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Abstract: - This paper presents a nonlinear multivariable fitting model to allow an autonomous mobile robot to reach a goal while avoiding obstacles. Radial Basis Function (RBF) neural networks are used to find the non-linear functions. These networks are designed using fuzzy clustering. This approach has the advantages to be very fast, very simple to implement, with well established convergence properties, and a good representation of the covariance matrix since all the data belong to all the classes at the same time with different membership levels. According to several parameters computed for a specific position of the robot, the non-linear functions allow the calculation of the robot’s next position. A way to integrate the RBF networks into a more complex and efficient algorithm is also proposed. Simulation and experimental results show the effectiveness of the proposed approach. 
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1 Introduction 
Several ways of guiding an autonomous robot around obstacles have been studied in the past recent years. The fuzzy approach seems to have been predominant. Tchongchai and Kawamura [1] used fuzzy control and sonar to make a mobile robot avoid obstacles. They used a behavior-based approach which can be divided into an Emergency Behavior (EB), an Obstacle Avoidance Behavior (OAB), a Goal Following Behavior (GFB) and a Wall Following Behavior (WFB). Abdessemed et al. [2] used a fuzzy controller and an evolutionary algorithm.

Another way of dealing with this challenge is to use neural networks, specifically Radial Basis Function (RBF) networks. 
Kasper et al. [3] presented the applications of behavior-based control by using RBF-approximation and neural cell structures. Jun and Duckett [4] used self-organizing maps and RBF for, respectively, unsupervised and supervised learning in order to obtain behaviors such as wall following, obstacle avoidance and path learning.

To allow a robot reaching a point through a field of obstacles, RBF neural networks are used in a different ways and simulations are generated using the Matlab software. For a given position, the next position is computed according to several parameters using RBF, and the robot moves in a discrete path. 
The organization of the paper is a follows. Section 2 presents the fuzzy RBF navigation problem.  The obstacle avoidance problem is studied in Section 3. In Section 4, a sample application is given followed by some experimental results in Section 5. Finally a conclusion is given in Section 6.
2 Fuzzy RBF Based Navigation
2.1 Radial Basis Function (RBF) Networks

RBF is used to approximate functions by combining radial functions near specific centers as shown in 
Figure 1.
Before introducing the RBF neural networks technique, a brief explanation of data fitting using RBF interpolation approach is presented. This technique [5], [6] and [7] is generally used to find a multivariable interpolation.
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Fig. 1 Radial functions representation

In other words, let the function f: U ( X, where U=[u1,...,un]T and X=[x1,...,xm]T are n input and m output discrete vectors. 
The interpolation function is defined as:
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Where L is the data record length. Using the RBF approach, the interpolation function g(U) corresponding to each output i is defined as follows:
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Where c
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 is the center of the radial function
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,i is a weight associated with the radial function of equation 1. Assuming ci = ui and a non singular matrix A, the weight matrix Λ can be easily computed as follows:
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Where Λ and X are, respectively, Lxm weight matrix and Lxn output functions matrix, and A is a LxL matrix with elements aij = 
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 (((ui -cj ((). Michelli [6] showed that for all n and L, greater than zero, and for a large variety of radial functions, relation (3) exists. Note that the number of radial functions should be equal to the data record length to apply the RBF interpolation technique. However, the number of radial functions can be less than the data record length if we consider RBF neural networks [7]. In this case relation (2) is modified as follows:
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Where r < L is the number of radial functions and λ0,i is a bias weight. To find the weights λ
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,i of 
relation (4), we should minimize the following error function:
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In this case, Λ is a (r+
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xm) weight matrix, F is a (Lxm) output matrix and A is the matrix of radial functions of the following form:
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The solution to equation (5) can be easily found, using least squares minimization, as follows:
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Where A+ is the generalized inverse of matrix A and can be solved using Singular Value Decomposition (SVD) technique.

Haykin [8] gives a complete analysis of the network structure and suggests network architecture as in Figure 2. This network is made of three layers: an input layer, a hidden layer and an output layer. The transformation between the input layer and the hidden one is nonlinear (using Gaussian functions) while the transformation between the hidden layer and the output one is linear.
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Fig.2 RBF neural networks
2.2 Network Training
Training of an RBF network can be divided into two stages: first, in the hidden layer, and second, in the output layer. Usually, the first step of training is obtained by using unsupervised methods. As detailed below, a fuzzy clustering algorithm is used.

