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Abstract: - We present a comparative performance evaluation of different programming paradigms and languages 
using multithreaded programming. We compare the procedural and object-oriented (OO) paradigms, as well as the 
C++ and Java languages, regarding both performance and programmability. The comparison is made upon sequential 
and parallel image convolution implementations based on those paradigms and languages. The parallel 
implementations used the shared-variable programming model and multithreading. They exploited not only pure 
parallelism, but also parallelism combined with concurrency. The performance evaluation was based on the response 
time of those implementations. The evaluation of system performance showed that pure parallelism yielded better 
performance results than parallelism combined with concurrency. Regarding the C++ implementations, the procedural 
paradigm led to better results than the OO paradigm. One of the most significant results in our work is the fact that 
Java yielded shorter response times than OO C++ for most of the multithreaded implementations. 
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1   Introduction 
Nowadays, a number of applications in many areas of 
knowledge (scientific, commercial, industrial, etc) 
demand very short response times. Due this fact, those 
applications require a great amount of computational 
resources for storage, transmission and information 
processing. A possible solution for this problem is the 
use of high performance computing (HPC). An HPC 
system may perform sequential or parallel processing 
[1] [2] [3]. 

The effective use of parallel systems is a very 
difficult task because it involves the design of correct 
and efficient parallel applications. Thus, in parallel 
architectures, the programming transparency is an 
important issue for the developers of parallel 
applications. Some techniques can be used to provide 
the desired transparency. Compiler directives, functions 
and classes from multithread support libraries are 
commonly used in operating systems that support 
multiprocessor computational systems. 

The problem on which we focus is the correlation 
among architectures, paradigms, languages and 
performance. Thus, our main goal is to compare and 
evaluate the system’s performance, whereas using 
different programming paradigms and languages with 
multithread programming. We compare the procedural 
and object-oriented (OO) paradigms, using the C++ and 
the Java languages. 

Our evaluation was based on the overall system’s 
performance, not concerning about specific features of 
other architectural blocks, such as: processor, memory 
and communications. The standard support libraries 
used to implement the multithreaded code were: 
WinThread for the Windows operating system and the 
Threads class for Java. Based on the evaluation of 
programmers and developers, in our evaluation, we also 
considered the: programmability, programming 
methods, portability, simplicity and transparency of 
those libraries. 

We decided to vary some parameters while the others 
remained unchanged. The variable parameters were: the 
paradigms and languages and the non-variable 
parameters were: the execution system and the features 
of the implementations. Moreover, no compiler or 
language optimizations were used. 

The workload for our experiments and comparative 
analysis is an image convolution, which is a digital 
image processing (DIP) operation. It is one of the most 
important DIP operations and demands a considerable 
amount of computational resources to be executed. 

Digital images are composed of a great amount of 
data and are often stored in matrixes. Their 
manipulation usually has a high cost and consumes 
large computational resources. DIP operations have a 
parallel nature [1] [11] because they perform 
independent actions over independent data (pixels, 
consisting of the elements that compose the image 



representation matrix) [5]. Thus, in many situations the 
use of general-purpose parallel architectures using 
shared memory (shared-variables programming model) 
yields performance gains [4] [11]. 

So, we developed sequential and parallel image 
convolution implementations and varied the paradigm 
and the language, in a total of six combinations. There 
was a sequential and parallel version for each of the 
following implementations: procedural C++, OO C++ 
and Java (OO paradigm). The parallel versions are 
based on the shared-variable programming model, using 
multithread programming. They used: explicit compiler 
directives, classes and functions from the used 
multithread support libraries (WinThread and class 
Thread from Java). 

In the procedural programming paradigm, the 
problem is broken into smaller pieces that can be solved 
algorithmically, within a specific number of steps. As 
soon as the variables are declared, the specified 
sequence of actions is followed. The program and the 
data are viewed as separate entities. 

In the OO paradigm, the application to be 
implemented is a set of interacting objects. The 
programmer defines objects and their associated 
properties. The sequence of actions that occur in the 
running system depends on how the user interacts with 
the objects. 

The use of threads is a possible way to obtain 
parallelism support in a program, usually by means of 
compilers and system libraries. In this work we use the 
WinThreads library from the C++ Builder Compiler and 
the Thread class from J2SDK. 

