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Abstract: - This paper deals of the problem of the image processing by using artificial neural networks. The MLP 
neural network was used. We compared results obtained by a using of different learning algorithms – the classical 
back-propagation algorithm (BP) and the genetic algorithm (GA). The real technological scene for image processing 
was simulated with digitization of two-dimensional pictures. 
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1   Introduction 
Back-propagation algorithm is based on minimization of 
neural network energy given with the formula (SSE): 
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where n means the number of network outputs, yi means 
the i-th output and di means the i-th output required. 
Back-propagation algorithm is an iterative method where 
the network gets from an initial non-learned state to the 
full learned one.  

The learning algorithm of back-propagation is 
essentially an optimization method being able to find 
weight coefficients and thresholds for the given neural 
network and training set. The network is supposed to be 
made up of neurons the behaviour of which is described 
with the formula: 
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where the output nonlinear function S is defined with the 
formula: 
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where γ  determines the curve steepness in an origin of 
coordinates. Input and output values are supposed to be 
in the range <0, 1>. 
In the following formulas parameter o denotes output 
layer, h hidden layer and i,j are indexes. Then yi

h  means  

i-th neuron output of the hidden layer and wij
o  means 

weight connecting i-th neuron of the output layer and j-
th neuron of the previous hidden layer. 
The following steps can describe the appurtenant back-
propagation algorithm: 
 

1. Initialization. All the weights in the network are 
randomly set at values in the recommended 
range <–0.3, 0.3>. 

 
2. Pattern submitting. A chosen pattern from the 

training set is put in network inputs. Then 
outputs of particular neurons are computed 
under relations (2) and (3). 
 

 
3. Comparison. This step contains the 

computation of the neural network energy under 
relation (1) and the error for the output layer 
under the relation: 
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4. Back-propagation of an error and weight 
modification. The values 
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are computed for all neurons in the layer. Under the 
relation: 
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an error is back-propagated in the layer nearer. Then 
weights are modified: 
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This step is applied to all the layers of the network. 
 
5. Termination of pattern selection from the 

training set. Another pattern from the training 
set is chosen and the step number 2 follows until 
all patterns were submitted. 

 
6. Termination of learning process. The 

algorithm ends when the neural network energy 
in last computation has been less then the 
criterion selected. 
 

 
The GA is considered to be a stochastic heuristic (or 
meta-heuristic) method. Genetic algorithms are inspired 
by adaptive and evolutionary mechanisms of live 
organisms. The best use of GA can be found in solving 
multidimensional optimisation problems, for which 
analytical solutions are unknown (or extremely complex) 
and efficient numerical methods are also not known. 
 
Commonly used genetic algorithms do not copy the 
natural process precisely. The classical version of GA 
uses three genetic operators – reproduction, crossover 
and mutation. There are many ways how to implement 
genetic algorithm. Many differences can be observed in 
the strategy of the parent selection, the form of genes, 
the realization of crossover operator, the replacement 
scheme etc. One of the biggest disadvantages is a 
tendency of GA to reach some local extreme. In this case 
GA is often not able to leave this local extreme in 
consequence of the low variability of members of 
population. The interesting way how to increase the 
variability is using of the death  operator [7].  
 
Every member of the population has the additional 
information – age. A simple counter incremented in all 
GA iterations represents the age. If the age of any 
member of population reaches the preset lifetime limit, 
this member “dies” and is immediately replaced with a 
new randomly generated member. While new population 
member is created, its age is set to zero. The age is not 
mutated nor crossed over. 

 
This version of GA was used for minimization of the 
neural network energy (1). 
 
 
 
2 General schematic of the genetic 

algorithm (GA) used  
The applied genetic algorithm operates as follows: 
1. Generating the initial population. The 

initialization of all bits of all chromosomes in initial 
generation is random, using the generator of random 
numbers, which is a standard feature of the C++ 
Builder 5 development environment. The Gray code 
is used to encode the chromosome bits. 

 
2. Ageing. It only shows up in the variant with limited 

length of life. All the individuals in the population 
have their age incremented and if it exceeds a set 
limit (it is also possible to set, implicitly, 10), the 
element is removed from the population and a new 
element is randomly generated in its place. 

