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Abstract: - The aim of this work is to advance in the idea of adaptive robust controllers for articulated 
robotic systems presented in a previous work of the same authors. This work explores the performance 
of classical robust controllers and shows the improvements of the adaptive scheme. Moreover, the 
adaptation law for the robust design parameter of the robust action is improved by adding a new term 
what was avoided in the previous work. Some new comparisons between the classical scheme and this 
new strategy, applied on a two-link robot manipulator, are presented. 
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1   Introduction 
This work is based on the work of Torres et al 
[1] which presents a new adaptive robust strategy 
to solve the tracking problem of robot 
manipulators in case of uncertainties. In earlier 
literature, adaptive and robust controllers have 
been extendedly applied to solve this problem, 
but they present some problems in some 
circumstances. First of them is the change on the 
dynamics when an unknown payload mass is 
taken. Another circumstance is when the same 
controller is applied to another manipulator, with 
the same structure but with different dynamics 
parameters.  
 
In [1] is shown a strategy that solves these 
problems. The standard robust controller based 
on the application of the Lyapunov’s direct 
method over an stabilizing control law [2],[3], is 
improved by adding an adaptation law to the 
robust design parameter (referred in some works 
as uncertainty bound). The work shows some 
results that prove the satisfactory performance of 
this strategy in the circumstances when the 
classical strategies failed. 
 
Earlier works related with robust control 
schemes have not adopted a solution in this way. 
One of the most used solutions for the control of 
manipulators is to employ an adequate linear 
controller to the linearised system resulting of 

the application of the feedback linearisation 
scheme [4] to the robot system. This technique is 
based on a perfect knowledge of the robot model 
and its dynamics parameters. The problem to 
solve is the imperfect cancellation of the 
nonlinear dynamics due to the presence of 
uncertainties. Lot of works related with adaptive 
control schemes [5],[6], robust control schemes 
[2],[8],[9] and even hybrid control schemes 
[10],[11] have been proposed to deal with these 
uncertainties. Concretely, most of robust 
controllers are based on the Lyapunov’s direct 
method. These schemes add a robust term to the 
control input which tries to compensate the 
discrepancies between the estimated model and 
the real model of the system.  
 
This robust term present a satisfactory response 
when the robot dynamics do not vary or vary 
very little, even in the presence of uncertainties. 
In other case the robust action is not effective 
and has to be revised. This is the reason to add an 
adaptive scheme for the robust action, as 
presented in [1]. 
 
In this work, the adaptive robust strategy is 
revised and improved. Some new simulation 
results prove the satisfactory performance of this 
controller in the different situations. The paper is 
presented as follows: section 2 revises the 
adaptation law previously proposed, section 3 



compares this strategy with those proposed in the 
earlier literature and section 4 present some new 
simulation results and comparisons with the 
classical strategies. Finally, some conclusions are 
presented. 
 
2 Revision of the adaptive robust 
controller 
The control technique used in [1] is applied on 
the linearised robot system resulting on applying 
the feedback linearization scheme on the 
nonlinear system. Due to the presence of 
uncertainties, the cancellation of the 
nonlinearities is imperfect. The proposed control 
law is formed by three terms: a feedforward term 
which gives the desired (or planned) 
accelerations of the system, a stabilizing PD law 
which corrects the deviations from the planned 
trajectory, and a robust term to cancel the errors 
due to the imperfect cancellation of the nonlinear 
terms by the feedback linearisation scheme. The 
resultant control law can be written as follows: 
 

 rkdkpdkDdkk yKKy ,,,,
~~ +++= θθθ ���   (1) 

 
where ky  is the input of the linearised system (k 

indicates the instant of time), dk ,θ
��

 is the vector 

of desired accelerations in the k instant, dk ,
~θ  is 

the vector of position errors and dk ,
~θ

�

 the vector 
of velocities errors, pK  and DK  are definite 

positive matrices for the PD action and rky , is the 
robust term, given by: 
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Q2n x 2n is a positive definite matrix and ρ is the 
robust design parameter.  

The parameter ε is determined in the final proofs 
with the system. 
 
As it is proved in [1], the value of the design 
parameter ρ is important in order to have a good 
performance of the closed-loop system. A small 
value of ρ gives poor tracking results over the 
desired trajectories for the joints, while a very 
great value of ρ leads to saturation of the inputs 
and consequently an unsatisfactory behaviour of 
the closed-loop system. To have a satisfactory 
performance in all cases, the following 
adaptation law is proposed for the parameter: 
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A difference with the previous work is presented 
here. The cost function Jk is chosen as: 
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where the 2n x 2n matrix Qad weighs the state 
error and the  n x n matrix Rad weighs the 
influence of the inputs to the linearised system. 
This choice gives the following adaptation law: 
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The computation of the derivatives is made 
taking into account the same approximations that 
in [1]. The correct expressions, after correcting 
some errors, are the following: 
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where ε/QDM T= , C and BD matrixes are 
obtained form the linearised state-space model of 
the robot, and h is the sampling time. 



3   Comparison with previous robust 
controller schemes 
As it has been said, the value of the design 
parameter ρ is important in order to have a good 
performance of the closed-loop system. But this 
problem is not solved in the earlier literature.  
 
In [3] the same robust action (2) is proposed and 
ρ is given as a single measure of the uncertainty. 
It is proved that the closed-loop system with this 
control law is uniformly ultimately bounded, as 
defined in [13], but it does not say anything 
about how to measure the uncertainty.  
 
