
3.1 Concepts of Gene Expression and Handling Genetic Algorithm
Gene Expression and Handling Genetic Algorithm (GEHGA) is devised to prevent problem of premature convergence in the genetic algorithm. Controlling gene operators are added to the basic operators in the genetic algorithm in order to control gene’s performance and effectively achieve optima.

3.2 Basic operators in gene expression and handling genetic algorithm

Unlike GA (genetic algorithm) that treats chromosomes as basic data structures, GEHGA operates a string of symbols (genes) as basic data structures. By operating genes instead of chromosomes directly, better genes can be maintained. Moreover, utilizing the know-how of current gene information, variations of genes have been controlled. All these give advantages of not only preventing damages caused by crossover and mutation operator, but also avoiding local optima and premature convergence. In GEHGA, there are six basic operators as described in the following.

Gene controlling of initial population: Taking the randomly selected initial designs (chromosomes in initial population) of the initial population randomly replace with the existing feasible designs (chromosomes), which are derived through experience accumulating in design practice.

The quality of initial population can be improved significantly by this operation.

Transcription operation: To operate on each gene in chromosomes, randomly change alleles of genes. It will alter chromosomes’ ability to adapt to the environment. In searching optimal minimization solution, locus value is set to 0. This is because decreasing observed gene fitness value indicates that the initial gene is not from the best class. On the other hand, increasing gene fitness value is a sign that the initial gene may be from the best class. Thus, one could determine the source of gene, good, better, or best, by observing changes of gene fitness value. To find a suitable relation in sampling, repeat the above transcription operation for all genes over the time period of C (C is constant value).

Transcription operator is used to examine correct relation, using distribution of locus to achieve handling relationships in sampling space.

ClassSelect operation: Randomly select two chromosomes, compare the locus of each gene located at the same position inside chromosome. The one with a greater value belongs to a better class of genes. Thus, use this gene to replace the one inside the other chromosome. Repeat this procedure until the best class of genes was selected.

ClassSelect operator is added after transcription operator to select a better gene class and replace it with the weaker ones in chromosome.

String Select operation: To select parents, randomly choose two individual strings from the population; compare their fitness values; individual with better-observed fitness prevails. Repeat this procedure and take two individuals with greatest fitness value as parents.

Selection operation is a reproduction operation. After the operation, there will be two individuals, with better adaptation, exist in the population.

Recombination operation: Randomly select two chromosomes, take one as preference, compare the locus of each gene located at the same position inside chromosome. If locus of the preferred chromosome’s gene is greater than the comparable one, switch the two genes. Thus, the offspring (new chromosomes) are created by swapping two genes.

Offspring can be created through this operation.

Constraint conditions checking and gene controlling operation: During the optimization processes, when the difference between the maximum fitness and mean fitness is reduced to certain level, check each recombined genes with restrictions (e.g. constraints of the temperature rising and the magnetic flux density in optimal design). The objective function value may be further reduced if constrains not reaching their design limits. In this case, identify the individual with larger tolerance, find the corresponding gene or gene block and operated once (increase or decrease its observed fitness value) to reach design limits. If this operation does not change the observed fitness (problems related to minimization), maintain the chromosomes until the next operating cycle; otherwise, restore it to pre-operation condition and keep it still to the next cycle.

Offspring can be created during this procedure. Meanwhile, it can eliminate the chance that solutions falling into local optima.

4 Application of GEHGA in engineering practice
A locomotive transformer’s design optimization is used as an example for illustrating the advantage of employing GEHGA in engineering design optimization practice.

4.1 Locomotive transformer

A design of an electric locomotive transformer is considered. The transformer with capacity of 6952 KVA consists of two columniations of 14 disc windings. Among the 14 disc windings, six (HV1-HV6) of them have identical high voltage windings mounting symmetrically on the two columniations and take parallel connection to a 2.5 KV bus of single phase. The rest 8 disc windings are low voltage ones. Four of the disc windings are traction windings (TR1-TR4) and are also set symmetrically on the two columniations. The rest four low voltage windings (AUX1, AUX2, TS1, TS2) are set symmetrically on the two columniations in general. All the low voltage windings consist of full transposition wire. It is required that the high voltage windings have the same radial dimensions as that of the low voltage windings for the sake of space saving.

4.2 Mathematical model of optimization

The mathematic model for minimizing volume and weight of the transformer can be established as the following,

[image: image1.wmf]12

,

,

1

,

0

16

,

,

1

,

0

,

0

)

(

.

