
Performance Evaluation of Programming Paradigms and Languages
Using Multithreading on Digital Image Processing

DULCINÉIA O. DA PENHA1, JOÃO B. T. CORRÊA2, LUIZ E. S. RAMOS3,

CHRISTIANE V. POUSA4, CARLOS A. P. S. MARTINS5
1, 2, 3, 4, 5 Computational and Digital Systems Laboratory / 5 Informatics Institute

1, 3, 4, 5 Graduate Program in Electrical Engineering
Pontifical Catholic University of Minas Gerais

Av. Dom José Gaspar 500, 30535-610, Belo Horizonte, Minas Gerais
BRAZIL

 http://www.ppgee.pucminas.br/lsdc/

Abstract: - We present a comparative performance evaluation of different programming paradigms and languages
using multithreaded programming. We compare the procedural and object-oriented (OO) paradigms, as well as the
C++ and Java languages, regarding both performance and programmability. The comparison is made upon sequential
and parallel image convolution implementations based on those paradigms and languages. The parallel
implementations used the shared-variable programming model and multithreading. They exploited not only pure
parallelism, but also parallelism combined with concurrency. The performance evaluation was based on the response
time of those implementations. The evaluation of system performance showed that pure parallelism yielded better
performance results than parallelism combined with concurrency. Regarding the C++ implementations, the procedural
paradigm led to better results than the OO paradigm. One of the most significant results in our work is the fact that
Java yielded shorter response times than OO C++ for most of the multithreaded implementations.

Key-Words: - Programming, Paradigms, Languages, Parallelism, Concurrency, Image, Convolution, Performance

1 Introduction
Nowadays, a number of applications in many areas of
knowledge (scientific, commercial, industrial, etc)
demand very short response times. Due this fact, those
applications require a great amount of computational
resources for storage, transmission and information
processing. A possible solution for this problem is the
use of high performance computing (HPC). An HPC
system may perform sequential or parallel processing
[1] [2] [3].

The effective use of parallel systems is a very
difficult task because it involves the design of correct
and efficient parallel applications. Thus, in parallel
architectures, the programming transparency is an
important issue for the developers of parallel
applications. Some techniques can be used to provide
the desired transparency. Compiler directives, functions
and classes from multithread support libraries are
commonly used in operating systems that support
multiprocessor computational systems.

The problem on which we focus is the correlation
among architectures, paradigms, languages and
performance. Thus, our main goal is to compare and
evaluate the system’s performance, whereas using
different programming paradigms and languages with
multithread programming. We compare the procedural
and object-oriented (OO) paradigms, using the C++ and
the Java languages.

Our evaluation was based on the overall system’s
performance, not concerning about specific features of
other architectural blocks, such as: processor, memory
and communications. The standard support libraries
used to implement the multithreaded code were:
WinThread for the Windows operating system and the
Threads class for Java. Based on the evaluation of
programmers and developers, in our evaluation, we also
considered the: programmability, programming
methods, portability, simplicity and transparency of
those libraries.

We decided to vary some parameters while the others
remained unchanged. The variable parameters were: the
paradigms and languages and the non-variable
parameters were: the execution system and the features
of the implementations. Moreover, no compiler or
language optimizations were used.

The workload for our experiments and comparative
analysis is an image convolution, which is a digital
image processing (DIP) operation. It is one of the most
important DIP operations and demands a considerable
amount of computational resources to be executed.

Digital images are composed of a great amount of
data and are often stored in matrixes. Their
manipulation usually has a high cost and consumes
large computational resources. DIP operations have a
parallel nature [1] [11] because they perform
independent actions over independent data (pixels,
consisting of the elements that compose the image

representation matrix) [5]. Thus, in many situations the
use of general-purpose parallel architectures using
shared memory (shared-variables programming model)
yields performance gains [4] [11].

So, we developed sequential and parallel image
convolution implementations and varied the paradigm
and the language, in a total of six combinations. There
was a sequential and parallel version for each of the
following implementations: procedural C++, OO C++
and Java (OO paradigm). The parallel versions are
based on the shared-variable programming model, using
multithread programming. They used: explicit compiler
directives, classes and functions from the used
multithread support libraries (WinThread and class
Thread from Java).

