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Abstract: — This work suggests a Elman Recurrent Networks (ELRN) as a means to model thermal condition
of power transformers. Experimental results with actual data reported in the literature show that ELRN modeling
requires less computational effort, and is more robust and efficient than multilayer feedforward networks, radial
basis function network, and classic deterministic modeling approaches.
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1 Introduction

Power transformers are key pieces in transmission and
distribution of electric energy. Transformer failures
can profoundly affect power systems, causing poten-
tially widespread power outages and, consequently,
economic and social losses. Condition monitoring
is very important to guarantee safe operation and to
increase power availability and service life of power
transformers.

One main factor in power transformer operation
concerns its working temperature, that is, its hot-spot
temperature, the temperature at the top or in the cen-
ter of the high or low voltage windings. The hot-spot
temperature has a key role in insulation aging and in
service life of power transformers. Monitoring of hot-
spot temperature is vital to develop overload protec-
tion systems. High hot-spot temperature means accel-
eration in transformer aging.

Dynamic modeling of the thermal behavior is one
of the most important aspects to monitor power trans-
former conditions. Comparisons between measured
and predicted working temperature provide informa-

tion about transformer conditions and indicate poten-
tial anomalies.

Load capability of power transformers can be
found using transient heat equations and their specific
thermal characteristics [4]. Currently, the use of con-
ventional modeling techniques to determine the inter-
nal temperature of power transformers is a challeng-
ing task. Security induces adoption of conservative
safety factors in computation and often this means
underutilized transformers once hot-spot portions of
the coils are kept from overheating and failing pre-
maturely. Consequently, the maximum power trans-
fer computed may be 20-30% less than nominal power
transformer capacity [5].

To increase system operational margins during
overload periods, new loading approaches are needed
to bring power transformers beyond the corresponding
nominal specifications. The approaches should be ca-
pable to timely change load capability rates to use full
transformer capacity, meaning less revenue losses and
lower maintenance and upgrade costs.

Several modeling techniques are available today,



artificial neural networks-based modeling (ANN) be-
ing among the most relevant and efficient. ANN mod-
els, especially multilayer feedforward structures, have
been used extensively in system modeling due to its
ability to learn complex non-linear relationships that
are difficult for conventional approaches [8].

Feedforward neural models do not have internal
dynamics. They are static, may not comply with actual
system dynamics and fail to provide efficient models.
Despite the efficiency of supervised learning schemes,
the ones that use input/output system data, impreci-
sion and inadequacy of input/output data [8] may po-
tentially harm feedforward ANN performance.

An alternative that has received considerable at-
tention and shown significant progress during the
last years concerns recurrent network modeling ap-
proaches. Similar to static feedforward neural net-
works, dynamic recurrent neural neural networks con-
sist of global recursive network and partial recursive
network [1]. In the global recursive network, there
are full connections between each two nodes, and all
weights are trainable. Because complex recurrent con-
nections of the nodes in fully recurrent neural net-
works result in poor convergence speed. In contranst,
in the partial recursive network, feedforward loop is
the basic structure in which the weights are variable,
and the back-forward loop consists of "Context” in
which the weights are fixed [2]. So it is investigated
widely and deeply.

Elman neural network is a partial recurrent net-
work model introduced by Elman [3] that lies some-
where between a classic feddforward multilayer per-
ceptron and a pure recurrent network. Because of the
existence of contest nodes and local recurrent connec-
tions between the context layer and the hidden layer,
it has certain dynamical advantages over static neural
networks, such a Multi-Layer Perceptron (MLP) and
Radial Basis Function Networks (RBFN). This high-
light makes Elman neural network very suitable to be
utilized in the dynamic system modeling problem.

This paper suggests a Elman Recurrent Network
(ELRN) as an alternative to model the thermal condi-
tion of power transformers. Experimental results re-
ported here show that the Elman model is more ef-
fective than multilayer feedforward backpropagation
network (MLP), radial basis function network (RBF),
and a classic deterministic model. Using actual data
reported in the literature, the ELRN network provides
an effective and robust model, learns very quickly, and
efficiently manages learning data imprecision.

2 Deterministic Modeling

Nowadays, as mentioned above, load capability is
found using transient heating equations and specific
thermal characteristics and parameters of power trans-
formers. Load capability calculation requires knowl-
edge of load curves and operating conditions (espe-
cially the operating temperature), whose values are
fixed and usually conservative [5].

As discussed in [4], load capability calculations
require the following variables and parameters:

Variables (functions of time, t):

Oy = environment temperature, °C.

®ro = top oil temperature, °C.

Oy = hot-spot temperature, °C.

A®y = hot-spot rise above top oil temperature, °C.

A®y y = ultimate hot-spot temperature rise over top
oil (for a given load current), °C

AOro y = ultimate top oil temperature rise over
environment (for a given load current), °C

K = load current, per unit.