.

2

,

1

,

)

,

,

,

(

),

(

min

13

2

1

K

K

K

=

£

£

=

£

=

=

i

,

b

x

 a

j

X

g

t

s

k

x

x

x

X

X

f

i

i

i

j

T

k

 (1)

Here,
[image: image2.wmf])

(

)

(

)

(

)

(

2

1

X

V

X

f

and

X

G

X

f

=

=

 are the objective functions of the transformer’s weight and volume respectively. It should be noted that the weight and volume here include the oil and the tank of the transformer. In the equation above, X is the column vector consisting of thirteen design parameters, including iron core diameter—D, the turn of traction winding—WT, segment of high voltage winding—NH, split segment of high voltage winding—Nf, difference of segment of HV1 more than HV5—DNH5, radial size of the wire in high voltage winding—aH, axial size of the wire in high voltage winding—bH and bH5, axial size of the wire in traction winding—bT, axial size of the wire in power supply winding—bS, axial size of the wire in auxiliary winding—bA, oil path size—Y; all these variables are independent, once values of these variables are decided, with other constant values, structure of the transformer can be determined. The parameters are all discrete variables as those of the commonly used parameters in industrial practices. There are 17 constraint conditions used in the design optimization example. The constraints include the upper limit of magnetic flux density, the upper limit of temperature rising in each traction wind, the upper and lower limits of the reactance of the complex short circuit constructed in the traction windings, and the upper limit of the oil temperature in the copper wires of all the windings. All the constraints used in the optimization are in the following standard form.

[image: image3.wmf]0

)

(

£

-

=

jN

jN

j

j

A

A

A

X

g

(2)
where Aj designates actual value of a parameter and AjN is the reference value of the parameter. The reference value is usually a given constant. For instance, the traction winds constraint of temperature rising can be written as
[image: image4.wmf]0

)

(

7

£

-

=

eN

eN

eT

T

T

T

X

g

, where
[image: image5.wmf]eT

T

 is actual temperature rising, and
[image: image6.wmf]eN

T

 is reference value. It should be noted that the number of constraints is not limited and the formats of objective function and constraints are not restricted in applying GEGHA in optimization.
4.3 Optimization with application of GEHGA
4.3.1 Mapping and coding of design parameters
As mentioned previously, the design parameters are discrete. Based on the desired transformer capacity and the design experience, the ranges of the discrete parameters values are set in advance. For the sake of clarification and convenience in numerical processing, all the parameters are converted to integer variables and binary numbers are adapted as convention. Note in this study, binary coding system is adopted. All integer variables are listed and encoded into binary strings in order to form chromosomes. It creates a 44-digit binary number. The gene positions represent the order of the corresponding variable in binary numbers. The gene numbers denote the number of digits that a variable requires. For example, the variable Di has 7 different values, therefore, 3 digits of binary number are needed. However, 3-digit binary number can represent total of 8 different numbers, such one of them is superabundant. Therefore, the superabundance code 111 is listed in the row of “Superabundance codes”. For the speed of evolution, the superabundance codes are stochastically and evenly distributed to represent the regular codes. For example, again the variable D, can be used to represent the 7 numbers of 000, 001, …, 110 with the same probability, when the code 111 is happen to be generated during the evolution processes.

4.3.2 Converting the original problem into unconstraint problem
Construct the following external objective function with rejecting and penalty strategies [12].

[image: image7.wmf]w

p

X

t

p

X

f

t

x

F

+

+

=

)

,

(

)

(

)

,

(

(3)
where
[image: image8.wmf]w

p

 is the penalty factor used in the cases that the wire size does not meet with criterion set forth by the engineering organizations. According to computations of the present research, setting penalty as a constant indeed accelerate the processes of evolution.

[image: image9.wmf]å

=

=

16

0

2

)

(

10

)

,

(

i

i

i

X

d

r

t

X

t

p

 in Eq. (3) is a penalty function which is determined with the design experience. The function is related to the number of evolution generations t.
[image: image10.wmf]i

r

 in the function is the weighting factor corresponding to each of the constraint items, and

[image: image11.wmf]î

í

ì

=

condition

constraint

meet

not

does

),

(

condition

constraint

meets

,

0

)

(

X

g

X

d

i

i

4.3.3 Fitness function
Construct following fitness function

[image: image12.wmf]w

N

N

p

X

t

p

V

X

f

k

G

X

f

k

t

X

Ft

+

+

+

=

)

,

(

)

(

)

(

)

,

(

2

2

1

1

 (4)

where GN and VN are the estimated values of the weight and volume of the transformer respectively. The estimation of the two values is based on the design experience.
[image: image13.wmf]N

G

X

f

)

(

1

, and
[image: image14.wmf]N

V

X

f

)

(

2

 are the weight ratio and volume ratio respectively. Estimating the weight and volume is to make the values of the first two terms in Equation (4) close to a unit. If an optimal solution is determined, the two values should be close to one. With this consideration, and the consideration of the equal importance of the weight and volume, the coefficients k1 and k2 are taken the values of 0.5 in the calculations.

