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ABSTRACT

This paper introduces a model that can be used to share link
capacity among customers under different kind of traffic con-
ditions. This model is suitable for different kind of networks
like the 4G networks (fast wireless access to wired network)
to support connections of given duration that requires a cer-
tain quality of service. We study different types of network
traffic mixed in a same communication link. A single link is
considered as a bottleneck and the goal is to find customer traf-
fic profiles that maximizes the revenue of the link. Presented
allocation system accepts every calls and there is not absolute
blocking, but the offered data rate/user depends on the network
load. Data arrival rate depends on the current link utilization,
user’s payment (selected CoS class) and delay. The arrival
rate is (i) increasing with respect to the offered data rate, (ii)
decreasing with respect to the price, (iii) decreasing with re-
spect to the network load, and (iv) decreasing with respect to
the delay. As an example, explicit formula obeying these con-
ditions is given and analyzed.
Keywords: Pricing, quality of service, performance.

I. INTRODUCTION

We consider a link allocation scheme that can be used to
tune link utilization and per connection QoS as high as possi-
ble. Our model can be used with different kind of networks
e.g broadband, wireless and IP -networks. At the packet level
the link allocation scheme can be seen as illustrated in Fig 1.
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Fig. 1. An example of single link allocation

The approach studied in this paper has similar features as
used in [3], [7], [8], [10]. These studies mark each packet en-
tering a switch during a congestion. Marks reflect the fact that

these packets imposed a cost in terms of delay or loss on some
other packet. End users are informed of whether their packet
was marked when acknowledgements flow back to them and
are then free to decide how to adapt their transmission rates.

Our model does not require the core network to maintain
per flow state. The task of associating prices with end users is
pushed to the network edges where it is easier to deal with. We
propose a mechanism for users to respond to price information
which is motivated by the assumption that they are trying to
maximize their individual utilities. A related scheme has stud-
ied in [9] in the limit where the number of users increases to
infinity. In this asymptotic regime, the price turns out to be
constant and so the model does not capture dynamics. In this
paper, we continue the work presented in [4], [5]. In [5] we
considered data rate allocation, while in this paper we consider
also user’s reaction to the offered delay. The new features in
this paper are:
• Arrival data rate depends on the offered data rate, delay, and
current link utilization as well as price.
• The smaller the total demand is, more popular are cheap
CoS classes.
• The smaller the total demand is, smaller is the total revenue.
• Stable state approximation of the arrival rate is studied.

The rest of the paper is organized as follows. In Section 2
we present link allocation scenario, and in Section 3 the arrival
rate model is shown. In Section 4 stable state approximation
is presented. Section 5 contains simulations and results, and
the final section concludes the study.

II. ALLOCATION SCENARIO

Let A be customer and B be the operator or manager net-
work administrator. Price x streams from A to B. The price
paid by A is normalized to be

x ∈ (0, 1) (1)

User profile function n(x, t) depends on both price x and time
t, and it has the property

n(x, t) > 0 (2)

for all defined values of x. n(x0, t0) tells us, how many users
pay x0 money units at time instant t0. Positivity of the func-
tion means that A pays money to B, but not the opposite price



stream is possible in this study. n(x, t) is defined for continu-
ous x ∈ (0, 1), but in practical application, n(x, t) is sampled
and vectorized.

Definition of an data rate function - which belongs to the
class of utility functions - u(x, t) is the following. When the
price x streams from A to B, the data rate u(x, t) streams
between the corresponding users A via B. Data rate u(x, t)
depends on x, and it is a strictly increasing function of x. Gen-
erally speaking,the utility is a service rate, or Quality of Ser-
vice (QoS). In telecommunications applications, utility may
include e.g. data rate, Bit Error Rate (BER), delay, or block-
ing probability. Here we assume that u(x, t) is scalar with
respect to scalar x and t.