The results in this paper are part of a larger research 
[6] [7] related with performance, architecture and 
programming on: different programming paradigms and 
languages, different parallel algorithm models, 
algorithm optimization, and compiler optimization using 
the shared-variable and the message-passing parallel 
programming models. Our larger research is a 
comparative evaluation of the correlation among the 
objects’ combinations and their influence on the 
system’s performance. We combined objects that 
belong to different computational abstraction levels and 
compared and evaluated them based on performance 
and programmability. 

Our main contribution is the comparative 
performance evaluation of different programming 
paradigms and languages using multithread mechanisms 
applied on a digital image convolution operation. 

 
 

2   The Convolution Operation 
A filtering operation in space domain is called 
convolution. The term space domain refers to the 
aggregation of pixels that compose an image. 
Operations in space domain are the procedures applied 

directly on those pixels [5]. The equation (1) describes 
the convolution operation. 
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The convolution is carried out for each pixel 
(P[row][column]) of an NxN image I, with a KxK mask. 
A convolution mask is applied on each pixel of the 
input image, resulting in a convolved (filtered) output 
image [5]. In this work, we use high-pass and low-pass 
spatial filters to carry out the tests and comparisons. 

The convolution mask that characterizes a high-pass 
filter is composed of positive coefficients in its center 
(or next to it), and negative coefficients in the 
surroundings [5]. The high-pass filtering operation 
produces a highlight effect on the edges of the original 
image. It happens because the appliance of a high-pass 
mask on a constant area (or with a small gray level 
variation) generates the output with a zero value or near 
zero [5]. 

We applied the convolution operation with a high-
pass filter on the original image showed in Fig.1 (a). We 
show this convolution result in Fig. 1 (b). Fig. 1 (c) 
presents the negative image to validate the convolution 
operation. We introduced a border on the negative 
image to show the actual image dimensions. So, the 
border is not a part of the image. 

             

              (a)                         (b)                    (c) 
Fig. 1. Original image for high-pass convolution (a) 

Image of the convolution with a high-pass filter (b), and 
its negative image (with additional border) (c) 

 
 

3   The Paradigms and Languages 
The procedural paradigm represents the traditional 
approach for programming (for example, it is the basis 
for the CPU's fetch-decode-execute cycle). This 
paradigm defines a program as a sequence of 
instructions that manipulates data in order to produce 
the desired results [8]. The entire logic of the program is 
a series of instructions, in which the problem is divided 
into smaller pieces. A program based on the procedural 
paradigm executes efficiently, because the software 
matches the hardware. Nevertheless, the procedural 
paradigm is not enough for handling today’s problems, 
because these may be too complex and/or too large to be 
implemented as functions. Moreover, another problem 
of this paradigm is that it does not facilitate code 
reusability. 



Object-oriented (OO) programming has been 
presented as a technology that can fundamentally aid 
software engineering, because the underlying object 
model fits the real domain problems better [13]. The OO 
paradigm is focused on the behavior and the structural 
characteristics of entities as complete units. The main 
advantage of OO is the easiness of reutilization. When it 
is necessary to change the program’s code, the 
programmer modifies specific classes and makes only 
the required adjustments. This eliminates excessive code 
browsing and dependency checking in order to make the 
changes [12]. 

C++ is an object-oriented language based on C. It can 
be viewed as a superset of C because almost all of the 
features and constructs available in that language are 
also available in C++. Its additional features support the 
OO programming paradigm [4] [9]. 

Java is a portable object-oriented language that is 
executed on top of a virtual machine. The user’s 
program source-code is compiled into a byte-code, 
which is interpreted by the JVM (Java Virtual Machine) 
when the program runs over a specific architecture [12]. 
One of the benefits of the Java language is the support 
to multithread programming as a part of the language. In 
Java, each thread that runs in JVM is associated with an 
object of the Thread class [12]. 

 
 

4 Shared-Variable Parallel Programming 
Shared-memory parallel architectures can use shared-
variables for the communication between the 
application processes or threads. The effective use of 
parallel systems is a very difficult task because it 
involves the design of correct and efficient parallel 
applications. This fact results in several complex 
problems as process synchronization, data coherence 
and event ordering. There are some ways to using 
parallelism in order to provide some transparency to the 
programmer [6]. Regular modern operating systems 
(OSs) provide support to multiprocessor systems. In 
these systems, the parallel execution is activated on the 
creation of multiple threads or processes that run in 
parallel. 