The training of the hidden layer requires finding the positions of the centres of the radial functions. To do this, the multivariable normal function is used as given by Musavi et al [9]:
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Where 
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To find these parameters, fuzzy clustering approach [10] allows high velocity, permits simple implementation, has well-established convergence properties, and since all data belongs to all the classes, is a good representation of the covariance matrix.

2.3 Fuzzy Clustering
The different clusters are determined by minimizing the total variance of all the radial functions.
Bezdek [10] proposed to minimize the following objective function:
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subject to the following constraint:
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Where di
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 - ci( is the Euclidean norm, ci is the center of cluster i, r is the number of clusters or radial functions and ρ is a weighting exponent 
(ρ ( 1).
Relation (11) is added to respect the fuzzy partition condition of the fuzzy set P= {0< piℓ <1, 1( i ( r and 1( ℓ ( L}.  To find a solution to the above optimization problem, one can use the following Lagrangian form:
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Where λk is a Lagrange multiplier. Taking the derivative of relation (12), a suboptimal solution is given by:
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The solution of relations (13) and (14) is suboptimal since these two relations are solved iteratively until the satisfaction of convergence criteria.  

The fuzzy covariance matrix Si associated with the radial function i is therefore given by [10]:
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One final remark before training the neural network using relation (7) is the computation of the adjustment parameter s of relation (8), usually fixed arbitrary. Since this parameter is very important in the computation of the error in the training procedure, its optimal value is fixed by minimizing relation (5) according to s. In this paper, s is computed using the scalar minimization without derivatives.

The procedure followed to apply the fuzzy c-means algorithm is:

Step 1:
Fix the number of clusters L and the initial centers ci of each cluster.

Step 2:
Compute the fuzzy set P according to relation (13).

Step 3:
Compute the new position of the centers using relation (14)

Step 4:
Check the convergence according to the variation between the new and the old position of the centers. If this variation is greater than a fixed small tolerance, go to Step 2, otherwise continue.

Step 5:
Compute the covariance matrix Si of relation (15) and stop.

It is noted that the fuzzy c-means algorithm starts, usually, by fixing the initial conditions of the fuzzy set P. In this study, first the initial centers are fixed and then the fuzzy set was computed according to relation (13). In this way, the convergence criteria are fixed according to the variation of the position of the centers of the clusters.
2.4 Fuzzy Learning Algorithm
The complete procedure for the solution of the problem using the fuzzy learning approach is the following: 

Step 1: Fix the number of radial functions r (r > 2).

Step 2: Execute the fuzzy c-means algorithm explained in the previous section to compute the centers ci of the clusters and the covariance matrix Si.

Step 3: Minimize relation (5) according to s given in relation (8); s is computed using a scalar minimization algorithm without derivatives.

In Step 3, the generalized inverse of matrix A should be computed each time the scalar minimization algorithm uses relation (5).
3 Obstacle Avoidance
3.1 The Environment and the Modeling of the Robot
The environment in which the robot traverses is made of circular obstacles, a starting point and a goal. An example is shown in Figure 3.
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Fig. 3 Environment representation (in meters)
To be able to detect the obstacles, the robot uses the 8 sonar sensors, 6 in the front, 2 on the both sides.
They are represented in the program by line segments with a maximum length, which represent their maximum range. Each sensor only gives the distance between the robot and the nearest obstacle. 
The sensors are placed on a half-circle whose centre is the point modelling the robot.
3.2 Inputs and Outputs
To decrease the system complexity, the number of inputs was decreased. However, still information about the obstacles and the current position of the robot in relation to the position of the goal were needed. As the work is performed in a two-dimensional space, the choice between a Cartesian and a polar representation of the plane was present.
 As the pose of the robot is represented by its X and Y coordinates as well as by its direction, the polar representation was chosen. This allows working with only two parameters: the distance Δ between the robot and the goal and the angle θ between the robot’s orientation and the direction of the goal as illustrated in Figure 4.
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Fig. 4 Polar coordinates

The sensors give information about the obstacles. A very simple algorithm was used to compute, for each sensor, the intersection between the associated segment and all obstacles. It keeps the smallest of all the distances computed.