B tries to keep all the capacity of the channel in use, so
that the customers A are as satisfied as possible. By doing
this B also maximizes his revenue. Channel capacity C is
the maximal number of information that the entire network B
can transfer without errors. This is the basic definition given
by classical Shannon information theory [2]. In practice, sub-
optimal estimate of C is obtained by observing the data flow
history in the network. In this paper, we do not take a stance
on the strict estimation procedure of the channel capacity.

In our scenario the operator offers the data rate as follows:

u(x, t) = γ(t)f(x, α1, . . . , αn) (3)

Here the basic function f(x) = f(x, α1, . . . , αn) has the fol-
lowing properties:
• f(x) strictly increases with respect to the price x.
• f(0) = 0, i.e. no utility is allocated when no money is
payed.
• Without loss of generality, the maximum value is assumed
to be f(1) = 1.
• The parameters αi are optimized for maximizing the rev-
enue.
The are infinitely the basic functions satisfying the above con-
ditions. One possible basic function - which we have selected
as a test case - has the form

f(x, α) =
1 − e−αx

1 − e−α
(4)

where α is a parameter to be optimized for maximizing the
revenue. Eq. (4) obeys f(0) = 0 and f(1) = 1. We also as-
sume that all connection request are accepted, and the overall
data rate will be kept as high as possible. In other words, the
equality

∫

1

0

u(x, t)n(x, t)dx = 1 (5)

is tried to kept at all the time t. Here the capacity C is nor-
malized to be C = 1. Then it follows from Eqs. (3) and (5)
that

γ(t) =
1

∫

1

0
f(x)n(x, t)dx

(6)

and the customer, who pays the price x at the time t, gets the
data rate

u(x, t) =
f(x)

∫

1

0
f(y)n(y, t)dy

(7)

Notice that the given data rate dynamically varies with respect
to the time t due to existence of the user profile function n(y, t)
in the denominator of Eq. (7). When n(x, t) - i.e. the number
of the users - is small, the integral in the denominator of Eq.
(7) is small, and as a consequence, the offered data rate/user
class is high. On the other hand, in the highly loaded systems,
the offered data rate/user class is low.

Operator offers also a delay profile function g(x, β), where
the inverse g(x, β) of the delay is measured by 1/seconds, and
is strictly increasing with respect to the price x. The customer
knows the delay utility function 1/g (seconds).

III. ARRIVAL RATE MODEL

In [4], we presented the arrival rate model which depended
only on one QoS parameter, namely offered data rate, via func-
tions f(x, α) and γ(t). In this paper, the arrival rate λ(x, t) is
a function of several QoS parameters such as data rate, delay,
or BER. The general model for the λ(x, t) in this study is

λ = λ[x, t, α1, . . . , αn, γ1(t), . . . , γm(t)] (8)

where
• αi are called hidden QoS parameters to be optimized. That
is, the customers do not observe those parameters.
• γi(t) are called observed time-varying QoS parameters.
That is, users observe those parameters, for example γ(t)
(Eq. 6). More precisely, the customer knows the offered
time-variant and time-invariant utility functions which con-
tain the information about γ(t). For example, time-variant
u(x, t) and time-invariant f(x, α) are known, and so γ(t) =
u(x, t)/f(x, α) can be observed if necessary. f(x, α) is avail-
able in tabular or explicit functional form.

One special case of the general form is

λ(x, t) =
p(x, α1, . . . , αn)

1 +
∫

1

0
e(y, β1, . . . , βm)n(y, t)dy

(9)

where p > 0 and e > 0 are some, perhaps very complicated,
functions of the offered QoS parameters. Positivity of p and e
implies positivity of λ.

In this paper, we study the simple case where arrival rate
depends on the following issues:
(i) The larger is offered basic function f(x, α), the larger is
the call density.
(ii) The larger is price x, the smaller is call density.
(iii) The larger is load, the smaller is call density.
(iv) The larger is the inverse g(x, β) of the delay, the larger is
the call density.