A thread (or a control thread) is a sequence of 
executing instructions. Each process has one or more 
threads. The threads belonging to a process share its 
address space, its code, most of its data and process 
descriptor information. The use of threads makes it 
easier for the programmers to write their concurrent and 
parallel applications in a transparent way [6]. 

There are two main operating system specific 
multithread programming libraries. One of them is for 
Unix/Linux OSs (Pthread standard), and the other for 
Windows OSs (WinThread). Besides, there are the 
operating system and architecture independent Java 
Thread Class. 

 

 
5   Image Convolution Implementations 
In this section we present the image convolution 
implementations used in this work. They are: a 
sequential procedural C++, a sequential OO C++, a 
sequential Java (OO), a parallel procedural C++ (using 
WinThread), a parallel OO C++ (using WinThread), 
parallel Java (OO, using Java Thread Class). We used 
the Borland C++ Builder 5.0 compiler for the C++ 
implementations and J2SDK 1.4.0_01 for Java 
implementations. 

 
 

5.1  Procedural Implementations 
The sequential procedural (C++) implementation is 
based on a 4-level loop showed in Fig. 2. 

 

 
Fig. 2. Basic 4-level loop convolution algorithm 

 
These implementations use three different matrixes 

that store: the original image, the convolution mask and 
a temporary matrix. The last one is used to store the 
convolved pixels of the image. We initially load the 
image and the mask matrixes with the correct values and 
initialize other variables. Then the basic 4-level loop 
convolution is executed and the result of each 
convolved pixel is copied into the temporary matrix. 
Finally, the values of the temporary matrix (containing 
the convolved image) are copied into the image matrix. 

Upon the sequential procedural implementation, we 
developed a parallel procedural version (in C++). The 
difference is that the whole image is divided into slices 
containing image rows. Each slice is convolved by a 
specific user level thread, whose code is similar to the 
basic 4-level loop (showed in Fig. 2). A thread 
parameter (argument) is the starting row of the slice that 
it will convolve. The three matrixes (image, mask and 
temporary) are shared among all threads. A vector of 
threads keeps the reference to each thread (function, 
arguments, etc). 

After loading the image and convolution variables, 
we create the threads according to the number of desired 
processes. Each thread is created in a suspended mode 
and is referenced by a position in the vector of threads. 
After their creation, they are all started. At this point all 
threads are executed in parallel or concurrently. When 
all threads finish their jobs, the temporary matrix is 
copied into the image matrix. 
5.2  Object-Oriented Implementations 
The OO convolution implementations are based on the 
sequential one. An advantage of the OO programming 
paradigm is the code reutilization. 



On the C++ and the Java sequential OO 
implementations we created a single class encapsulating 
all the objects used on the procedural implementation 
(e.g.: the image and the mask matrixes, variables and 
functions). On the main code we declared the object, 
allocated memory space for them, and called the 
functions that executed the operations. At the end of the 
execution we deallocated the space of the objects. 

The parallel (with user level multithread 
programming) OO implementations (in C++ and Java 
languages) were developed through the construction of 
two objects. The first one was responsible for thread 
management (creation, destruction, synchronizations 
and accesses to the shared variables) and for keeping the 
image to be convolved. The second object implemented 
the thread’s code. Each thread executed a part of the 
image convolution operation. In the Java 
implementation, this operation was located in the run 
method of the class. This method extends the Thread 
library and implements the main methods of the threads 
(run, join, start, stop). When the program started the 
threads were created and initiated, and then they 
executed the convolution operation sharing the matrix 
that contained the image. 

Then the whole image was divided into slices that 
were convolved by each thread. The thread convolution 
code is also similar to basic 4-level loop (showed in Fig. 
2). A thread parameter (argument) is the starting row of 
its slice (which it will convolve). So the threads 
calculate the finish row of the image slice. 

 
6   Results 
We executed all tests with the convolution 
implementations over an Intel Dual Pentium III 
933MHz with a 768MB primary memory, and the 
Windows XP operating system. In each test, the image, 
the mask and the other convolution variables of each 
implementation were previously loaded in memory. We 
did this to eliminate the influence of the virtual memory 
on the performance results. Thus, the time had been 
measured for the computations that followed. The C++ 
implementations tests were executed using Prober, a 
functional and performance analysis tool [10]. The Java 
implementations tests were executed manually. 