Gene information Based on the principles of the electric locomotive transformer design and the engineering experience, the majority of the gene information (engineering design information corresponding to the design parameters and the binary variables.) needed for carrying out the transformer design, as discussed in section 3, can be translated into computing language and run by a computer.

Optimization approaches The optimal solution of transformer design is not focus of this study. Instead, we wish to compare the performance of GEHGA for the response to Elitist Preserved Genetic Algorithm (EPGA) and Gene Expression Genetic Algorithm (GEGA). The scale of sampling population is set at 200 in each approach.

4.4 Results and analysis

Fig.1, 2 and 3 illustrate the results of the optimization processes employing GEHGA, EPGA and GEHGA respectively. As can be seen from Fig. 1, the convergent result is indeed obtained with EPGA, however, the convergent result is obtained through a numerous test calculations, and most of the other results are oscillatory and divergent. The convergence process is finally stabilized after about 270 generations as shown in Fig. 1 (b). The fitness value at this moment is 1.1925. This result shows that the convergent is hardly reached with EPGA. Even in the cases that convergence does occur, the solution is not global optima. In the highly constrained situation, a large portion of the initial population is produced randomly and may not lead to a feasible solution. In addition, the gene blocks may get damaged in generating new populations with the performances of crossover and mutation. Therefore, the evolution is highly oscillatory.

Fig. 2 demonstrates one of the similar results calculated by using GEGA. As it shows in the figure that the convergence occurs with GEGA and fitness value at convergence is 1.251. However, in comparing with the results obtained by GEHGA as shown in Fig. 3 (fitness value 0.967), GEGA could not achieve global convergent. The solution is premature and converts to local. This is because that the population diversities were damaged during the process of GEGA and they become incapable of generating better individuals. As a result, evolution is premature and cannot convert to global optima.

[image: image15.wmf]

(a)

0

50

100

150

200

250

300

0

1

2

3

4

5

6

7

8

9

10

Generation

Best Fitness

[image: image16.wmf]

0

50

100

150

200

250

300

0

1

2

3

4

5

6

7

8

9

10

Generation

Average Fitness

(b)

Fig.1 The evolution process of EPGA, only one convergence like this is obtained among 20 times of running
Population size 200,rc=0.275, rm=0.005
(a)Best Fitness (b)Average Fitness
 In comparing with the results of EPGA and GEGA, GEHGA provides a much stable process as indicated in Fig.3. Convergence occurred after about 20 times of execution. More significantly, the solution converges for every evolutionary process. In fact, the solution given in Fig. 3 is the best optimal since it has the lowest fitness value. Theses advantages are due to the following facts: with GEHGA, at the beginning of evolution, many feasible chromosomes have been added, quality of initial population has been improved; moreover, new generation are formed through gene information control. Therefore, GEHGA is capable of leading to the best convergence.

[image: image17.wmf]

0

50

100

150

200

250

300

0

1

2

3

4

5

6

7

8

9

10

Generation

Average Fitness

Fig. 2 The evolution process of GEGA
Population Size 200

[image: image18.wmf]

0

50

100

150

200

250

300

0

1

2

3

4

5

6

7

8

9

10

Generation

Average Fitness

Fig. 3 The evolution process of GEHGA
Population Size 200

As the comparison of the three algorithms, solution obtained with GEHGA has the lowest final fitness value (after convergence), and its design constraints (magnetic flux density and temperature rising) almost reached their limits. The transformer materials have been fully utilized in industrial application.

5 Conclusions

A new generic algorithm named Gene Expression and Handling Genetic Algorithm (GEHGA) is developed in the present research. GEHGA fully utilizes the gene information and it not only reflects the information exchanging inside the cells (gene expressions) but also includes external practical engineering experiences and design knowledge for design optimization. Using the techniques of gene control, better individuals are generated and population of chromosomes is improved. GEHGA provides fast and effective convergent optimization solutions. An application of GEHGA a design optimization example shows the efficiency and accuracy of the optimization process with utilization of GEHGA.

