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Abstract: - The analysis of the wave motion in a segment of the inhomogeneous wave guide excited by a given 
seismic excitation is presented, as well as some numerical cases of the interaction between the rigid foundation 
and the layer. The computational procedure yields exact results within the accuracy of the FE modeling, and 
directly uses the data of the free field seismic wave motion on the fictitious boundary where the computed 
reflected waves are considered in the boundary conditions. The basic principles of the analysis are explained, 
and brief outline of the procedure is presented. Numerical examples are for the case of 2D anti-plane shear wave 
motion in the frequency domain. The results of some simplified solutions are compared and discussed.  
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1   Introduction 
In conceiving a physical model for the interaction 
between the structure and an infinite layer, excited by 
seismic waves, we may suppose, that the source of 
these waves is located in infinite distance. As a 
consequence, there is no interaction between the layer 
and structure on one side, and the source of the 
excitation on the other. The incident seismic wave is 
reflected from the structure only once and 
mathematically fulfils Sommerfeld radiating 
condition. When analyzing the wave field in a 
segment of an infinite inhomogeneous wave guide 
modeled by FEM, we have to set finite fictitious 
boundaries, see Figure 1, and impose correct 
boundary conditions taking in to the account the 
above mentioned phenomenon of seismic excitation.  

The most common data for the seismic excitation 
is that the wave motion is given for the “free field 
wave motion problem”. By free field wave motion we 
mean the waves propagating in the layer, which has 
no excavation and no structure. It is obvious that the 
wave motion on the fictitious boundary of the 
analyzed segment with an irregularity, differs from 
the free field motion: (1) On the fictitious boundary 
∂Ω1 we have, in addition to the displacements u1 of 
the incident seismic wave, also the displacements u3 
of the reflected wave, which fulfils the radiation 
conditions. (2) On the fictitious boundary ∂Ω2 are 
displacements u2 of the transmitted waves, which are 
altered because of dissipation of incoming seismic 
waves on the irregularities. However, we have 
radiation through both lateral fictitious boundaries.  

The problem of seismic excitation was solved by 
Wolf [1], who employed substructure synthesis. He 
first computes the seismic wave motion on the 
surface of the excavation, which represents future 
contact surface between the structure and the infinite 
half space or a layer. This approach requires the 
computation of the stiffness or the flexibility matrix 
of the half space for the mesh nodes on the mentioned 
contact surface. However, this is not a simple task. 
Up to nowadays, boundary conditions for the 
excitation by an incident wave are considered as 
suggested by [1], or in even more simplified ways 
when FEM is applied, see for instance [2-4]. 

We are presenting a somehow more direct 
approach to the solution of the seismic excitation, by 
computing the correct boundary condition on the 
fictitious boundaries, and then solving the wave 
motion in the analyzed segment of the 
inhomogeneous infinite wave guide as an internal 
problem.  
 
 
2 The Basics, the Outline of the 
Computing Procedure and the Key 
Formulas 
The resulting wave motion on the fictitious boundary 
∂Ω1 is the sum of the given incident seismic wave 
and the computed reflected wave. This resulting wave 
is uniquely related to the transmitted wave on the 
fictitious boundary ∂Ω2 by the formula. 
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The above formula is written for the finite element 
discretised model and has the following meaning. 
Supposing that there are N mesh nodes on each of the 
fictitious boundary, then ui is the N dimensional 
column matrix of nodal displacements, and τi is N 
dimensional column matrix of the belonging nodal 
stresses - in the foregoing text we shall call it simply 
the displacements or stress “vector”, respectively. T1-

2 is the 2Nx2N dimensional transfer matrix, which is 
simple to compute, [5].  

As the reflected and the transmitted waves must 
fulfill the radiation conditions, they are set as a 
superposition of wave modes Ψ propagating in the 
appropriate direction with unknown amplitudes a, 
Equations 2 and 3.  
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Each sub-matrix Ψ has the dimension NxN and its 
computation is presented in [5]. Subscript »u« stands 
for the displacements wave mode, and subscript »τ« 
for the stresses of the wave mode, while superscripts 
designate the direction of wave modes. In our case, 
positive sign defines the direction of propagation of 
waves from the fictitious ∂Ω1 towards the fictitious 
boundary ∂Ω2, and the minus sign the opposite 
direction. Inserting the last two equations into 
Equation 1, yields the equation 4, which is solved on 
modal amplitudes a2 and a3. 
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After computing modal amplitudes, we evaluate the 
displacements on the fictitious boundaries by 
Equations 2 and 3. Consequently, the problem 
becomes an internal one, with the sum of the 
displacements u1 and u3 on fictitious boundary ∂Ω1, 
and the displacements of the transmitting wave on the 
fictitious boundary ∂Ω2.  
 
 
3   Numerical Examples   

The presented examples are two dimensional cases of 
anti-plane shear wave motion analyzed in the 
frequency domain. The wave motion is governed by 
the Equation:  
 

0uku 22 =+∇ .   (5) 
 
The excitation frequency is 0.3 radians per second.  
The layer includes a buried foundation, with the 
dimensions 3m x 3m. The layer is otherwise 
homogenous and infinite. Thus, we are analyzing the 
case presented in the Figure 1, but without the 
console on the foundation. The layer is 20 meters 
high, consisting of ideal linear material with the shear 
module and density with a unit value. We have 
chosen such case and the data only to facilitate the 
computational effort and to facilitate graphical 
presentations, but otherwise the case contains all the 
interesting characteristics of the addressed problem of 
the seismic excitation. The analyzed section is 25 
meters long. Mesh domain spans 20m x 25m, and 
consists of 21 x 26 nodal points of simple linear finite 
elements.  

