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Abstract: — In this paper a new approach to model climatic variations in the Plio-Pleistocene is pre-
sented. In a recent reference, Rial in [1] introduced the working hypothesis that frequency modulation
(FM) of the orbital eccentricity forcing may be an important source of the nonlinearities observed in the
δ18O time series from deep-sea sediment cores. Two models are proposed based on the ANFIS (Adaptive

Neuro Fuzzy Inference System) structure. The first model uses only past values of the time series under
investigation. The second model uses information on the orbital eccentricity forcing and an artificially
generated FM which is an extension of the FM signal proposed by Rial. The two models are compared
in the light of long term predictions.
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1 Introduction
Studying the climate variations in our recent ge-
ological past is of fundamental importance to un-
derstand the climate phenomena and to help us
to predict future global climate variations. The
most reliable data showing climatic variations in
the Plio-Pleistocene (the last 5.2 million years) is
the time series of stable isotope ratios [2], spe-
cially, the δ18O records in marine sediment cores
(a proxy for global ice volume).

In 1976 Hays et al [3] showed that some fre-
quencies of the δ18O time series match those of
astronomical changes in Earth’s insolation. Since
then the astronomical theory of the climate [4] has
become an useful tool of analysis of the climate
variations [5,6]. This theory holds that variations
in insolation caused by changes in earth’s orbital
eccentricity, obliquity and precession are the cause
of the great ice ages of the Pleistocene [7].

However this theory is not without problems
[1, 7]. For instance, in the so-called 100 kyr (kilo-
years) and 400 kyr problems non-linear alterations
in the components of the spectra are not ex-
plained by the orbital force alone. In [1] Rial sug-
gested that the Earth’s climate system frequency-

modulates (FM) the orbital forcing which is sim-
ilar to electronic modulation of a high-frequency
carrier by a low-frequency modulation signal.

The main focus of this paper is to propose a
non-linear method to model the δ18O time series
obtained in the ODP (Ocean Drilling Program)
site 806 using a classic ANFIS (Adaptive Neuro

Fuzzy Inference System) structure. To verify the
importance of the FM hypothesis two models are
proposed, a model using only past values of the
output and another model including an artificially
generated FM as one of the inputs. Finally both
models are compared to show the validity of the
proposed input signal.

2 ANFIS Architecture
The Sugeno fuzzy model, known as ANFIS, has
a structure that is equivalent to a fuzzy inference
system and therefore is based on fuzzy rules and
fuzzy reasoning [8]. For instance, assuming the
first-order Sugeno fuzzy model with two inputs x

and y and one output z a common set of rules with
two fuzzy if-then rules is written as follows



Rule 1: If x is A1 and y is B1, then
f1 = p1x + q1y + r1

Rule 2: If x is A2 and y is B2, then
f2 = p2x + q2y + r2

In the model architecture shown in Figure 1, the
output of the ith node in layer l is represented by
Ol,i. Each layer shown in Figure 1 will be now
described.

Figure 1. ANFIS architecture

Layer 1 - The output of each node i in Layer
1 is calculated as follows:

O1,i = µAi
(x), for i = 1, 2 or

O1,i = µBi−2
(y), for i = 3, 4

This layer is a measure of how much a given input
satisfies the membership function µA or µB.

Layer 2 - The output of this layer is the prod-
uct of all incoming signals:

O2,i = wi = µAi
(x)µBi

(y), i = 1, 2.

where O2,i is the output of a set of rules.
Layer 3 - The output of each node i is calcu-

lated as follows

O3,i = w̄i =
wi

w1 + w2

, i = 1, 2.

In this particular case, the output of each node
is called normalized firing strengths.

Layer 4 - The following function is evaluated
in every node i of this layer:

O4,i = w̄ifi = w̄i(pix + qiy + ri). (1)

The parameters pi, qi and ri are called consequent
parameters.

Layer 5 - In this Layer, the summation of all
incoming signals are calculated as follows

O5,1 =
∑

i

w̄ifi =

∑

i wifi
∑

i wi
(2)

where O5,1 = z is the output of the Sugeno fuzzy
model.

2.1 Hybrid Learning
In order to fit an ANFIS, two sets of different val-
ues need to be estimated: a set of premise parame-
ters (nonlinear) and a set of consequent parame-
ters (linear). To estimate the linear parameters,
the least-squares estimator can be used. For in-
stance, consider the previous example where an
ANFIS structure with two rules and two inputs
was described. Substituting Equation 1 in Equa-
tion 2 yields

O5,1 =
∑

i O4,i

O5,1 = w̄i(pix + qiy + ri), i = 1, 2.

