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Abstract   This work shows the development and 

the analysis of rectangular slot line resonator with four 
dielectrics layer, using the full wave Transversal 
Transmission Line – TTL method. Starting from the 
Maxwell’s equations, obtaining a set of equations that 
represents the electromagnetic fields for the four 
Layers of rectangular slot line resonator, obtaining 
with a concise and effective procedures, the complex 
resonant frequency. This complex resonant frequency 
is calculated through double spectral variables.  

 
I. INTRODUCTIONS 

 
The rectangular slot line resonator of four layers,  

consist of one rectangular slot line resonator, where there 
are two layers under and two layers over it, how it is 
shown in Fig. 1, with width w and length l. For the 
analysis through the method TTL, the basis function 
adequate and Gherkin’s procedure is obtained the general 
equations of the fields electromagnetic allowing in concise 
and effective form, the calculation of the complex 
resonant frequency. This complex resonant frequency is 
calculated through double spectral variables, being the 
same, used in the elaboration of the efficiency and 
bandwidth's parameters.   

 With the aid of the system of Cartesian coordinates and 
the dimensional nomenclatures and electromagnetic as 
presented in Fig. 1.a (spatial view) and Fig. 1.b (traverse 
section of the structure), all are obtained referred them 
equations of fields, being considered despicable the 
thickness of the slot line.  

II. FIELDS IN STRUCTURE 
 

Due to your limitation in the length, the equations 
should be used for the analysis in the spectral domain in " 
x " and " z " directions as function. Therefore the field 
equations are applied for double Fourier transformed 
defined as: 

   dzdxeezyxfyf zjxj
kn

kn∫ ∫
∞

∞−

∞

∞−
⋅⋅= βαβα ),,(),,(~

  (1 ) 
 

Where αn is the spectral variable in the “x” direction and β 
spectral variable in the “z” direction. 
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Fig. 1 – (a) spatial view of the four layer’s slot line resonator where the 

fourth layer is the air. 
 

  
After using the equations of Maxwell in the 

spectral domain, the general equations of the electric and 
magnetic fields in the method TTL, are obtained as: 
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Where: 
 
i = 1, 2, 3,4  represent four dielectrics regions of the 
structure; 

2222
ikni k−+= βαγ                   (2.5) 

is the constant of the propagation in y direction; αn is the 
spectral variable in “x” direction and βk the spectral 
variable in “z” direction. 

∗== rii kk εµεω 2
0

22  is the number of wave of ith term of 
Dielectric region; 

0ωε
σ

εε i
riri j−=∗   is the dielectric constant relative of 

 the material with losses; 
ω = ωr + jωi  is the  complex angular frequency; 



0εεε ⋅= ∗
rii  is the dielectric constant of the material; 

The equations above are applied to the resonator being 
calculated, the fields Ey and Hy through the solution of the 
equations of wave of Helmoltz in the spectral domain [2]-
[4]: 
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The solutions of equations Helmoltz’s equations for the 
four regions of the structure are given for: 
For region 1: 
 
                yAE ey 111 cosh~ γ⋅=                  (4.1) 
                ysinhAH hy 111

~ γ⋅=                                (4.2) 
For region 2: 
 
         yByAE eey 22222 coshsenh~ γγ ⋅+⋅=    (4.3) 

        yByAH hhy 22222 coshsenh~ γγ ⋅+⋅=   (4.4) 
For region 3: 
 
         3 3 3 3 3senh coshy e eE A y B yγ γ= ⋅ + ⋅    (4.5) 

        33 3 3senh cosh 3y h hH A y B yγ γ= ⋅ + ⋅   (4.6) 
 
For region 4: 
 
             y

ey eAE 3
33

~ γ−⋅=                                 (4.7) 

            y
hy eAH 3

33
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Substituting these solutions in the equations of the fields 
(2.1) the (2.4), in function of the unknown constants A21, 
A22, B21 and B22 is obtained, for example, for the region 2: 
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For the determination of the unknown constants, they 
are applied the conditions of close contour the regions 1, 2 
and 3, or be: 

 
For the regions 1 e 2:  y = h1 
  

E~ x1 = E~ x2                               (5.1) 
E~ z1 = E~ z2                               (5.2) 
H~ x1 = H~ x2                               (5.3) 
H~ z1 = H~ z2                                (5.4) 

    
    
 
For the regions 2 e 3:  y =d- ; (g=h1+h2) 
 

E~ x2 = E~ x3 = xgE~                             (5.5) 

E~ z2 = E~ z3 = zgE~                             (5.6) 
 
 
After several calculations it is obtained, for two region : 
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   They are obtained the general equations of the fields 
electromagnetic then in the structure in function of and 
that are the components of the fields electric tangents in 
the region of the chap line antenna. 
 