 
3. Mutation. Two methods of mutation are used in the 

program: 
- classical method 
- back-propagation method 
-  

In the classical method of mutation all the chromosome 
bits are successively scanned and mutated with a certain 
small probability pmut . In the case of long chromosomes 
(of the order of tens of thousands of bits), however, this 
procedure proved to be tto slow. It was therefore 
replaced by another method, which yields the same but 
substantially faster results: v = pmut *n are chosen 
randomly from the chromosome and then mutated. 
In the back-propagation method of mutation the Back-
propagation algorithm is used as the operator. Weights 
are decoded from the chromosome and set in the neural 
network and then, depending on the assignment, several 
cycles of Back-propagation are perfomed. The adjusted 
weights are then encoded back in the chromosome bit A 
disadvantage of the method is the great computation 
complexity.  (See Tab. 6). 
 
4. Calculation of the value of object function 
Neural network error function SSE is used as the object 
function over all models  [4]: 
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GA performs the minimization of this error function. 
The quality of an individual in the population is 
calculated as follows:  
 
A neural network with the respective configuration 
(which is invariant and designed prior to starting the 
GA) is formed  
Weights are decoded from the binary chromosome and 
set in the neural network. 
All the models from the training set (see ) are 
successively conveyed to the neural network input. The 
response of neural network to the input data is calculated 
and the difference between the actual and the required 
value is used to evaluate the SSE error over all models. 
This error represents the chromosome quality. 
 
4) Upward population sorting. We are looking for 
the function minimum so that a chromosome with 
the least object function value will be in the first 
place. The Quicksort algorithm, which is very 
effective, is used for sorting; it can therefore be 
expected that the necessity of sorting will not affect 
the speed of algorithm negatively.  
 
6) Crrossing. Uniform crossing is used – every bit 
of descendatnt is with the probabillity 0.5 taken 
from one of the parents. N* = N/2 of descendants is 
made by the crossing (one half of the population). 
 
7) Finalization. Return to the step 2 if the finalization 
condition is not realized. If it is realized then end of GA 
transaction. There are exist two finalization variation (or 
their combination) 
-maximal number of iteration 
-the quality of the best solution, smaller then entered 

 
 

3   Problem Solution 
The real technological scene was simulated with 
digitization of two-dimensional pictures of five real 
objects (see Fig. 1). The classical image preprocessing 
was used. Then every pattern was described by the flag 
vector [5]. Flag vectors have been submitted to network 
and arm lengths have been transformed to values from 
interval < 0, 1 >. 

 

 
Fig. 1 – The scene used for testing 

 
 
3.1 Evaluation 

Optimal solution is such weights configuration, for 
which is the network possible to recognize all 
samples into 100%.   

Algorithms were tested on the computer with the 
processor AMD Athlon XP 1700+ and 512 MB 
RAM.  

 
Back-propagation: 
In the Table 1 and 2 are results with Back-
Propagation algorithm. 
 
Learning of two models by BP: 
 

 
 Number 

of 
Layers 

 
Time [s] 

Error SSE over 
all models 

Whole 
preception   

[%] 

2 4,487 0,000032 100 
2 3,976 0,000042 100 
2 3,565 0,000116 100 
1 3,545 0,000041 100 
1 2,924 0,000047 100 

Tab. 1:  2 models, 5000 iterations, sequency selestion of 
models 

 
 
 
 
 
 
 



Learning of five models by BP: 
 

 
Number 

of 
Layers 

 
Time [s] 

Error SSE over 
all models 

Whole 
preception   

[%] 

2 7,751 0,000040 100 
2 5,938 0,000075 100 
2 6,029 0,000091 99 
1 5,638 0,000070 99 
1 3,956 0,000077 99 

Tab. 2:  5 models, 5000 iterations, sequency selestion of 
models 

 
Genetic algorithm 
 
Learning of two models by GA 
Neural network parameters: 1 secret layer, 70 
neurons GA parameters: population 500 of 
individuals, mutation probability 0.05, 11 bits for 
weight, life time 10 cycle, finalization for the error 
smaller then 0.01, or 500 of iterations 
 

Number 
of 

Iterations 

Time 
[h:mm:ss] 