We executed each implementation ten times for each 
chosen image size (512x512, 1024x1024, 2048x2048 
pixels) and mask size (3x3, 5x5, 7x7). We calculated 
both the arithmetic and the geometric means of the 
response times obtained in each execution (iteration) in 
order to analyze and compare the results. We show in 
Table 1 the arithmetic and the geometric means for 
1024x1024 images with a 5x5 mask in the OO C++ 
implementation. The difference between the arithmetic 
and the geometric means was short for all 
implementations; namely, the system was steady and 
presented a deterministic behavior in all tests. 

 

Table 1. Arithmetic and geometric means for the OO 
C++ Implementation (1024x1024 image, 5x5 mask) 

Threads Arithmetic Geometric 
1 1093.800 1093.875 
2 791.000 791.375 
3 821.900 822.250 
4 809.500 808.750 
5 804.700 802.875 
6 804.700 802.750 
7 799.900 800.625 
8 801.400 800.625 
9 790.400 790.750 

10 793.800 793.000 
 

In all tests regarding the procedural implementations 
(with the C++ language), we observed that the response 
times obtained using pure parallelism were shorter than 
the response times obtained using parallelism combined 
with concurrency. In these cases, the use of concurrency 
associated with parallelism was not interesting because 
the achieved speedup was greater than those obtained 
from purely parallel executions, as we expected. This 
happened because, in the case of concurrency for 
processor and memory, the response time is increased 
by the time spent in context switching among the 
threads. In the tests regarding the OO C++ 
implementation, we observed that only few executions 
obtained better results (shorter response times) with 
pure parallelism than with both parallelism and 
concurrency. We obtained the shortest difference 
between the response times using pure parallelism and 
one using parallelism combined with concurrency, as 
the image and mask size increased. 

In the tests regarding Java (OO paradigm), the 
response times with pure parallelism were better than 
those with parallelism and concurrency, except for 
512x512 images and 5x5 mask. The graphics 1, 2 and 3 
show the response times of the implementations using 
pure parallelism (two threads, each one running over a 
processor of the test machine) and the response times of 
the implementations combining parallelism with 
concurrency (more than 2 threads), for all paradigms, 
languages and mask sizes, using 1024x1024 images. 

 

 
Graphic 1. Geometric mean of the response times for a 

1024x1024 image and a 3x3 mask 
 



 
Graphic 2. Geometric mean of the response times for a 

1024x1024 image and 5x5 mask 
 

 
Graphic 3. Geometric mean of the response times for a 

1024x1024 image and 7x7 mask 
 
As it was expected, the response times of the OO 

implementations always presented larger response times 
than the procedural implementations in the C++ 
language (for the sequential and the parallel versions). 
Table 2 presents the response times obtained with the 
procedural and the OO C++ implementations for 
2048x2048 images and a 7x7 mask. Observing the 
obtained results, we concluded that the use of multiple 
threads in the OO C++ implementation was not 
interesting in this case, because the maximum efficiency 
was smaller than for the other implementations 
(approximately 0,735 for 2048x2048 images and 3x3 
masks). A possible reason for this is the fact that the 
thread management of the C++ Builder compiler was 
not optimized considering the context. 

The programming and executing model of the 
procedural implementations fitted the hardware 
functioning model better than the model of the OO C++ 
implementation. For that reason the procedural versions 
presented the best speedup results. Table 2 shows the 
speedup obtained with the sequential and the parallel 
OO C++ versions. 

The most of the response times regarding the 
sequential OO C++ implementation were better 
(shorter) than those obtained with the Java 
implementation. The worst response times were 
achieved in the executions of the OO C++ 
implementation. They involved: a 512x512 image using 
a 3x3 mask, a 1024x1024 image using 3x3 and 7x7 
masks, and a 2048x2048 image using a 3x3 mask. On 
the other hand, the response times of the multithreaded 
versions were always better with the Java 
implementations. 

 

Table 2. Geometric mean of the response times and the 
speedup for the procedural vs. the OO C++ (2048x2048 

image, 7x7 mask) 
N. of 
Threads 

Procedural
Response 

Times 

Procedural 
Speedup 

OO 
Response 

Times 

OO 
Speedup

1 5820.375 1 5841.625 1 
2 3296.875 1.766 4250.000 1.374 
3 3383.000 1.713 4285.000 1.361 
4 3304.500 1.761 4261.625 1.369 
5 3326.125 1.748 4275.250 1.366 
6 3308.625 1.759 4261.750 1.370 
7 3318.125 1.754 4259.875 1.371 
8 3310.375 1.758 4259.625 1.371 
9 3306.750 1.760 4251.750 1.374 

10 3302.875 1.761 4242.125 1.377 
 
In Table 3 we show the response times obtained with 

OO C++ and Java implementations for 2048x2048 
images and a 7x7 mask. For better visualization we 
show these response times in Graphic 4. 

