
Neural Networks Learning Methods for Image Processing Applications

JIRI STASTNY*, VLADISLAV SKORPIL**
* Department of Automation and Computer Science,

** Department of Telekommunications,
Brno University of Technology,
Purkynova 118, 612 00 Brno,

CZECH REPUBLIC,
 http://www.vutbr.cz/

Abstract: - This paper deals of the problem of the image processing by using artificial neural networks. The MLP
neural network was used. We compared results obtained by a using of different learning algorithms – the classical
back-propagation algorithm (BP) and the genetic algorithm (GA). The real technological scene for image processing
was simulated with digitization of two-dimensional pictures.

Key-Words: - Neural Networks, Genetic Algorithms, Image Processing, Pattern Recognition

1 Introduction
Back-propagation algorithm is based on minimization of
neural network energy given with the formula (SSE):

E y di i
i

n

= −
=

∑1
2

2

1
() (1)

where n means the number of network outputs, yi means
the i-th output and di means the i-th output required.
Back-propagation algorithm is an iterative method where
the network gets from an initial non-learned state to the
full learned one.

The learning algorithm of back-propagation is
essentially an optimization method being able to find
weight coefficients and thresholds for the given neural
network and training set. The network is supposed to be
made up of neurons the behaviour of which is described
with the formula:

y S w xi i
i

N

= +

=
∑ Θ

1

 (2)

where the output nonlinear function S is defined with the
formula:

S
e

()ϕ γϕ=
+ −

1
1

 (3)

where γ determines the curve steepness in an origin of
coordinates. Input and output values are supposed to be
in the range <0, 1>.
In the following formulas parameter o denotes output
layer, h hidden layer and i,j are indexes. Then yi

h means

i-th neuron output of the hidden layer and wij
o means

weight connecting i-th neuron of the output layer and j-
th neuron of the previous hidden layer.
The following steps can describe the appurtenant back-
propagation algorithm:

1. Initialization. All the weights in the network are
randomly set at values in the recommended
range <–0.3, 0.3>.

2. Pattern submitting. A chosen pattern from the

training set is put in network inputs. Then
outputs of particular neurons are computed
under relations (2) and (3).

3. Comparison. This step contains the

computation of the neural network energy under
relation (1) and the error for the output layer
under the relation:

δ γi
o

i i
o

i
o

i
od y y y= − −() ()1 (4)

4. Back-propagation of an error and weight
modification. The values

∆ ∆w t t y t w tij
l

i
l

j
l

ij
l() () () ()= + −−ηδ α1 1 (5)

∆Θ ∆Θi
l

i
l

i
lt t t() () ()= + −ηδ α 1 (6)

are computed for all neurons in the layer. Under the
relation:

δ δi
h

i
h

i
h

ki
h

k
h

k

n

y y w− − −

=
= − ∑1 1 1

1
1() (7)

an error is back-propagated in the layer nearer. Then
weights are modified:

w t w t w tij
l

ij
l

ij
l() () ()+ = +1 ∆ (8)

Θ Θ ∆Θi
l

i
l

i
lt t t() () ()+ = +1 (9)

This step is applied to all the layers of the network.

5. Termination of pattern selection from the

training set. Another pattern from the training
set is chosen and the step number 2 follows until
all patterns were submitted.

6. Termination of learning process. The

algorithm ends when the neural network energy
in last computation has been less then the
criterion selected.

The GA is considered to be a stochastic heuristic (or
meta-heuristic) method. Genetic algorithms are inspired
by adaptive and evolutionary mechanisms of live
organisms. The best use of GA can be found in solving
multidimensional optimisation problems, for which
analytical solutions are unknown (or extremely complex)
and efficient numerical methods are also not known.

Commonly used genetic algorithms do not copy the
natural process precisely. The classical version of GA
uses three genetic operators – reproduction, crossover
and mutation. There are many ways how to implement
genetic algorithm. Many differences can be observed in
the strategy of the parent selection, the form of genes,
the realization of crossover operator, the replacement
scheme etc. One of the biggest disadvantages is a
tendency of GA to reach some local extreme. In this case
GA is often not able to leave this local extreme in
consequence of the low variability of members of
population. The interesting way how to increase the
variability is using of the death operator [7].

Every member of the population has the additional
information – age. A simple counter incremented in all
GA iterations represents the age. If the age of any
member of population reaches the preset lifetime limit,
this member “dies” and is immediately replaced with a
new randomly generated member. While new population
member is created, its age is set to zero. The age is not
mutated nor crossed over.

This version of GA was used for minimization of the
neural network energy (1).

2 General schematic of the genetic

algorithm (GA) used
The applied genetic algorithm operates as follows:
1. Generating the initial population. The

initialization of all bits of all chromosomes in initial
generation is random, using the generator of random
numbers, which is a standard feature of the C++
Builder 5 development environment. The Gray code
is used to encode the chromosome bits.