In industrial design optimization practice, the existence of gene information is evident even though engineering experience and design knowledge may contain different gene information. Hence, the application of GEHGA in engineering practice has a great potential.

Acknowledgement:

The authors greatly acknowledge the financial support provide by NSERC to this research.

References:

[1] Holland, J. H., Adaptation in nature and artificial system, Ann Arbor: University of Michigan Press, 1975.

[2] Goldberg, D., Genetic algorithm in search, optimization and machine learning, RA: Addison-Wesley, 1989.
[3] Xudong, C., Jingen, Q., Guangzheng, N., Shiyou, Y. and Mingliu, Z., An Improved Genetic Algorithm for Global Optimization of Electromagnetic Problems, IEEE Transactions on Magnetics, Vol. 37, No. 5, 2001, pp. 3579-3583.

[4] Alfonzetti, S., Dilettoso, E. and Salerno, N., A Proposal for a Universal Parameter Configuration for Genetic Algorithm Optimization of Electromagnetic Devices [J], IEEE Transactions on Magnetics, Vol. 37, No. 5, 2001, pp.3208-3211.

[5] Vasconcelos, J. A., Ramirez, J. A., Takahashi, R. H. C. and Saldanha, R. R., Coupled Problems - Improvements in Genetic Algorithms, IEEE Transactions on Magnetics, Vol.37, No. 5, 2001, pp.3414-3417.
[6] Gallardo, A. and Lowther, D. A., Some Aspects of Niching Genetic Algorithms Applied to Electromagnetic Device Optimization, IEEE Transactions on Magnetics, Vol.36, No. 4, 2000, pp.1076-1079.

[7] Yokose, Y., Cingoski, V. and Yamashita, H., Genetic Algorithms with Assistant Chromosomes for Inverse Shape Optimization of Electromagnetic Devices, IEEE Transactions on Magnetics, Vol. 36, No. 4, 2000, pp.1052-1056.

[8] Cingoski, V., Kaneda, K., Yamashita, H. and Kowata, N., Inverse Shape Optimization Using Dynamically Adjustable Genetic Algorithms, IEEE Transactions on Energy Conversion, Vol. 14, No. 3, 1999,pp. 661-666.

[9] Oh, Y-H, Chung, T-K, Kim, M-K and Jung, H-K, Optimal Design of Electric Machine Using Genetic Algorithms Coupled With Direct Method, IEEE Transactions on Magnetics, Vol.35, No. 3, 1999, pp.1742-1745.
[10] Daidone, A., Parasiliti, F., Villani, M. and Lucidi, S., A New Method for the Design Optimization on Three-Phase Induction Motors. IEEE Transactions on Magnetics, Vol. 34, No.5. 1998, pp.2932-2935.
[11] Kargupta H., Revisiting GEMGA: Scalable evolutionary optimization through linkage learning, Proc of IEEE International Conference on Evolutionary Computation, IEEE Press, 1998
[12] Gen, M. and Cheng, R., Genetic Algorithms and Engineering Design, New York: Wiley, 2000.

_1171977208.unknown

_1173638804.unknown

_1173680811.unknown

_1173680902.unknown

_1173638809.unknown

_1171977272.unknown

_1171980622.doc

0

50

100

(a)

150

200

250

300

0

1

2

3

4

5

6

7

8

9

10

Generation

Best Fitness

_1095447194.bin

_1095447247.bin

_1171981130.doc

150

0

100

50

200

250

300

0

1

2

3

4

5

6

7

8

9

10

Generation

Average Fitness

_1095447247.bin

_1095447548.bin

_1095447646.bin

_1095447194.bin

_1171981141.doc

100

50

0

Average Fitness

Generation

10

9

8

7

6

5

4

3

2

1

0

300

250

200

150

_1095447247.bin

_1095447548.bin

_1095447646.bin

_1095447194.bin

_1171981052.doc

(b)

50

0

100

150

200

250

300

0

1

2

3

4

5

6

7

8

9

10

Generation

Average Fitness

_1095447194.bin

_1095447247.bin

_1171978775.unknown

_1171977251.unknown

_1171977211.unknown

_1171976858.unknown

_1171977205.unknown

_1171977079.unknown

_1171976857.unknown

_1171976856.unknown