It is important to note here that the robot doesn’t know the position of all obstacles neither their diameter. The only information it gets is the distance to each of the obstacles in front of it’s’ sensors as shown in Figure 5. So it will be moving in a totally unknown environment.
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Fig. 5 Robot environment exploration

In this situation, the robot should move in a discrete path with a fixed step. So, only one output was needed, which is the angle 
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 guiding the robot’s movement as shown in Figure 6.
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Fig. 6 Robot path orientation

3.3 The Training Data
To generate the database containing the training data, first twenty different environments for the robot to traverse were created, containing obstacles of different diameters, a starting point and a goal.
Then some points were set representing the rough trajectory that the robot should follow. Figure 7 gives an example of the training data set.
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Fig. 7 Training trajectories (in meters)
Next, Matlab function spline was used to approximate this trajectory by a piecewise polynomial made of cubic polynomials. Following that, a program was written to compute, in a discrete manner, the points that the robot passes through.
Subsequently, different parameters for each point had to be computed. At the starting point, the robot is facing the goal. The angle the robot turns is the angle between its current orientation and the direction of the next position. The angle 
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For each environment, matrix was obtained, whose number of rows is the number of inputs plus the number of outputs, and whose number of columns corresponds to the number of points on the trajectory.
3.4 The Learning

The learning process is composed of five successive stages: first, the number (r) of neurons was chosen as wanted, and then r centers were set randomly. Next, the clustering was applied as explained previously, followed by the computation of the covariance matrix and optimizing the coefficient s. The optimization algorithm to find s is basic. An interval was chosen, divided into two parts and then a dichotomy was applied. Each time the centre that minimizes the error E is kept and E is calculated as follows:
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Where w is the input matrix.
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Fig. 8 Scatter plot of normalized and computed outputs

The normalized real output and the normalized calculated one are compared on a same graph, as illustrated on the scatter plot of Figure 8. The more the graph looks elliptical, the more the calculated output approaches the real one.
4 Sample Application

For the simulation, unknown environments are used.  Environments are created in a manner similar to the ones used for the database generation, in which obstacles are added dynamically anywhere in the environment. The following algorithm is used: assuming that the robot knows its’ position and orientation, first, the distance between the robot and the goal, and the angle between its orientation and the direction of the goal are computed. Then the distance between the sensors and the obstacles of the static and the dynamic environments are computed.
By concatenating these values, the input vector to the neural networks is created. Already the matrix ( of relation (7) is calculated in the learning phase. Now matrix A have to be found and to be multiplied to obtain the RBF output
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, which the robot should aim for. Knowing this angle allows the calculation of the new position and orientation of the robot. If the distance between the robot and the goal is higher than the step with which it moves, this algorithm is executed again until the distance becomes smaller than the distance.

The tests were performed on simple and complex environments with quite acceptable results as shown in Figure 9 for the robot navigation in dynamical environment.
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Fig. 9 Robot navigation in dynamical environment (in meters)
But to obtain improved results, a network was designed including at least seventy neurons in the hidden layer. As a consequence, the network is cumbersome to both design and computation of the successive positions during the simulations. Moreover, in some specific cases, even with a large number of neurons, the robot did not react as expected. In this case, it was out of the learning space. This happened when the angle between the direction of the robot and the goal became too high, or when there was no obstacle around it.

The robot could even pass through obstacles, which led it to either to act as if nothing happened or to make circles ignoring the other obstacles. Sometimes, the robot passed near the goal but too far to realize it could stop, according to the algorithm. The robot was not trained to understand a situation where the goal would be behind it. This resulted in the robot going away from the goal as illustrated in Figure 10.
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Fig. 10 Orientation problem (in meters)
To solve these problems, the simulation algorithm was changed by adding some particular cases as explained below.