One special case we selected [4], [5]

p(x, α, ξ) = kf(x, α)h(x, ξ) (10)



e(x, α) = f(x, α) (11)

and λ(x, t) could then be as in the following equation:
In the model obeying better the condition (the smaller total

demand is, more popular are cheap QoS classes), the arrival
rate λ(x, t) is as follows:

λ(x, t) =
kξ(t)zf(x, α)h(x, ξ)

1 + 1/γ(t)
(12)

where z ≥ 1. Here ξ(t)zk can be thought as a new scalar
coefficient k(t) = ξz(t)k, and the stable state model remains
essentially the same as in Eq. (24). The difference is that the
revenue must be evaluated for different values of ξ(t).

The model of λ(x, t) is decomposed into three sub-
functions. In the model (12), f(x, α) represents the feature
(i), i.e. the arrival rate increases with respect to the offered
data rate. Typically h(x, ξ), which represents the feature (ii),
depends on the distribution of the richness or the willingness
of pay of the users, and therefore the general properties of
h(x) = h(x, ξ) are:
• h(x) strictly decreases with respect to the price x.
• Without loss of generality, h(0) = 1, i.e. the willingness of
pay is maximum.
• Without loss of generality, the minimum is at h(1) = 0.
• The parameter ξ controls the behavior of the curve.
In this study, we have for simplicity the exponentially decreas-
ing convex form

h(x, ξ) =
e−ξx − e−ξ

1 − e−ξ
(13)

where ξ > 1. For large ξ, the function h(x, ξ) is abrupt. It
is natural that in our scenario the denominator of (12) con-
sists of the feedback term

∫

1

0
f(y, α)n(y, t)dy, since that term

includes the information about the offered data rate per user
class, as shown in Eq. (7). That integral represent the feature
(iii). Notice that the arrival rate can also be written in the form

λ(x, t) =
kf(x, α)h(x, ξ)

1 + 1/γ(t)
(14)

which shows the dependence of the arrival rate with respect to
the price, time, and the given data rate per QoS class. When
no users exist in the network, maximal arrival rate

λmax(x, t) = kf(x, α)h(x, ξ) (15)

is achieved.
In this work, the delay is QoS parameter, too, and the func-

tional form of p in Eq. 9 is

p = p(x, f(x, α), g(x, β))h(x, ξ) (16)

where p is strictly increasing with respect to f and g. One
example of a functional dependence is

p(x) = kf(x, α)g(x, β)h(x, ξ) (17)

where p has been separated to three sub-functions. In this
more general optimization problem, α defines the offered min-
imum data rate, while β defines the offered maximum delay.

In the experiments, we use for simplicity the function

p(x) = kf(x, α)zh(x, ξ) (18)

where the user’s reaction - and thus the dependence of the ar-
rival rate - to the offered QoS parameters, namely data rate and
delay, has been embedded to the one function, f(x, α)z . Thus
here it is assumed that

g(x, α) = f(x, α)z−1 (19)

so that Eqs. (17) and (18) equal. The offered delay
1/f(x, α)z−1 as a function of the price x is plotted in Fig.
7 by using the value z = 1.5.

IV. STABLE STATE ANALYSIS

In [5], we derived the case where the system is in steady
state or near it, and λ(x, t) changes sufficiently slowly accord-
ing to the arrival model (Eqs. 9,11). We can use the Little’s
formula [1] in the theoretical analysis as follows:

E(n(x, t)) =
E(λ(x, t))

µ(x)
=

λ(x)

µ(x)
(20)

The above assumption is valid for large number of different
types of stochastic processes, when λ is the arrival rate and
1/µ is the expected value of the connection time.