O5,1 = w̄1p1x + w̄1q1y + w̄1r1 + w̄2p2x

+w̄2q2y + w̄2r2

The above set of Equations can be written in ma-
trix notation as follows

[O5,1]
︸ ︷︷ ︸

O

=
[
w̄1x w̄1y w̄1 w̄2x w̄2y w̄2

]

︸ ︷︷ ︸

φ
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︸ ︷︷ ︸

ζ

(3)

Note that the matrices O, φ and ζ, can be written
for any number of inputs and outputs in a similar
way as the one presented above. Then, applying
the least-squares method yields to

ζ̂ = (φT φ)−1φT O (4)

where (φT φ)−1φT is the pseudo inverse and ζ̂ are
the estimated parameters.

The gradient method is used to estimate the
set of nonlinear parameters. In this case the
quadratic error function error (e) is minimized by
consecutive adjustments of a learning rate α of the
parameters of the membership function. There are
several methods to choose the value of α. In prac-
tice, α is made close to zero. In this work the
membership function is chosen to be a gaussian
function.

3 Model Inputs
Based upon the analysis of the correlation between
several different inputs and the output, the rele-
vant inputs are chosen [9]. When there is no cor-
relation between a given input and the output,
the input is then discarded. In case there is cor-
relation between two different inputs, only one of
them is chosen to be in the final model.



4 Frequency Modulation (FM)
Signal

Two of the principal long-standing problems in
the astronomical theory of the climate, the 400
kyr and 100 kyr problems, are the absence in the
δ18O signal of spectral amplitude at 413 kyr even
though it is the largest component of eccentricity
forcing and the shift of glacial cycles durations
that do not correspond to the insolation variation
in the last 500 kyr [7].

To solve these problems, Rial in [1] proposes a
frequency modulation of a main carrier of period
95 kyr by a 413 kyr modulating signal. In order
to build a FM signal, Rial determined empirically
that this signal should contain the 95, 125 and 100
kyr signals as carries and the 413 and an 826 kyr
subharmonic as modulating signals. The resulting
FM signal is

FM(t) = asin[2πt
95

+ βsin( 2πt
413

) + β′sin( πt
413

)]
+ bsin[ 2πt

100
+ βsin( 2πt

413
)]

+ csin[ 2πt
125

+ βsin( 2πt
413

)]
(5)

where t is the time in kiloyears, the constants a, b

and c are adjusted parameters. β′ is the modula-
tion index for the subharmonic part.

In order to obtain ANFIS structures which
can reproduce the overall dynamics the original
system using only the available time series, some
modifications on Rial’s FM signal were necessary.
These modifications are presented in the next sec-
tion, and used in the final model, see section 5.2.

4.1 The New FM Signal
The following modifications were introduced to
the original FM signal [1]

• inclusion of two functions sine: a12 e a18;

• inclusion of a constant (phase) in each func-
tion sine: a14, a15, a16, a17 e a19;

• β is not constant for all functions sine: a8,
a10, a11, a13 e a20;

• inclusion of an extra (subharmonic) fre-
quency in the signal: a5.

The proposed signal takes the form

FM(t) =
a6sin[(2πt

a1
+ a14) + a8sin(2πt

a2
) + a9sin(2πt

a3
)]

+a7sin[(2πt
a4

+ a15) + a10sin(2πt
a2

)]

+a8sin[(2πt
a5

+ a16) + a11sin(2πt
a2

)]

+a12sin[(2πt
a5

+ a17) + a13sin(4πt
a2

)]

+a18sin[(4πt
a5

+ a19) + a20sin(8πt
a2

)]

(6)
where the parameters were adjusted by the al-
gorithm Quasi-Newton and the initial conditions
of the frequency parameters are the same as the
ones suggested by Rial [1]. Since the series δ18O

present different characteristics in the first half of
data, we considered different parameters for Equa-
tion 6. Figure 2 shows the FM signal compared
to the δ18O data. Note that the proposed FM sig-
nal does not follow the signal data in the second
half of the data, as shown on the second panel of
Figure 2.
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Figure 2. FM and δ
18

O for the first half (0...1000 kyr) and
second half (1000...2000 kyr) of the data

5 Main Results
In this section two new models are identified and
their outputs compared to the original time se-
ries. The ANFIS structure in both models has 15
membership functions.