In the procedural programming paradigm, the
problem is broken into smaller pieces that can be solved
algorithmically, within a specific number of steps. As
soon as the variables are declared, the specified
sequence of actions is followed. The program and the
data are viewed as separate entities.

In the OO paradigm, the application to be
implemented is a set of interacting objects. The
programmer defines objects and their associated
properties. The sequence of actions that occur in the
running system depends on how the user interacts with
the objects.

The use of threads is a possible way to obtain
parallelism support in a program, usually by means of
compilers and system libraries. In this work we use the
WinThreads library from the C++ Builder Compiler and
the Thread class from J2SDK.

The results in this paper are part of a larger research
[6] [7] related with performance, architecture and
programming on: different programming paradigms and
languages, different parallel algorithm models,
algorithm optimization, and compiler optimization using
the shared-variable and the message-passing parallel
programming models. Our larger research is a
comparative evaluation of the correlation among the
objects’ combinations and their influence on the
system’s performance. We combined objects that
belong to different computational abstraction levels and
compared and evaluated them based on performance
and programmability.

Our main contribution is the comparative
performance evaluation of different programming
paradigms and languages using multithread mechanisms
applied on a digital image convolution operation.

2 The Convolution Operation
A filtering operation in space domain is called
convolution. The term space domain refers to the
aggregation of pixels that compose an image.
Operations in space domain are the procedures applied

directly on those pixels [5]. The equation (1) describes
the convolution operation.

∑ ∑
−= −=

×++=
2

2

2

2

]][[]][[]][[

k

k
uu

k

k
vv

vuMvyuxIyxP (1)

The convolution is carried out for each pixel
(P[row][column]) of an NxN image I, with a KxK mask.
A convolution mask is applied on each pixel of the
input image, resulting in a convolved (filtered) output
image [5]. In this work, we use high-pass and low-pass
spatial filters to carry out the tests and comparisons.

The convolution mask that characterizes a high-pass
filter is composed of positive coefficients in its center
(or next to it), and negative coefficients in the
surroundings [5]. The high-pass filtering operation
produces a highlight effect on the edges of the original
image. It happens because the appliance of a high-pass
mask on a constant area (or with a small gray level
variation) generates the output with a zero value or near
zero [5].

We applied the convolution operation with a high-
pass filter on the original image showed in Fig.1 (a). We
show this convolution result in Fig. 1 (b). Fig. 1 (c)
presents the negative image to validate the convolution
operation. We introduced a border on the negative
image to show the actual image dimensions. So, the
border is not a part of the image.

 (a) (b) (c)
Fig. 1. Original image for high-pass convolution (a)

Image of the convolution with a high-pass filter (b), and
its negative image (with additional border) (c)

3 The Paradigms and Languages
The procedural paradigm represents the traditional
approach for programming (for example, it is the basis
for the CPU's fetch-decode-execute cycle). This
paradigm defines a program as a sequence of
instructions that manipulates data in order to produce
the desired results [8]. The entire logic of the program is
a series of instructions, in which the problem is divided
into smaller pieces. A program based on the procedural
paradigm executes efficiently, because the software
matches the hardware. Nevertheless, the procedural
paradigm is not enough for handling today’s problems,
because these may be too complex and/or too large to be
implemented as functions. Moreover, another problem
of this paradigm is that it does not facilitate code
reusability.

Object-oriented (OO) programming has been
presented as a technology that can fundamentally aid
software engineering, because the underlying object
model fits the real domain problems better [13]. The OO
paradigm is focused on the behavior and the structural
characteristics of entities as complete units. The main
advantage of OO is the easiness of reutilization. When it
is necessary to change the program’s code, the
programmer modifies specific classes and makes only
the required adjustments. This eliminates excessive code
browsing and dependency checking in order to make the
changes [12].

C++ is an object-oriented language based on C. It can
be viewed as a superset of C because almost all of the
features and constructs available in that language are
also available in C++. Its additional features support the
OO programming paradigm [4] [9].