The expected revenue per time of the system is

revenue =

∫

1

0

xE[n(x, t)]dx = lim
T→∞

1

T

∫ T

0

∫

1

0

xn(x, t)dxdt

(21)
and by using Little’s formula, it is

revenue =

∫

1

0

x
λ(x)

µ(x)
dx (22)

Thus, if p(x) and µ(x) are known, we can numerically find
the optimal α that maximizes revenue (22) by using formulae
below.

revenue =

∫

1

0

x
λ(x, α)

µ(x)
dx (23)

where

λ(x, α) =
−1 +

√

1 + 4q(α)

2q(α)
p(x) (24)

q(α) =

∫

1

0

f(x, α))
p(x)

µ(x)
dx (25)



V. SIMULATIONS AND RESULTS

In the simulations, we compare the revenue (21) given by
simulated network traffic data with that revenue (23) given by
the analytical model. Our goal is to examine which kind of
shape of the capacity function f(x, α) in Eq. (4) could be op-
timal for maximizing the revenue under two arrival rate sce-
narios: in the more general case (9), and in the special case
(12). Our other goal is to prove that the analytical models in
the special case (23)-(25) as well as in the more general case
(23), (24), (25) hold well enough. If these models hold, then
one can easily construct the revenue curves corresponding to
the different data traffic scenarios and utility function families,
and therefore obtain estimates for optimal data rate allocation
strategies.

In the first experiment, we study the behavior of the ar-
rival rate and the revenue maximization by varying ξ. Fig-
ure 2 shows the variation of ξ as a function of time. Here
the scaling parameters are k1 = 2 and k2 = 0.1. It is seen
that the fluctuation of ξ is quite random due to the feedback
∫

1

0
f(x, α)n(x, t)dx. Therefore, the behavior of the arrival

rate λ(x, t), as shown in Fig. 3, is quite non–stationary. How-
ever, the revenue curve shown in Figure 4 is quite similar
than the curves obtained in the earlier simulations by fixed ξ.
Figs. 5 and 6 depict the revenue using a stable state model
and a simulation model as a function of α with values of
ξ = 1, 2, . . . , 10. Curves in these Figs. match quite well show-
ing that the steady-state model holds very well in this special
case, too.

Next, we perform the simulation where z takes the val-
ues 1.01, 1.02, . . . , 2. The number of different user classes
was 99. Figure 8 shows the family of the curves p(x) =
kf(x, α)zh(x, ξ) with different values of z, and ξ = 2. The
optimal α maximizing the revenue (Eq. 23) is obtained by
evaluating Eqs. (24) and (25), and it is represented as a func-
tion of z in Fig. 9. Because optimal α > 0 for all z ∈ [0.01, 2],
the optimal utility functions f(x, α) are concave. This is plau-
sible result, because of the shape of h(x, ξ) will lead to the
fact the rich users are ready to pay much more money while
obtaining only small differential increase in the utility, say data
rate and delay. This is common results known in other service
cases, e.g. in the airplanes first, business and economy classes
exist.

0 100 200 300 400 500 600 700 800 900 1000
1.975

1.98

1.985

1.99

1.995

2

Time

xi

Fig. 2. Variation of ξ as a function of time.
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Fig. 3. Behavior of the arrival rate λ(x, t).
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Fig. 4. Revenue as a function of α.
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Fig. 5. Revenue using a stable state model as a function of α with values of
ξ = 1, 2, . . . , 10.
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Fig. 6. Revenue using a simulation model as a function of α with values of
ξ = 1, 2, . . . , 10.
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Fig. 7. Delay in time units as a function of price x, when α = 5 and z = 1.5
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Fig. 8. Three different p(x) functions with parameters 1, 1.5, 2
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Fig. 9. Optimal α as a function of z, when the arrival rate depends on the
data rate and delay.

VI. CONCLUSIONS

In this paper, we generalize our channel allocation model
further by assuming that the demand varies as a function of
time. We add the following assumption:
(i) The smaller total demand is, more popular are cheap QoS
classes.
(ii) The smaller the total demand is, smaller is the total rev-
enue.
As an example, explicit formula obeying these conditions was
given and analyzed. Results showed that our steady-state
model holds very well in the above special case, too.

Future work...
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