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Abstract: - This paper presents a genetic algorithm (GA) methodology for training a support vector machine 
(SVM). The SVM method may be viewed as a quadratic optimization problem with linear constraints, where the 
objective is to minimize the error learning rate and the Vapnik-Chervonenkis (VC) dimension in order to get an 
Optimal Separating Hyperplane (OSH) that classifies two sets of data. A SVM is a very good tool for 
classification problems which displays an excellent generalization ability. In order to test our method we solve 
the XOR problem, a canonical nonlinearly separable problem. We used a genetic algorithm (GA) called 
Vasconcelos’ GA (VGA). The genome was selected to solve the dual SVM problem, where each individual 
corresponds to a Lagrange multiplier. Our interest lay in finding the “best” value of C (the so-called 
“regularization” parameter); C reflects a tradeoff between the performance of the trained SVM and its allowed 
level of misclassification. We solved the problem in two ways: (a) We provided C, as is traditional in the normal 
treatment of the problem; (b) We implemented a complementary approach, wherein C is also included in the 
genome. In case (b) VGA finds C’s value freeing the user from having to find it from heuristics. We report an 
exact solution for case (a) and, importantly, encouraging results in which the error in the solution for case (b) is 
practically zero. 
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1 Introduction 
 
Neural Networks (NN) have been a subject of interest 
in a wide variety of fields [1][2][3][4][5]. Their 
usefulness is today beyond doubt. However, the term 
“NNs” encompasses many different approaches in 
which the common denominator is the high 
connectivity (in some sense) of simple computing 
elements. A NN has to be “trained” using and ad hoc 
method which, typically, defines the sort of NN at 
hand. In this regard, NNs may be very broadly 
classified as “supervised” and “non supervised” 
depending on whether the training algorithm 
optimizes its results from known examples or not. In 
the supervised sort of NNs a relatively new theory 
(pioneered by Vapnik and coworkers[6][7]) has given 
formal foundation to the so-called Support Vector 
Machines (SVM) which, unlike better known NNs 
(i.e. feedforward multi-layer perceptrons) do not 

depend on heuristics to define neither their 
architecture nor the training parameters. This is 
achieved at the cost of losing the attractive sense of 
analogy between a perceptron and a physical neuron; 
in SVMs the “neurons” are, simply stated, members 
of a class of functions which comply with certain 
mathematical properties. Historically the usefulness 
of a given NN scheme has been tested by solving a 
canonical nonlinearly separable problem which single 
perceptrons are unable to tackle. 
 
On the other hand, every training algorithm is 
essentially one of optimization. The variety of such 
training algorithms atests to the underlying difficulty 
of the optimization task. For the last two decades the 
application of a new breed of optimization tools 
(namely, evolutionary optimization techniques) has 
permeated almost every field of applied mathematics, 
and NNs have been no exception. But, as of today, 



one very interesting problem regarding the proper 
selection of a fundamental parameter in SVMs has 
been overlooked: the optimum selection of the 
“regularization” parameter (typically denoted with C 
[8]). 

 
Training a SVM constitutes a quadratic optimization 
problem, where C controls the capability of network 
to generalize and minimize the number of 
misclassification errors in problems with linearly 
nonseparable patterns. In the case of linearly 
separable patterns, the C parameter is not necessary 
because, in principle, there is no missclassification: a 
hyperplane may separate exactly two sets of data.  

 
As mentioned above, a set of evolutionary 
optimization techniques has been successfully applied 
in the past. These techniques may be employed to 
train a SVM and, particularly, to find the optimum 
values for certain parameters (such as C) instead of 
having to introduce them by hand or from heuristics. 
The particular breed of genetic algorithm (GA) we 
used is the so-called Vasconcelos’ GA (or VGA) 
which has been proven to display superior relative 
performance in a large set of problems [9]. 
 