In [14], the authors propose a parameterization of 
both inertia and Coriolis and centrifugal 
matrices, which leads to a robust control law 
with two terms quite similar to (2), proving that 
the tracking error is again uniformly ultimately 
bounded. The robust design parameter for each 
control law (referred as uncertainty bounds), is 
chosen measuring the maximum difference 
between the nonlinear terms of the robot 
dynamic equations in the case of no load case 
and maximum load case, but it is a bound 
expression and it is assumed that the load masses 
and the dynamic parameters are well-known.  
 
In [15], a comparison between these two 
controllers and others is proposed, but it is 
avoided the choice of the parameter ρ in the 
different cases. In [16], a similar robust law to 
(2) is proposed, and ρ is set by the measure of 
the tracking error after a random choice of others 
constants.  
 
And following the whole literature, the choice of 
this design parameter is not clear or easy, or it is 
avoided. In order to solve that, in this work an 
adaptive law for updating the value of this 
parameter is proposed. 
 
4   Results 
This work applies this controller on a two-link 
robot manipulator. The parameters of the links 
are 5.0 kg and 4.5 kg for the masses of the links 
and 0.43 m for its lengths. In the different 
simulations, input constraints are considered: 

mNuk ⋅≤ 601, , and mNuk ⋅≤ 152, , where 

the sub-index 1 and 2 indicates respectively the 
links 1 and 2. For the stabilizing control law, the 
following matrixes are used: Kp=diag([155 115]) 
and KD=diag([12 15]), being diag(•) the function 
to define a diagonal matrix.  
 
To define the robust action, the following values 
are used: ε=0.25 and Q=[0 0 0 0 ; 0 0 0 0 ; 10 0 1 
0 ; 0 30 0 5]. To define the cost function 
employed in the adaptive law, the following 
matrixes are used: =adQ diag([100 100 1 1]) and 

22xadR Ο= , which implies not weighting the 
inputs in the cost function. This can be assumed 
because in the different simulations the 
maximum values for the inputs were not reached. 
To do the different simulations, a sampling time 
h=0.0001 sec. is used. 
 
4.1 Fixed robust action 
The reference trajectory for the two-link 
manipulator in the different simulations is a 
smooth trajectory of 8 seconds between 120.3º to 
17.2º for the first link and -74.5º to -55.6º for the 
second link. At the final point, the arm takes a 
spherical payload mass of 1.5 Kg and 15 cm., 
returns to the initial point and, finally, to the final 
point again. 
 
Figures 1 and 2 show the results obtained with a 
fixed robust action with ρ=17. The real trajectory 
for the first link is quite similar to the reference 
trajectory, but the position errors are appreciable 
for the second link (near 0.03 radians in the 
worst case). This value of ρ is chosen after 
several simulation trials. As the value of ρ 
increases, the position and velocity errors 
decrease. It can be seen in figures 3 and 4, where 
the value of the robust design parameter is, 
consecutively, ρ=5, ρ=12 and ρ=17.  
 
4.2 Self-adaptive robust action 
In this case, the adaptive scheme shown in the 
previous section is used. In the same situation as 
before, the parameter ρ is initialized to the value 
ρ=1. The value of the learning rate is settled to 
γ=20/h. Position and velocities errors are 
considerable at the beginning of the trajectory, 
but  then  they  decrease to nearly zero while ρ is  
 



Fig. 1: Desired and simulated trajectory for the 
first link with a fixed robust action (ρ=17). 
 

Fig. 2: The same result as figure 1 for the second 
link. 
 

Fig. 3: Comparison of the error in the position of 
first link when a fixed robust controller is used 
with three different values. 

 

Fig. 4: The same situation as figure 3 for the 
second link 
 

Fig. 5: Comparison of the error in the position of 
first link whith a fixed robust controller and a 
self-adaptive robust controller. 

Fig. 6: Comparison of the error in the position of 
first link whith a fixed robust controller and a 
self-adaptive robust controller. 



 
Fig. 7: Evolution of the robust design parameter 
ρ for the simulations of figures 5 and 6. 
 
 
settling in its final value. The position errors for 
both links can be seen in figures 5 and 6, 
compared with the obtained with a fixed robust 
action with ρ=17, which is a similar value to the 
finally obtained with the adaptive scheme.  
 
The error performance is quite similar at the final 
of the motion. The difference is that the adaptive 
scheme tries to reduce it (it is achieved after 
several repetitions of the planned motion) but the 
fixed robust controller can not do it. In figure 7, 
the evolution of ρ can be seen. Its value is 
increased from ρ=1 until a value nearly ρ=17. It 
presents some oscillations when the position 
errors are considerable, in order to reduce them.  
 

5   Conclusions 
In this work a revision of a previous work of the 
same authors is made, in order to improve the 
proposed adaptive robust control scheme applied 
on robot manipulators. The basics of the 
controller are the adaptation of the robust action, 
introduced to avoid the errors due to the 
imperfect cancellation of the nonlinear dynamics 
in presence of uncertainties, in case of changing 
of the dynamics. These changes are produced by 
taking an unknown payload mass or when the 
dynamics parameters differ from a manipulator 
to another one. 
 
The results presented here show the satisfactory 
behaviour of the closed-loop system when a 

payload mass is taken at the middle of the 
trajectory. The self-adaptive law increases the 
value of the robust design parameter from its 
initial value to another value, similar to the 
obtained with a fixed robust controller after 
several trials. 
 
Then, the proposed scheme reduces the time in 
designing the robust controller for the 
manipulator and avoids the tracking errors 
produced by the changes in the dynamics of the 
system. 
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