Java is a portable object-oriented language that is
executed on top of a virtual machine. The user’s
program source-code is compiled into a byte-code,
which is interpreted by the JVM (Java Virtual Machine)
when the program runs over a specific architecture [12].
One of the benefits of the Java language is the support
to multithread programming as a part of the language. In
Java, each thread that runs in JVM is associated with an
object of the Thread class [12].

4 Shared-Variable Parallel Programming
Shared-memory parallel architectures can use shared-
variables for the communication between the
application processes or threads. The effective use of
parallel systems is a very difficult task because it
involves the design of correct and efficient parallel
applications. This fact results in several complex
problems as process synchronization, data coherence
and event ordering. There are some ways to using
parallelism in order to provide some transparency to the
programmer [6]. Regular modern operating systems
(OSs) provide support to multiprocessor systems. In
these systems, the parallel execution is activated on the
creation of multiple threads or processes that run in
parallel.

A thread (or a control thread) is a sequence of
executing instructions. Each process has one or more
threads. The threads belonging to a process share its
address space, its code, most of its data and process
descriptor information. The use of threads makes it
easier for the programmers to write their concurrent and
parallel applications in a transparent way [6].

There are two main operating system specific
multithread programming libraries. One of them is for
Unix/Linux OSs (Pthread standard), and the other for
Windows OSs (WinThread). Besides, there are the
operating system and architecture independent Java
Thread Class.

5 Image Convolution Implementations
In this section we present the image convolution
implementations used in this work. They are: a
sequential procedural C++, a sequential OO C++, a
sequential Java (OO), a parallel procedural C++ (using
WinThread), a parallel OO C++ (using WinThread),
parallel Java (OO, using Java Thread Class). We used
the Borland C++ Builder 5.0 compiler for the C++
implementations and J2SDK 1.4.0_01 for Java
implementations.

5.1 Procedural Implementations
The sequential procedural (C++) implementation is
based on a 4-level loop showed in Fig. 2.

Fig. 2. Basic 4-level loop convolution algorithm

These implementations use three different matrixes

that store: the original image, the convolution mask and
a temporary matrix. The last one is used to store the
convolved pixels of the image. We initially load the
image and the mask matrixes with the correct values and
initialize other variables. Then the basic 4-level loop
convolution is executed and the result of each
convolved pixel is copied into the temporary matrix.
Finally, the values of the temporary matrix (containing
the convolved image) are copied into the image matrix.

Upon the sequential procedural implementation, we
developed a parallel procedural version (in C++). The
difference is that the whole image is divided into slices
containing image rows. Each slice is convolved by a
specific user level thread, whose code is similar to the
basic 4-level loop (showed in Fig. 2). A thread
parameter (argument) is the starting row of the slice that
it will convolve. The three matrixes (image, mask and
temporary) are shared among all threads. A vector of
threads keeps the reference to each thread (function,
arguments, etc).

After loading the image and convolution variables,
we create the threads according to the number of desired
processes. Each thread is created in a suspended mode
and is referenced by a position in the vector of threads.
After their creation, they are all started. At this point all
threads are executed in parallel or concurrently. When
all threads finish their jobs, the temporary matrix is
copied into the image matrix.
5.2 Object-Oriented Implementations
The OO convolution implementations are based on the
sequential one. An advantage of the OO programming
paradigm is the code reutilization.

On the C++ and the Java sequential OO
implementations we created a single class encapsulating
all the objects used on the procedural implementation
(e.g.: the image and the mask matrixes, variables and
functions). On the main code we declared the object,
allocated memory space for them, and called the
functions that executed the operations. At the end of the
execution we deallocated the space of the objects.

The parallel (with user level multithread
programming) OO implementations (in C++ and Java
languages) were developed through the construction of
two objects. The first one was responsible for thread
management (creation, destruction, synchronizations
and accesses to the shared variables) and for keeping the
image to be convolved. The second object implemented
the thread’s code. Each thread executed a part of the
image convolution operation. In the Java
implementation, this operation was located in the run
method of the class. This method extends the Thread
library and implements the main methods of the threads
(run, join, start, stop). When the program started the
threads were created and initiated, and then they
executed the convolution operation sharing the matrix
that contained the image.