As we expected, the response times for the sequential 
Java were worse than those of the OO C++ because the 
first is interpreted. On the other hand, the parallel Java 
implementation performed better, presenting better 
response times. A possible reason for that is the fact the 
images and masks were already loaded on the JVM 
stack, which is an accessible memory area for all 
threads. Thus, the memory accesses and the context 
switches among Java threads are faster than the 
mechanisms used on the C++ threads. We are now 
evaluating and analyzing low-level metrics using PAPI 
and other performance monitoring tools as JFluid (Java) 
and Windows Performance Monitor. 

 
Table 3. Geometric mean of the response times and the 
speedup for the OO C++ vs. the Java implementations 

(2048x2048 images, 7x7 mask) 
Threads OO C++ OO 

Speedup Java OO 
Speedup

1 5841.625 1 8408.250 1 
2 4250.000 1.374 3322.000 2.532 
3 4285.000 1.361 3378.875 2.484 
4 4261.625 1.369 3347.500 2.510 
5 4275.250 1.366 3363.375 2.501 
6 4261.750 1.370 3373.125 2.493 
7 4259.875 1.371 3339.875 2.519 
8 4259.625 1.371 3359.125 2.503 
9 4251.750 1.374 3353.375 2.506 

10 4242.125 1.377 3357.375 2.504 
 
As the execution environment was a dual processor 

computer, the size of the L1 cache was duplicated and 
the number of processors benefited all parallel versions. 
As a consequence, the cache hit ratio increased and the 
Java parallel versions obtained a higher speedup, 
possibly because of the memory stack sharing within 
JVM and its threads. These facts can explain the high 
speedup reached by Java implementations. Its speedups 
were greater than two (maximum expected speedup 
using two processors). In Table 3 we show the speedup 
for the OO C++ and the Java implementations with 
2048x2048 images and a 7x7 mask. 

 



 
Graphic 4. Response times for the OO C++ and the Java 

implementations (2048x2048 image, 7x7 mask) 
 
 

7  Conclusions 
For all tests with different images and mask sizes, the 
six parallel versions (using two threads) presented better 
results than their respective sequential versions, as we 
expected. And, we showed that the speedup for all Java 
parallel implementation was greater than 2. In the case 
of 512x512 image and a 3x3 mask the speedup reached 
2,97. As we expected, the use of parallelism combined 
with concurrency did not provide the best results in any 
situation. 

The procedural implementation’s response times 
were better than the ones of the OO C++ 
implementations. This was also expected because the 
execution model of the procedural paradigm fitted the 
hardware’s functioning model better than the OO 
paradigm. 

As we expected, the response times of the sequential 
Java implementations was worse those yielded by the 
OO C++ versions. It occurred because the Java based 
code is interpreted. On the other hand, the response 
times of the parallel (multithreaded) Java 
implementations were better than the OO C++ ones for 
all image and mask sizes. Thus, we believe that the 
thread utilization (creation, manipulation, finalization, 
etc) is more optimized in the Java language through the 
use of the Thread class than the thread utilization in 
C++ Builder compiler. We intend make further tests in 
future researches using performance monitor tools to 
investigate this. 

Other possible reasons for these results are: the fact 
that JVM’s memory stack may cause the cache-hit ratio 
to increase due to the doubled cache size; and the fact 
that Java Threads present faster context switches than 
the C++ threads. For such reasons parallel Java 
implementations presented the best results. 

In this work, our main contributions were the 
comparison between the procedural and the object-
oriented programming paradigms, and the comparison 
between the C++ and the Java languages using 
multithread mechanisms applied on a digital image 
processing operation. 

As future works we intend to investigate the reasons 
for the best performance obtained with the Java 
interpreter, as well as the worse performance obtained 
with multiple threads in the OO C++ implementation, 

using C++ Builder compiler. This can be made by 
running tests on other C++ compilers. We also intend to 
investigate the possibly better thread management of 
JVM, in order to explain the obtained results. 
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