First concerning the RBF neural network itself, the distances seen by the sensors were decreased by a factor so that the robot would move farther from the obstacles and so that it could react sometimes more efficiently. For example, sometimes the robot did not have the time to turn avoiding some obstacles. With this modification, the problem was improved. On the other hand, the robot cannot use some narrow paths as a consequence, and sometimes has to follow longer itineraries. Therefore, the main algorithm was also modified. Depending on the immediate environment, the robot must decide which method to use. If the robot is located between obstacles, it will use the RBF neural network to compute its’ next position. But if it does not detect an obstacle near it in the direction of the goal, the robot will simply turn to face the goal as shown in Figure 11. The angle 
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Since we want to ensure that the robot will reach the goal without missing it and passing nearby, then when the robot enters a circle three times larger than the step, the algorithm will ignore the neural network and the angle 
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 will get the value:


[image: image47.wmf](18)

2

diff

q

q

=

 
To prevent the robot from going into the obstacles, the angle 
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 will be set, when the front sensor detects an obstacle at a distance lower than two tenths of the range, to
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Where s is defined by the equation 20:
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Where d(i) is the distance given by the 
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sensor. According to this, the robot will turn in the direction where there will be the least obstacles.

One difficulty encountered with the MATLAB simulation is the lack of collision detection in the system. It has a tendency to skirt too close to an obstacle and scrape it, impeding movement. So, in order to make better obstacles avoidance, the following improvements were added. When the two side sensors register an obstacle at less than one thirtieth of the range, we employ the relation 21:
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When the two sensors right before the side sensors register an obstacle at less than one thirtieth of the range, the relation 22 was employed:
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When the two sensors right before the front-most sensors register an obstacle at less than one thirtieth of the range, the relation 23 was employed:
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Fig. 11 Orientation towards the goal (in meters)
The procedure followed by the final algorithm is given as follows:

Step 1: Compute the parameters of the current configuration of the robot in order to create the input vector of the RBF neural network.

Step 2: Compute the output angle thanks to the RBF network.

Step 3: If there is no obstacle between the robot and the goal, we force the robot to turn to progressively face the goal thanks to relation (17). This allows coming closer to the training space.

Step 4: If the robot is close to the goal, we force it to face the goal in a more direct manner thanks to relation (18).

Step 5: If the robot is about to meet an obstacle, we force it to avoid it thanks to relations (19), (21), (22), (23).

Step 6: Make the robot go in the new direction defined by the computed angle.

The result is a trajectory which is a little less smooth than the one created by using the RBF neural network alone, but with a better success rate because the robot will not go into the obstacles anymore and even if it goes out from the learning space, it will still be able to target the goal. Moreover, this algorithm allows the use of a smaller network with very good results, because when it is not suitable, the other functions can supply a good solution.

This algorithm also allows good generalisation. Even if used in environments different from the ones that compose the database, the robot was able to avoid the obstacles and to reach the goal as seen in Figures 12 and 13.
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Fig. 12 Test with unknown environment
(in meters)
5 Experimental Results

In order to further confirm the results, the network was adapted from a MATLAB simulation to an actual robot. The robot used is an Activmedia Pioneer P3-AT equipped with sonars and a gyroscope. The control software, known as ARIA, is done entirely in C++ which was the first obstacle to overcome in this task.
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Fig. 13 Test with unknown narrow path environment (in meters)
The system gathers real time information from the robot’s sensors (in our case, the sonars), as well as other environmental information, and then presents it to the MATLAB black box. This yields the angle with which to correct the current heading, so the robot adjusts its heading with that value. After which, it takes a step forward equal to the converted length from the MATLAB algorithm. Then it simply updates its position information and performs the loop condition check before starting a new or ending.
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Fig. 14 Screenshot of pioneer robot Simulator in an environment modeled on the MATLAB 
one in Figure 12
Current results for the system are promising. Using the simulator to describe an identical environment to one made in MATLAB, we were able to compare that they traversed using similar trajectories throughout the system and ensure that obstacle positioning as well as robot initial placement were consistent during these tests as shown in Figure 14.

Experimental results (Figure 15) also show the P3AT robot while avoiding successfully some obstacles using the proposed approach.
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Fig. 15 Photo of our P3-AT navigating obstacles
6 Conclusion

This paper showed the use of RBF neural networks to allow a mobile robot to reach a point while avoiding obstacles with good results. The classification part is based on a fuzzy approach. Even if the non-linear function generated did not yield and exact match to the real outputs given by the database, especially because of some sharp peaks, the global result was quite good even when the network was used alone. Integrating it with some special cases, the algorithm improved the results a lot. The robot was then able to reach the goal and to avoid obstacles every time, even when the simulation environment was different from the ones used for the database.

In conclusion, several executions on the simulator and actual robot appear to follow the obstacle avoidance algorithm quite well. 
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