Then the whole image was divided into slices that
were convolved by each thread. The thread convolution
code is also similar to basic 4-level loop (showed in Fig.
2). A thread parameter (argument) is the starting row of
its slice (which it will convolve). So the threads
calculate the finish row of the image slice.

6 Results
We executed all tests with the convolution
implementations over an Intel Dual Pentium III
933MHz with a 768MB primary memory, and the
Windows XP operating system. In each test, the image,
the mask and the other convolution variables of each
implementation were previously loaded in memory. We
did this to eliminate the influence of the virtual memory
on the performance results. Thus, the time had been
measured for the computations that followed. The C++
implementations tests were executed using Prober, a
functional and performance analysis tool [10]. The Java
implementations tests were executed manually.

We executed each implementation ten times for each
chosen image size (512x512, 1024x1024, 2048x2048
pixels) and mask size (3x3, 5x5, 7x7). We calculated
both the arithmetic and the geometric means of the
response times obtained in each execution (iteration) in
order to analyze and compare the results. We show in
Table 1 the arithmetic and the geometric means for
1024x1024 images with a 5x5 mask in the OO C++
implementation. The difference between the arithmetic
and the geometric means was short for all
implementations; namely, the system was steady and
presented a deterministic behavior in all tests.

Table 1. Arithmetic and geometric means for the OO
C++ Implementation (1024x1024 image, 5x5 mask)

Threads Arithmetic Geometric
1 1093.800 1093.875
2 791.000 791.375
3 821.900 822.250
4 809.500 808.750
5 804.700 802.875
6 804.700 802.750
7 799.900 800.625
8 801.400 800.625
9 790.400 790.750

10 793.800 793.000

In all tests regarding the procedural implementations
(with the C++ language), we observed that the response
times obtained using pure parallelism were shorter than
the response times obtained using parallelism combined
with concurrency. In these cases, the use of concurrency
associated with parallelism was not interesting because
the achieved speedup was greater than those obtained
from purely parallel executions, as we expected. This
happened because, in the case of concurrency for
processor and memory, the response time is increased
by the time spent in context switching among the
threads. In the tests regarding the OO C++
implementation, we observed that only few executions
obtained better results (shorter response times) with
pure parallelism than with both parallelism and
concurrency. We obtained the shortest difference
between the response times using pure parallelism and
one using parallelism combined with concurrency, as
the image and mask size increased.

In the tests regarding Java (OO paradigm), the
response times with pure parallelism were better than
those with parallelism and concurrency, except for
512x512 images and 5x5 mask. The graphics 1, 2 and 3
show the response times of the implementations using
pure parallelism (two threads, each one running over a
processor of the test machine) and the response times of
the implementations combining parallelism with
concurrency (more than 2 threads), for all paradigms,
languages and mask sizes, using 1024x1024 images.

Graphic 1. Geometric mean of the response times for a

1024x1024 image and a 3x3 mask

Graphic 2. Geometric mean of the response times for a

1024x1024 image and 5x5 mask

Graphic 3. Geometric mean of the response times for a

1024x1024 image and 7x7 mask

As it was expected, the response times of the OO

implementations always presented larger response times
than the procedural implementations in the C++
language (for the sequential and the parallel versions).
Table 2 presents the response times obtained with the
procedural and the OO C++ implementations for
2048x2048 images and a 7x7 mask. Observing the
obtained results, we concluded that the use of multiple
threads in the OO C++ implementation was not
interesting in this case, because the maximum efficiency
was smaller than for the other implementations
(approximately 0,735 for 2048x2048 images and 3x3
masks). A possible reason for this is the fact that the
thread management of the C++ Builder compiler was
not optimized considering the context.

The programming and executing model of the
procedural implementations fitted the hardware
functioning model better than the model of the OO C++
implementation. For that reason the procedural versions
presented the best speedup results. Table 2 shows the
speedup obtained with the sequential and the parallel
OO C++ versions.