2. Ageing. It only shows up in the variant with limited

length of life. All the individuals in the population
have their age incremented and if it exceeds a set
limit (it is also possible to set, implicitly, 10), the
element is removed from the population and a new
element is randomly generated in its place.

3. Mutation. Two methods of mutation are used in the

program:
- classical method
- back-propagation method
-

In the classical method of mutation all the chromosome
bits are successively scanned and mutated with a certain
small probability pmut . In the case of long chromosomes
(of the order of tens of thousands of bits), however, this
procedure proved to be tto slow. It was therefore
replaced by another method, which yields the same but
substantially faster results: v = pmut *n are chosen
randomly from the chromosome and then mutated.
In the back-propagation method of mutation the Back-
propagation algorithm is used as the operator. Weights
are decoded from the chromosome and set in the neural
network and then, depending on the assignment, several
cycles of Back-propagation are perfomed. The adjusted
weights are then encoded back in the chromosome bit A
disadvantage of the method is the great computation
complexity. (See Tab. 6).

4. Calculation of the value of object function
Neural network error function SSE is used as the object
function over all models [4]:

∑∑
==

−=
n

i

q
i

q
i

p

q

dyE
1

2

1

)(
2
1

 (10)

GA performs the minimization of this error function.
The quality of an individual in the population is
calculated as follows:

A neural network with the respective configuration
(which is invariant and designed prior to starting the
GA) is formed
Weights are decoded from the binary chromosome and
set in the neural network.
All the models from the training set (see) are
successively conveyed to the neural network input. The
response of neural network to the input data is calculated
and the difference between the actual and the required
value is used to evaluate the SSE error over all models.
This error represents the chromosome quality.

4) Upward population sorting. We are looking for
the function minimum so that a chromosome with
the least object function value will be in the first
place. The Quicksort algorithm, which is very
effective, is used for sorting; it can therefore be
expected that the necessity of sorting will not affect
the speed of algorithm negatively.

6) Crrossing. Uniform crossing is used – every bit
of descendatnt is with the probabillity 0.5 taken
from one of the parents. N* = N/2 of descendants is
made by the crossing (one half of the population).

7) Finalization. Return to the step 2 if the finalization
condition is not realized. If it is realized then end of GA
transaction. There are exist two finalization variation (or
their combination)
-maximal number of iteration
-the quality of the best solution, smaller then entered

3 Problem Solution
The real technological scene was simulated with
digitization of two-dimensional pictures of five real
objects (see Fig. 1). The classical image preprocessing
was used. Then every pattern was described by the flag
vector [5]. Flag vectors have been submitted to network
and arm lengths have been transformed to values from
interval < 0, 1 >.

Fig. 1 – The scene used for testing

3.1 Evaluation

Optimal solution is such weights configuration, for
which is the network possible to recognize all
samples into 100%.

Algorithms were tested on the computer with the
processor AMD Athlon XP 1700+ and 512 MB
RAM.

Back-propagation:
In the Table 1 and 2 are results with Back-
Propagation algorithm.

Learning of two models by BP:

 Number

of
Layers

Time [s]

Error SSE over
all models

Whole
preception

[%]

2 4,487 0,000032 100
2 3,976 0,000042 100
2 3,565 0,000116 100
1 3,545 0,000041 100
1 2,924 0,000047 100

Tab. 1: 2 models, 5000 iterations, sequency selestion of
models

Learning of five models by BP:

Number

of
Layers

Time [s]

Error SSE over
all models

Whole
preception

[%]

2 7,751 0,000040 100
2 5,938 0,000075 100
2 6,029 0,000091 99
1 5,638 0,000070 99
1 3,956 0,000077 99

Tab. 2: 5 models, 5000 iterations, sequency selestion of
models

Genetic algorithm

Learning of two models by GA
Neural network parameters: 1 secret layer, 70
neurons GA parameters: population 500 of
individuals, mutation probability 0.05, 11 bits for
weight, life time 10 cycle, finalization for the error
smaller then 0.01, or 500 of iterations

Number
of

Iterations

Time
[h:mm:ss]

Error SSE
over all
models

Preception
of the

output [%]
6 0:00:23,0 0,000039 100
8 0:00:32,9 0,001978 94
2 0:00:09,5 0,001053 100
1 0:00:04,7 0,000712 100

17 0:00:64,6 0,008621 97
2 0:00:08,7 0,000356 97
6 0:00:23,0 0,006595 88
1 0:00:04,9 0,000604 100
2 0:00:09,7 0,000460 100
3 0:00:14,0 0,001251 95

Tab. 3 Network learning results by Genetic algorithm, 2
models

Learning of three models by GA:

Neural network parameters: 1 secret layer, 70
neurons GA parameters: population 500 of
individuals, mutation probability 0.05, 11 bits for
weight, life time 10 cycle, finalization for the error
smaller then 0.08, or 500 of iterations

Number
of

Measurin
g

Number of
Measuring
 [h:mm:ss]

Error SSE over

all Models

Prece
ption
of the
output
1 [%]

Prece
ption
of the
output
2 [%]