Parameters (constants):

A®ro g = rated top oil temperature rise over environment,

°C

A®y r = rated hot-spot temperature rise over top oil, °C

Tro = top oil rise time constant, hours

TH = hot-spot rise time constant, hours

R = ratio of load loss at rated-load to no-load loss
at applicable tap position, dimensionless

m = empirically derived value, depends on the
cooling method, dimensionless.

n = empirically derived value, depends on the

cooling method, dimensionless.

Using these variables and parameters, the heat
transfer equations and the step-by-step load capability
calculation process are as follows:

e At each time step, compute the ultimate top oil
rise(A®ro ) using the load current value at
that instant and:
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e From (1), and the environment temperature at
each time step, compute the increment in the top
oil temperature, using the differential equation:

dOro
dt

Tro =[AOrou+ 04| —0Oro (2)

in its finite difference equation form:

Dt
DOrp = o ([A®rou +O4) —Or0) (3)

where the prefix D implies a small finite step.

o Next compute the ultimate hot-spot rise using:

A®y y = A®y K" 4)

e The increment in the hot-spot temperature rise
is found using the differential equation:

dAOy
dt

TH =AOy y —ABy ®)

in its finite difference equation form:

D
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o Finally, add the top oil temperature to the hot-
spot rise to get the hot-spot temperature, that is,
set:

Oy = Orp +ABy @)

The model described by (1) - (7), presumes some
simplifying assumptions such as: the oil temperature
profile inside winding increases linearly from bottom
to top; the difference between the winding temperature
and the oil temperature is constant along the winding;
the hot-spot temperature rise is higher than the temper-
ature rise of the wire at the top of the winding, intro-
ducing a conservative factor; the environment temper-
ature drives the oil temperature up and down with the
same time constant as does the winding temperature;
the incidence of solar flux is neglected.

Therefore, the use of the deterministic thermal
model (1) - (7) may produce substantial error when
computing load capability rate in real-time. Thus,
there is a need to adopt new, more precise and ro-
bust methods to compute load capability and use it as a
means to increase system operation margin in presence
of overload conditions. In what follows, we suggest an
alternative based on a Elman recurrent network.

3 Elman Network Structure

The basic structure of Elman neural network is com-
posed by four layers: input layer, hidden layer, con-
text layer, and output layer, as depicted in the fig-
ure 1. There are adjustable weights connecting each
two neighboring layers. Generally, it is considered as
a special kind of feedforward neural network with ad-
ditional memory neurons and local feedback [6].

Layer

Layer

c1 (k) T Context

Figure 1. Structure of the Elman network

The self connections of the context nodes in the
Elman network make it also sensitive to the history of
input data which is very useful in dynamic modeling
[71.

The notation used in this section is given below:

W1;; = The weight that connects node i in the input
layer to node j in the hidden layer

= The weight that connects node j in the hidden
layer to node q in the output layer

W3 = The weight that connects context node I to
node j in the hidden layer

= The number of nodes in the input, output and
hidden layers respectively.

ui(k),y (k) = Inputs and outputs of the Elman network,

W2,

m,n,r

wherei=1,---mand j=1,---,n
xi(k) = Output of the hidden node i,i=1,---,r
ci(k) = Output of the context node i, i.e., the output
of the hidden node i of last time.
z! = A unit delay.

For each unit in the hidden layer an additional unit
called context unit is added. The context unit is fully
connected with all the hidden units in a forward man-
ner. This means that there is a weight from every con-
text unit to every hidden unit. Furthermore, there are



recurrent connections from the hidden units back to
the context units. But each hidden unit is only con-
nected to its associated context unit.

The weights of the recurrent connections are fixed
and the forward weights get trained by using back-
propagation. In the forward phase the context units
behave like input units. The values of the hidden units
and of the output units get calculated in the same way
as it is done for feedforward networks. After calculat-
ing the outputs of the hidden units, the current values
get copied into the correspondent context unit via re-
current connections (through a unit delay). These val-
ues are used in the next time step. At the first time step
they have to be set to some initial values. During the
backward phase of the training, target values for the
outputs are used and the forward weights are adjusted
by backpropagation.

The inputs of network are: u(k) € R™, y(k) € R",
x(k) € R”, the outputs in each layer can be given by:

k = (ZWI ]u, )—i—inljcl(k))

=1

ci(k) = x;j(k— (®)
r
k) =g (Zw igxj( )
j=1
where, f(e) and g(e) are the linear or nonlinear

output function of hidden layer and output layer re-
spectively.

Because the dynamic characteristics of Elman net-
work are provided only by internal connection, so it
needn’t use the state as input pr training signal. This
is the advantage of the Elman network in contrast with
static feedforward network.