The most of the response times regarding the
sequential OO C++ implementation were better
(shorter) than those obtained with the Java
implementation. The worst response times were
achieved in the executions of the OO C++
implementation. They involved: a 512x512 image using
a 3x3 mask, a 1024x1024 image using 3x3 and 7x7
masks, and a 2048x2048 image using a 3x3 mask. On
the other hand, the response times of the multithreaded
versions were always better with the Java
implementations.

Table 2. Geometric mean of the response times and the
speedup for the procedural vs. the OO C++ (2048x2048

image, 7x7 mask)
N. of
Threads

Procedural
Response

Times

Procedural
Speedup

OO
Response

Times

OO
Speedup

1 5820.375 1 5841.625 1
2 3296.875 1.766 4250.000 1.374
3 3383.000 1.713 4285.000 1.361
4 3304.500 1.761 4261.625 1.369
5 3326.125 1.748 4275.250 1.366
6 3308.625 1.759 4261.750 1.370
7 3318.125 1.754 4259.875 1.371
8 3310.375 1.758 4259.625 1.371
9 3306.750 1.760 4251.750 1.374

10 3302.875 1.761 4242.125 1.377

In Table 3 we show the response times obtained with

OO C++ and Java implementations for 2048x2048
images and a 7x7 mask. For better visualization we
show these response times in Graphic 4.

As we expected, the response times for the sequential
Java were worse than those of the OO C++ because the
first is interpreted. On the other hand, the parallel Java
implementation performed better, presenting better
response times. A possible reason for that is the fact the
images and masks were already loaded on the JVM
stack, which is an accessible memory area for all
threads. Thus, the memory accesses and the context
switches among Java threads are faster than the
mechanisms used on the C++ threads. We are now
evaluating and analyzing low-level metrics using PAPI
and other performance monitoring tools as JFluid (Java)
and Windows Performance Monitor.

Table 3. Geometric mean of the response times and the
speedup for the OO C++ vs. the Java implementations

(2048x2048 images, 7x7 mask)
Threads OO C++ OO

Speedup Java OO
Speedup

1 5841.625 1 8408.250 1
2 4250.000 1.374 3322.000 2.532
3 4285.000 1.361 3378.875 2.484
4 4261.625 1.369 3347.500 2.510
5 4275.250 1.366 3363.375 2.501
6 4261.750 1.370 3373.125 2.493
7 4259.875 1.371 3339.875 2.519
8 4259.625 1.371 3359.125 2.503
9 4251.750 1.374 3353.375 2.506

10 4242.125 1.377 3357.375 2.504

As the execution environment was a dual processor

computer, the size of the L1 cache was duplicated and
the number of processors benefited all parallel versions.
As a consequence, the cache hit ratio increased and the
Java parallel versions obtained a higher speedup,
possibly because of the memory stack sharing within
JVM and its threads. These facts can explain the high
speedup reached by Java implementations. Its speedups
were greater than two (maximum expected speedup
using two processors). In Table 3 we show the speedup
for the OO C++ and the Java implementations with
2048x2048 images and a 7x7 mask.

Graphic 4. Response times for the OO C++ and the Java

implementations (2048x2048 image, 7x7 mask)

7 Conclusions
For all tests with different images and mask sizes, the
six parallel versions (using two threads) presented better
results than their respective sequential versions, as we
expected. And, we showed that the speedup for all Java
parallel implementation was greater than 2. In the case
of 512x512 image and a 3x3 mask the speedup reached
2,97. As we expected, the use of parallelism combined
with concurrency did not provide the best results in any
situation.

The procedural implementation’s response times
were better than the ones of the OO C++
implementations. This was also expected because the
execution model of the procedural paradigm fitted the
hardware’s functioning model better than the OO
paradigm.

As we expected, the response times of the sequential
Java implementations was worse those yielded by the
OO C++ versions. It occurred because the Java based
code is interpreted. On the other hand, the response
times of the parallel (multithreaded) Java
implementations were better than the OO C++ ones for
all image and mask sizes. Thus, we believe that the
thread utilization (creation, manipulation, finalization,
etc) is more optimized in the Java language through the
use of the Thread class than the thread utilization in
C++ Builder compiler. We intend make further tests in
future researches using performance monitor tools to
investigate this.