5.1 First Model
The first model is an ANFIS structure using only
past values of the output (δ18O series) as the input
vector [x(ti), x(ti + p), ..., x(ti + (m− 1)p)], where



m is the embedding dimension and p is the time-
delay [10].

The time-delay can be obtained using the au-
tocorrelation of the δ18O data as shown in Figure
3, while the embedding dimension is obtained by
Cao’s method [11]. The output of this method is
E1(d) that is function of the embedding dimen-
sion d. E1(d) reaches a constant value when d

is the original embedding dimension of the system
under investigation. Figure 4 shows the results for
the δ18O time series.
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delay of 3

Figures 5 and 6 show the results of one step
prediction and free run of the model using the in-
put (for a m=5 and p=3 ) vector as defined above.
Note that in the free-running the model shows
that it can’t follow the original data but reaches
a steady-state value. This demonstrated that the
identified model can not make long term predic-

tions.
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Figure 5. First model one step prediction
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Figure 6. Free running of the first model

5.2 Final Model
In order to improve the model prediction capabil-
ities, two new variables are introduced in the in-
put vector. These variables follow the main ideas
shown in the astronomical theory of the climate
and the FM theory of Rial [1, 7].

Figures 7 and 8 present the results after the
inclusion of the obliquity data and the FM sig-
nal proposed in the section 4.1. Note that the
identified model using these two new inputs can
successfully predict the original time series.
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Figure 7. Final model one step prediction
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Figure 8. Free running of the final model

6 Conclusion
In this paper two models were proposed to repro-
duce the climate variations in our recent geologi-
cal past. It has been shown that the nonlinearities
presented in the δ18O data can not be explained
by using only output past value information. To
circumvent this problem a new FM signal was pro-
posed.

Yet even with the use of the FM as one of
the inputs of the second model the predictions for
large time intervals were not so good as for short
time intervals. This seems to indicate that the
underlying dynamics is time varying which makes
the identification process more complex.

The results obtained for the second model
show that it is possible to greatly improve the pre-

diction of complex time series when carefully cho-
sen inputs are considered. In this particular case,
the chosen input uses frequency information ob-
tained directly from the original time series. The
goodness of fit achieved by fitting an ANFIS model
was mainly due to the introduction of the pro-
posed FM signal.

References:

[1] J. A. Rial, “Pacemaking the ice ages by frequency
modulation of earth’s orbital eccentricity,” Sci-

ence, vol. 285, pp. 564–568, July 1999.

[2] M. Ghil, “Cryothermodynamics: the chaotic dy-
namics of paleoclimate,” Physica D, vol. 77, pp.
130–159, 1994.

[3] J. D. Hays, J. Imbrie, and N. J. Shackelton, “Vari-
ations in the earth’s orbit: pacemaker of the ice
ages,” Science, vol. 194, pp. 1121–1132, 1976.

[4] M. Milankovitch, “Canon of insolation and the
ice-age problem,” Royal Serbian Academy Special

Publication, vol. 132, 1969.

[5] A. Berger, X. S. Li, and M. F. Loutre, “Mod-
elling northen hemisphere ice volume over the last
3 ma,” Quaternary Science Reviews, vol. 18, pp.
1–11, 1999.

[6] J. R. Petitand, J. Jouzel, D. Raynaud, N. I.
Barkov, J. M. Barnola, I. Basile, M. Bender,
J. Chappellaz, G. D. M. Davisk, M. Delmotte,
V. M. Kotlyakov, M. Legrand, V. Y. Lipenkov,
C. Lorius, L. Pepin, C. Ritz, E. Saltzmank, and
M. Stievenard, “Climate and atmospheric history
of the past 420,000 years from the vostok ice core,
antarctica,” Nature, vol. 399, pp. 429–436, June
1999.

[7] J. A. Rial and C. A. Anaclerio, “Understand-
ing nonlinear responses of the climate system
to orbital forcing,” Quaternary Science Reviews,
vol. 19, pp. 1709–1722, 2000.

[8] E. Mizutani, J. S. R. Jang, C. T. Sun, Neuro-

fuzzy and soft computing. Upper Saddle River,
NJ: Prentice Hall, 1997.

[9] L. A. Aguirre. Introdução à identificação de sis-
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