4 Simulation Results

In this section the recurrent Elman model presented in
the previous section is used to estimate the hot-spot
temperature of an actual transformer. The data set
adopted during the experiments reported in this paper
is the same of [5]. The data were collected from mea-
surements performed in an experimental power trans-
former whose characteristics are summarized in Ta-
ble 1.

The results are compared with three alternative
models: the deterministic model (DM) summarized in
Section 2, a backpropagation feedforward multilayer
neural network (MLP), and a radial basis function neu-
ral network (RBFN) as used in [5].

All four models (deterministic, backpropagation,
radial basis and Elman) were trained using data de-
scribing the behavior of transformer hot-spot tempera-
ture during a horizon of 24 hours with 5 minutes sam-
pling period. The learning data is depicted in Figure 2.
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Figure 2. Learning data

After learning, the approximation, generalization
and robustness capabilities of the networks were tested
using two data sets describing different load capability
conditions than those in learning data [5]. Test date,
shown in Figure 3, were collected in the same way as
training data.

Figures 4 and 5 depict the results provided
by the deterministic (DM), Elman recurrent network
(ELRN), backpropagation multilayer network (MLP)
and the radial basis function network (RBFN) models.
Figure 4 shows the actual transformer output and the
corresponding models outputs under no overload con-
dition whereas 5 shows the same outputs, but under
overload conditions.

Table 2 summarizes the performance index values
achieved by the models during the simulation exper-
iments. In the table, MSE — Dt1 is the mean square
error (MSE) obtained when running the models us-
ing the test data with no overload condition (Fig-
ure 3(a)), MSE — Dt2 is the MSE obtained when using

Table 1. Main Characteristics of the Power Transformer

Nameplate rating 25 kVA
Vprimary / Vsecundary 10kV/380V
Iron losses 195 W
Copper losses (full load) 776 W

Top oil temp. rise at full load 73.1 °C

Length x width x height 64 x 16 x 80 cm
of the tank

Type of cooling ONAN*
Factory / year MACE/87
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Figure 3. Test data: (a) no overload (b) with overload

the models with test data with overload condition (Fig-
ure 3(b)), and MSE — Dts is the MSE obtained when
running the models using both data sets.

Table 2. Simulation Results

Model | Learning Time (seg.) | MSE-Dt1 | MSE-Dt2 | MSE-Dts
MD - 17,3489 6,7822 12,0655
ELRN 59,39 0,4780 0,2,1073 1,2926
MLP 92,76 0,7901 2,4885 1,6393
RBFN 82,83 0,2565 0,9917 0,6241

As Figures 4 and 5 show, ELRN, MLP and RBFN
models provide good results when modeling the hot-
spot temperature. However, MLP and RBFN re-
quire complex learning processes whereas the recur-
rent model (ELRN) uses a faster and simpler learning
procedure. On the other hand, when training data do
not assemble an ideal learning data set, a data set that it
is not representative of the target behavior, the ELRN
outperforms MLP and RBFN because of its robustness
when dealing with imprecision in data.

To verify this important issue, we use a data set
that does not fully represent the transformer dynamics.
Next, we train the MLP, ELRN and RBFN neural net-
works using this same data set. In our experiment, as
an extreme case, we took the data shown in Figure 3(a)
to train the models and data of Figure 3(b) to ver-
ify the approximation, robustness and generalization
capabilities. Figure 6 shows the results provided by
the models in this circumstance. Table 3 summarizes
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Figure 4. Transformer and models outputs with no overload con-
dition

the mean square errors in this case. As we can easily
see, the behavior of both, the MLP and ELRN models
have shown substantial changes. Contrary, the recur-
rent model was able to keep the same hot-spot temper-
ature prediction performance as before. Clearly, the
recurrent model approximates the true transformer be-
havior closely, is able to generalize properly, and is
more robust to data imprecision than its counterparts.

Table 3. Results using non ideal training data

300

MD ELRN MLP RBFN

MSE-Dt3 | 6,7822 | 1.8896 | 1,2487 x 10% | 4,6579 x 10*

5 Conclusion

This paper has introduced an alternative Elman recur-
rent network to model the thermal condition of power
transformers. Simulation experiments have shown
that the Elman model is more effective than multi-
layer feedforward backpropagation network (MLP),
radial basis function network (RBF), and a determin-
istic model because it approximates and generalizes
transformer dynamics properly and is able to manage
imprecise data. The recurrent network provides an ef-
fective and robust model, learns quickly, and requires
modest computational power. Therefore, it is a candi-
date to safely contribute to increase power transformer
real-time load capability during overload periods. In
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Figure 5. Transformer and models outputs with overload condition

the future we expect to use a similar approach to es-
timate the loss in service lifes of transformers when
submitted to overload conditions.
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