Preception
of the

output 3
[%]

402 0:29:29 0,056189 87 88 86
500 0:36:07 0,084470 66 91 100

102 0:11:50 0,075513 90 63 100
304 0:16:18 0,062479 10 92 85
366 0:22:47 0,073709 87 89 87

5 0:00:19 0,003813 97 93 100
484 0:25:57 0,057401 84 88 78
500 0:27:01 0,099898 100 87 87
500 0:26:59 0,209757 55 81 73
500 0:26:58 0,175896 86 94 100

366,3 0:22:22 0,089913 85,2 86,6 89,6

Tab. 4 Network learning results by Genetic algorithm, 3
samples, population 500 chromosome

Num
ber of
Meas
uring

Num
ber of
Iterati
ons

Time of

Measuring
[h:mm:ss]

Time of
Measuring

Prece
ption
of the
outpu

t 1
[%]

Prece
ption
of the
outpu

t 2
[%]

Preception
of the

output 3
[%]

1 200 0:29:13 0,118626 61 71 78
2 200 0:29:37 0,148604 100 96 100
3 200 0:29:45 0,115807 95 70 66
4 32 0:05:04 0,015287 100 100 85
5 200 0:30:27 0,213459 0 91 97

Aver
age

166,4 0:24:49 0,122357 71,2 85,6 85,2

Tab. 5 Network learning results by Genetic algorithm,
3 samples, population 1200 chromosome

Learning of four models by GA:)

Neural network parameters: 1 secret layer, 70
neurons GA parameters: population 500 of
individuals, mutation probability 0.05, 11 bits for
weight, life time 10 cycle, finalization for the error
smaller then 0.1, or 1200 of iterations

Number of
Measuring

Num
ber of
Iterat
ions

Time of
Measuring
 [h:mm:ss]

Time of
Measurin

g

Prece
ption
of the
outpu

t 1
[%]

Prece
ption
of the
outpu

t 2
[%]

Prece
ption
of the
outpu

t 3
[%]

1 1200 1:11:02 0,642201 0 94 90

2 1200 1:11:02 0,281050 72 87 72
3 1200 1:11:04 0,431428 93 0 100

4 1200 1:11:49 0,712210 55 95 100

5 1200 1:11:45 0,530850 0 89 92

Average 1200 1:11:20 0,519548 44 73 90,8

4 Conclusion
Back-propagation algorithm presented very good results
at classification. The network recognized all the patterns
submitted. The learning using the BPx method was a
little slower, but it can be succesfully used for networks
with lower number of neurons. While the GA was used,
the results and the learning time highly depends on GA
parameters setting. The increasing of reliability and
decreasing of the learning time of GA using limited
lifetime were observed. The best results were obtained
by GA using the death operator and not using sexual
reproduction.

Acknowledgments:

This paper has been supported by the research project
CEZ: J22/98: 26100009 Non-Traditional Methods for
Investigating Complex and Vague Systems of Brno
University of Technology and by the grants:

No 102/03/0434 Limits for broad-band signal
transmission on the twisted pairs and other system co-
existence The Grant Agency of the Czech Republic
(GACR),

No CZ 400011(CEZ 262200011) Research of
communication systems and technologies (Research
design)

Grant 2811 Introduction of advanced transport network
technology into teaching (grant of the Czech Ministry of
Education, Youth and Sports)

Grant 3112 Teaching Innovation for the Last Mile Data
Transmission (grant of the Czech Ministry of Education,
Youth and Sports)

References:

[1] Goldberg, D. E.: Genetic Algorithms in Search,
Optimization, and Machine Learning. Addisson-
Wesley, 1989.

[2] Lim, T. – Loh, W. Y. – Snih, Y.: A comparison
of of prediction accuracy, complexity and
training time of thirty-three old and new
classification algorithms. 1999.
http://www.stat.wisc.edu/~limt/mach1317.pdf

[3] Miehie, D. – Spiegelhalter, D. J. – Taylor, C. C.:
Machine Learning, Neural and Statistical
Classification. Ellis Horwood, NY, 1994.

[4] Ripley, B. D.: Pattern Recognition and Neural
Networks. Cambridge University Press,
Cambridge (United Kingdom), 1996.

[5] Pavlidis, T.: Algorithms for Graphics and Image
Processing. Bell Laboratories, Computer
Science Press, 1982.

[6] Wong, K. CH.: A new diploid scheme and
dominance change mechanism for non-
stationary function optimization. In Proceedings
of the Sixth International Conference On genetic
Algorithms, Pittsburgh, USA, 15. – 19. July
1995

[7] Roupec, J.: Vývoj genetického algoritmu pro
optimalizaci parametru fuzzy regulátoru. Ph.D.
Thesis, VUT v Brne, 2001.

[8] Sarle, W. S.: Neural Networks and Statistical
Models. Proceedings of the Nineteenth Annual
SAS Users Group International Conference,
Cary, NC: SAS Institute,1994, pp 1538-1550.