III. CALCULATION OF THE ADMITANCE MATRIX  

 
The following equations (7.1) and (7.2) they relate the   

current densities in the sheets ( xtJ  and ztJ ) and the 
magnetic fields in the interface y = h1+h2: 

 



 
x2 x3 ztH H J− =

                          (7.1) 

 z2 z3 xtH H J− =−                     (7.2) 

 
Being made the substitutions of the equations of the 
magnetic fields, given in function, and after some 
calculations it was obtained, 
   

zgzgxg J~E~E~Y =+ xzxx Y              (8.1) 

xgzgxg J~E~E~Y =+ zzzx Y              (8.2) 
 
That in matrix’s form is:       
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The " Y " admittance functions are the functions dyadic of 
Green of the antenna and they are given for: 
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The electric fields tangents in the interface, they are 
expanded in we have of known base functions through a 
add, as [3], [5]: 
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Where axi and azj are constant unknown and the terms n 
and m are numbers integer and positive that can be done 
equal to 1, as in the equations (12.1) and (12.2) following: 
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Where chosen base functions in the space domain 
expresses for [6]: 
 
 
  fx(x,z) = fx(x).fx(z)                       (12.1) 
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Whose transformed of Fourier are: 
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Where J0 is the function of Bessel of first species and 
order zero.   
The Galleria’s method is applied to (9), the eliminated 
current densities and the new equation in matrix’s form 
are obtained [5], [7].  

  







=








⋅








0
0

z

x

zzzx

xzxx

a
a

KK
KK

              (14) 

Where, 

∑
∞

∞−

⋅⋅= *~~
xxxxxx fYfK                  (14.1) 

∑
∞

∞−

⋅⋅= *~~
xxzzxz fYfK            (14.2) 

∑
∞

∞−

⋅⋅= *~~
zzxxzx fYfK            (14.3) 

∑
∞

∞−

⋅⋅= *~~
zzzzzz fYfK            (14.4) 

  The solution of the characteristic equation of the 
determinant of (14) it supplies the resonant frequency [8]-
[10]. 

 IV. RESULTS 
According the graphic of the resonant frequency, 

it decreases when with decrease of the width or length of 
the slot. This results showing briefly. 

 
    The Figure 2 shows the curve resonant frequency in 
function of length slot for different measurements 
thickness substrate at first range 

                 (a) 
Fig. 2-  (a) Frequency (GHz) in function of length (mm) 
 

The Figure 3 shows the curve resonant frequency 
in function of width slot for different measurements 
thickness substrate at third range 

 

(a) 
      Fig.3.  (a)- Frequency (GHz) in function of width 
(mm) 

 
V. CONCLUSION 

 
The Transverse Transmission Line – TTL method was 

used, in the analysis to obtain  the numeric results of the 
four  layers slot line resonator. According with the concise 
and effective procedures, was obtained the calculus of the  
complex resonant frequency with accuracy. 

The possibility of the alternate various materials is the 
greater advantage of multiple layers slot line resonator, 
that can be used as antenna.  



VI. REFERENCES 
 

 [1] A. K. Agrawal and B. Bhat, “Resonant Characteristics and End 
Effects of a Slot Resonator in Unilateral Fin Line”, Proc. IEEE, Vol. 
72, pp. 1416-1418, Oct. 1984. 

[2] Humberto C. C. Fernandes, Sidney A. P Silva and José P. Silva, 
“Coupling Analisys at the Coupler and Unilateral Edge-Coupled Fin 
Line”, International Conference on Millimeter And Submillimeter 
Waves and Applications II, SPIE's 1998 International Symposium 
on Optical Science, Engineering and Instrumentation, San Diego, 
Califórnia, USA. Conf. Proc. pp. 53-54, july of 1998.  

[3] Humberto C. C. Fernandes and Sidney A. P. Silva  "Asymmetric and 
Unilateral Thick Edge-Coupled Fin Line and Coupling Analysis", 
guest, in PIERS 1999 - The Progress in Electromagnetics Research 
Symposium, Taipei, Taiwan, Republic of China. Conf. Proc. 90, 
Março 1999.  

[4] Humberto C. C. Fernandes; Silva, Sidney A.P. and Costa, Osvaldo 
Sérgio Delfino,  "3D Complex Propagation of Coupled Unilateral 
and Antipodal Arbitrary  Finlines", Brazilian CBMAG'96-Congress 
of Electromagnetism, Ouro Preto-MG, pp.  159-162 , 24-27 of   
Nov., 1996. 

[5] B. Baht and S. K. Koul, “Analysis, design and applications of 
finlines”, Artech House, 1987. 

[6] Sidney A. P. Silva and Humberto C.C. Fernandes, " Functions of 
basis in analisys of the acoupled unilateral fin line coupler ", , IV 
SPET-symposium of Research and Extension in Technology, 
Christmas-RN, Annals pp. 79-81, Nov. 1998.   

 [7] Humberto C. C. Fernandes, “Planar structures general in guides of 
waves Millimeters: finlines ”, Thesis of Doctorate, FEC, 
UNICAMP, 189p., Campinas – SP, july de 1984. 

 [8] Humberto C. C. Fernandes, S.A.P. Silva  and L. C. de Freitas Júnior, 
“Complex Propagation Results in 3-D of the Generic Arbitrary 
Bilateral Finlines”, 22th International Conference on Infrared and 
Millimeter Waves, Wintergreen, VA, USA, Conf. Proc. pp.340-341, 
20-25 de Jul. 1997. 

[9] Humberto C. C. Fernandes and L. P. Rodrigues, " Double application 
of superconductor and photonic material on antenna array”, Proc. of  
the WSEAS2004, CSCC,  Athens , Greece, 8p., Jul.  2004 

[10] Humberto C. C. Fernandes e M.Bonfim Aquino Neto, " Four layers 
slot resonator”, Proc. of  the WSEAS2004, CSCC, CD-ROM, 
Atenas, Grécia, 5p., Jul.  2004 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
  