It is well known that waveguides transmit without 
decay only some of the first wave modes, others 
higher modes, separated by cut-off frequency, are 
rapidly decaying [6]. The discussion and the detailed 
analytical and numerical results concerning wave 
modes, even in the layered wave guides, are 
presented in [7]. For the frequency of the excitation 
and the characteristics of the waveguide as in our 
case, only the first two wave modes are non-
decaying, see Figures 2a and 2b. Therefore, it is 
realistic to suppose that an incident wave, whatever it 
is generated by, would consist of only the first two 
modes. For our computational example we suppose 
that an incident wave consists of only the first wave 
mode with the unit amplitude. For the given 
displacements of the incident wave, the belonging 
stresses are directly computed by the formula:  
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The first analyzed case considers stiff foundation 

located 15 meters from the excitation boundary. 
Figure 3 presents the computed displacements on 
both lateral boundaries, which represent the 
computed boundary conditions for the internal 
problem of the analyzed segment of the layer. On the 
left part of the Figure we can notice the reflected 
wave and the transmitted wave, altered due to the 
scattering of waves on the foundation. It is worth 
mentioning that the reflected waves at the location of 
the foundation are indeed very spurious, theoretically 



consisting of more or less of all wave modes. But, 
while reflected waves travel to the left fictitious 
boundary, the decaying wave modes practically 
vanish (see decaying factors in Figure 2). Thus, it is 
not surprising, that the displacements of the reflected 
waves on the fictitious boundary consist practically of 
only the first two modes, yielding simple 
displacements graph.  However, when considering 
real material with damping, the reflected waves 
amplitudes on the fictitious boundary would be 
smaller. Taking into the account some average values 
for soil damping presented in [8], yields an estimated 
additional 30% relative reduction of the reflected 
waves on the boundary, which is four meters away 
from the foundation. However, the reflected waves in 
real materials play no role from some distance on. 
This distinctive distance depends on several factors, 
but the detailed discussion on this issue exceeds the 
scope of this paper.  

Using the computed boundary displacements 
consisting of the incident seismic wave and the 
reflected wave on the left fictitious boundary, and the 
displacements of the transmitted wave on the right 
fictitious boundary, yields wave motion field 
presented in Figure 4.  

It is interesting to compare the foundation 
displacements, caused by seismic excitation, to the 
displacements of the foundation, due to the boundary 
conditions, which are simply equal to the 
displacements of the free field seismic motion on the 
left fictitious boundary (that is, by neglecting the 
radiation of the reflected waves). This comparison is 
presented in the Figure 5 for the foundation, which is 
located only 4 meters from the left fictitious 
boundary. We can observe substantial difference 
between the results. For the case of more distant 
foundation, specifically 15 meters from the excitation 
boundary, the difference between the results is much 
more modest, Figure 6. These results are expected. 
They suggest well known fact that the reflected 
waves vanish rapidly with the distance from the 
foundation, providing that it is small compared to the 
height of the layer. On the other hand, the 
displacements of the foundation do not depend on the 
relative distance between the foundation and the 
fictitious boundary, when the foundation is excited by 
seismic waves. Thus, we can locate the fictitious 
boundaries as near as we want, to reduce 
computational effort, provided we consider the 
radiation of the reflected waves.  
 
 
4   Conclusion 
As there are no approximations of the computed 
wave field in the presented procedure, except for the 

FE modeling, it yields accurate results. The resulting 
wave motion does not depend on the location of 
fictitious boundaries. Consequently, the 
computational segment of the layer may be reduced 
substantially, almost only to include the foundation, 
but, clearly, not exactly on the foundation boundaries. 
Two advantages are worth pointing out: there is no 
need to compute the dynamic stiffness matrix for the 
infinite space (in our case an infinite layer), and the 
consideration of the seismic excitation is based only 
on the data of the free field wave motion on the 
fictitious boundary. The results also suggest that by 
foundations, which are small compared to the height 
of layer and at the same time more distant from the 
fictitious boundary, we can neglect the reflected 
waves. Consequently, we may in adequate cases 
employ simpler computation, which considers 
boundary conditions on the fictitious boundary of the 
incident waves being simply equal to the 
displacements of the free field wave motion. 
However, when this is exactly acceptable is subject to 
an extensive study, which should consider all the 
characteristics of the real problems. 
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Figure 1. Symbolic presentation of a segment of a layered wave guide with a structure 
confined by the fictitious boundaries, the excitation seismic wave, the reflected and the 
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Figure 2. (a) First five wave modes normalized to yield a unit displacement on the surface. 
So normalized wave modes are used in the presented analysis. (b) The decaying factors for 
the displayed wave modes, a unit represents no decay. (c) Absolute values of amplitudes of 
the reflected wave modes on left fictitious boundary. 
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Figure 3. Left figure: absolute values of displacements of the incident seismic wave and the 
reflected wave on the fictitious boundary ∂Ω1, and absolute values of the transmitted wave 
on ∂Ω2. Right figure: the resulting displacements on the fictitious boundary ∂Ω1.  
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Figure 4. Real part of the displacements of the computed wave field “captured” in an instant. 
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Figure 5. Comparison of the results of seismic excitation and the results of excitation by 
“rigid”displacements. The foundation is located only 4 meters from the excitation boundary. 
 

 
 
 

 
 

Figure 6.  Comparison of the results of seismic excitation and the results of excitation by 
“rigid” displacements. The foundation is located 15 meters from the excitation boundary. 
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