Error SSE 
over all 
models 

Preception 
of the 

output [%] 
6 0:00:23,0 0,000039 100 
8 0:00:32,9 0,001978 94 
2 0:00:09,5 0,001053 100 
1 0:00:04,7 0,000712 100 

17 0:00:64,6 0,008621 97 
2 0:00:08,7 0,000356 97 
6 0:00:23,0 0,006595 88 
1 0:00:04,9 0,000604 100 
2 0:00:09,7 0,000460 100 
3 0:00:14,0 0,001251 95 

Tab. 3 Network learning results by Genetic algorithm, 2 
models 

 

Learning of three models by GA: 

Neural network parameters: 1 secret layer, 70 
neurons GA parameters: population 500 of 
individuals, mutation probability 0.05, 11 bits for 
weight, life time 10 cycle, finalization for the error 
smaller then 0.08, or 500 of iterations 
 
 
 

 
 

Number 
of 

Measurin
g 

 
Number of 
Measuring 
 [h:mm:ss]  

 
Error SSE over 

all Models 

Prece
ption 
of the 
output 
1  [%] 

Prece
ption 
of the 
output 
2  [%] 

Preception 
of the 

output 3  
[%] 

402 0:29:29 0,056189 87 88 86 
500 0:36:07 0,084470 66 91 100 

102 0:11:50 0,075513 90 63 100 
304 0:16:18 0,062479 10 92 85 
366 0:22:47 0,073709 87 89 87 

5 0:00:19 0,003813 97 93 100 
484 0:25:57 0,057401 84 88 78 
500 0:27:01 0,099898 100 87 87 
500 0:26:59 0,209757 55 81 73 
500 0:26:58 0,175896 86 94 100 

366,3 0:22:22 0,089913 85,2 86,6 89,6 

 
Tab. 4  Network learning results by Genetic algorithm, 3 
samples, population 500 chromosome 
 

 
Num
ber of 
Meas
uring 

 
Num
ber of 
Iterati
ons 

 
Time of 

Measuring 
[h:mm:ss]  

Time of 
Measuring 

Prece
ption 
of the 
outpu

t 1 
[%] 

Prece
ption 
of the 
outpu

t 2 
[%] 

Preception 
of the  

output 3 
[%] 

1 200 0:29:13 0,118626 61 71 78 
2 200 0:29:37 0,148604 100 96 100 
3 200 0:29:45 0,115807 95 70 66 
4 32 0:05:04 0,015287 100 100 85 
5 200 0:30:27 0,213459 0 91 97 

Aver
age 

166,4 0:24:49 0,122357 71,2 85,6 85,2 

 
Tab. 5   Network learning results by Genetic algorithm, 
3 samples, population 1200 chromosome 

 

Learning of four models by GA:) 

Neural network parameters: 1 secret layer, 70 
neurons GA parameters: population 500 of 
individuals, mutation probability 0.05, 11 bits for 
weight, life time 10 cycle, finalization for the error 
smaller then 0.1, or 1200 of iterations 

 
 

Number of 
Measuring 

 
Num
ber of 
Iterat
ions 

Time of 
Measuring 
 [h:mm:ss] 

Time of 
Measurin

g 

Prece
ption 
of the 
outpu

t 1   
[%] 

Prece
ption 
of the 
outpu

t 2 
[%] 

Prece
ption 
of the 
outpu

t 3 
[%] 

1 1200 1:11:02 0,642201 0 94 90 

2 1200 1:11:02 0,281050 72 87 72 
3 1200 1:11:04 0,431428 93 0 100 

4 1200 1:11:49 0,712210 55 95 100 

5 1200 1:11:45 0,530850 0 89 92 

Average 1200 1:11:20 0,519548 44 73 90,8 

 



4   Conclusion 
Back-propagation algorithm presented very good results 
at classification. The network recognized all the patterns 
submitted. The learning using the BPx method was a 
little slower, but it can be succesfully used for networks 
with lower number of neurons. While the GA was used, 
the results and the learning time highly depends on GA 
parameters setting. The increasing of reliability and 
decreasing of the learning time of GA using limited 
lifetime were observed. The best results were obtained 
by GA using the death operator and not using sexual 
reproduction. 
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