Other possible reasons for these results are: the fact
that JVM’s memory stack may cause the cache-hit ratio
to increase due to the doubled cache size; and the fact
that Java Threads present faster context switches than
the C++ threads. For such reasons parallel Java
implementations presented the best results.

In this work, our main contributions were the
comparison between the procedural and the object-
oriented programming paradigms, and the comparison
between the C++ and the Java languages using
multithread mechanisms applied on a digital image
processing operation.

As future works we intend to investigate the reasons
for the best performance obtained with the Java
interpreter, as well as the worse performance obtained
with multiple threads in the OO C++ implementation,

using C++ Builder compiler. This can be made by
running tests on other C++ compilers. We also intend to
investigate the possibly better thread management of
JVM, in order to explain the obtained results.

References:
[1] G. S. Almasi and A.A. Gottlieb, “Highly Parallel
Computing”, 2nd. Edition, Benjamim/Cummings, 1994.
[2] S. S. Mukhrjee, S. V. Adve, T. Austin, J. Emer and
P. S. Magnusson, “Performance Simulation Tools”,
Guest Editors’ Introduction, Computer, Vol. 2, IEEE,
February, 2002.
[3] K. Hwang and Z. Xu. “Scalable Parallel Computing:
Technology, Architecture, Programming”, McGraw-
Hill, 1998.
[4] G. Satir, and D. Brown. “C++: The Core Language”,
1st. Edition, O'Reilly, October 1995.
[5] R. C. Gonzalez and R. E. Woods, “Digital Image
Processing”, 2nd. Edition, Addison Wesley Publishing
Co., Massachusetts, 1987.
[6] D. O. Penha, J. B. T. Corrêa, and C. A. P. S.
Martins, “Análise Comparativa do Uso de Multi-Thread
e OpenMp Aplicados a Operações de Convolução de
Imagem”, III WSCAD (Workshop de Sistemas
Computacionais de Alto Desempenho), Vitória, Brazil,
2002.
[7] D. O. Penha, J. B. T. Corrêa, L. F. W. Góes, L. E. S.
Ramos, C. V. Pousa, and C. A. P. S. Martins,
“Comparative Analysis of Multi-threading on Different
Operating Systems Applied on Digital Image
Processing”, CSITeA (International Conference on
Computer Science, Software Engineering, Information
Technology, e-Business, and Applications), 2003.
[8] J. G. Brookshear, “Computer Science: An
Overview”, 5th. Edition, Addison-Wesley, Reading,
MA, 1997.
[9] B. W. Kernighan, and D. M. Ritchie. C
Programming Language. 2nd Edition. Prentice Hall
PTR, March 1988.
[10] L. F. W. Góes, L. E. S. Ramos, and C. A. P. S.
Martins. “Performance Analysis of Parallel Programs
using Prober as a Single Aid Tool”, 14th. SBAC-PAD
(Symposium on Computer Architecture and High
Performance Computing), 2002.
[11] D. Roman, M. Fischer, and J. Cubillo. “Digital
image processing-an object-oriented approach”,
Transactions on Education, IEEE, Vol. 41, Issue 4,
November, 1998.
[12] K. J. Gough. “Stacking them up a comparison of
virtual machines”, ACSAC, Proceedings 6th
Australasian, January, 2001.
[13] H. J. Nelson, D. E. Monarchi, and K. M. Nelson.
“Evaluating emerging programming paradigms: an
artifact-oriented approach”, System Sciences, 31st
Hawaii International Conference, Vol. 6, January, 1998.

	1 Introduction
	2 The Convolution Operation
	3 The Paradigms and Languages
	4 Shared-Variable Parallel Programming
	5 Image Convolution Implementations
	5.1 Procedural Implementations
	5.2 Object-Oriented Implementations

	6 Results
	
	Arithmetic
	N. of Threads
	Threads

	7 Conclusions