In Section 2 we show why the XOR problem is a 
nonlinearly separable pattern problem which can be 
solved with a SVM. In Section 3 we discuss some 
theoretical issues regarding SVMs. We also point out 
how the methodology of VGA can be used to train 
this kind of NN. In section 4 we present the results of 
training a SVM with the help of VGA. This results 
are obtained, first, by introducing the appropriate 
values for C parameter in the genome. This result is 
equivalent to exchanging the classical Lagrange 
multipliers’ method with a genetic algorithm. More 
interestingly, we solve the problem of determining 
the best value of C automatically. This issue is not 
solvable with classical techniques. Finally, in Section 
5 we offer our conclusions and point to future lines of 
research. 
 

 
2 Exclusive OR (XOR) problem 
 
The XOR problem is the canonical example of 
nonlinear separability. This problem has beeen used 
in the past to test the efficiency of certain pattern 
classification methods. Following Minsky and 
Pappert [10] we point out that single-layer perceptron 
ensembles are unable to solve the XOR problem. We 
know now that this is so [11] because this sets do not 
have hidden neurons and, consequently, do not have 
the necessary ability to map the original problem to 

higher dimensional spaces, which are indispensable 
to classify input patterns that are nonlinearly 
separable. 
 
More sophisticated methods have been developed 
which can solve the XOR problem (and, in general, 
ANY [12] nonlinearly separable problem) with 
relative ease. For instance: feedforward multilayer 
perceptrons networks, radial-basis function networks 
and support vector machines [13].  
 
The XOR problem is defined as a function of two 
boolean variables, as follows: 0 ⊕ 0 = 0, 1 ⊕ 1 = 0, 1 
⊕ 0 = 0 and 0 ⊕ 1= 1, where the  ⊕ denotes the XOR 
Boolean function operator. 
 
In terms of classification, we can see that the values 
resulting from the application of ⊕ to inputs (0,0) and 
(1,1) are in class 0; while the outputs corresponding 
to (1, 0) and (0, 1) are in class 1. The problem here is 
that inputs in class 0 cannot be linearly separated 
from inputs in class 1. From Fig. 1 we can see that 
the 4 values of the boolean function cannot be 
separated by a line; the inputs [(1, 0), (0, 1)] are in 
opposite corners but they belong to class 1. The same 
occurs with  the input [(0, 0), (1, 1)]. 

 
Fig. 1. The XOR problem as an example of a 

nonlinear separable pattern problem. 
 

Using SVMs we illustrate how this kind of problems 
may be successfully tackled, as we discuss in what 
follows. 
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3 SVM and GA 
 
3.1 Support Vector Machines 
 
As mentioned above, SVMs were pioneered by 
Vapnik and coworkers and  are based in statistical 
learning theory [14][15]. SVMs have been 
successfully used for pattern classification in many 
practical applications [16][17][18][19][20].  SVMs 
can also be used for solving nonlinear regression 
models. The idea of SVM is to find an hyperplane 
that separates two sets of data  in order to adequately 
classify their elements. The nearest points on both 
sides of the separating hyperplane are called the 
support vectors (SVs). The smallest distance between 
any two SVs is called the margin of separation; the 
hyperplane is known as the optimal separating 
hyperplane (OSH) if the margin of separation is 
maximized. 
 
In order to find the OSH, a SVM follows the 
principle of structural risk minimization, where a 
good generalization capability is achieved when the 
smallest VC (Vapnik-Chevonenkis) dimension and 
training error rate are selected. 
 
It is important to mention that the specification of a 
SVM problem depends of the separable characteristic 
of data, i. e. in the case of separable patterns the 
training error rate is zero, but for nonseparable 
patterns there is a tradeoff between complexity of the 
machine and the number of nonseparable points [21]. 
Parameter C is used to control the tradeoff in pattern 
classification problems. Traditionally, the value of 
this parameter is selected by the user. The problem of 
nonseparable patterns is illustrated in Fig. 2. The so-
called primal problem specification of SVM for 
nonseparable patterns is as follows: 

 
Fig. 2. Classification of data by SVM for nonlinear 
separable patterns. 
 

( )

( ) Nibxwd

CwwwMin

ii
T

i

N

i
i

T

,...,2 1,for    1
:subject to

2
1, 

1

=−≥+

+=Φ ∑
=

ξ

ξξ

 (1) 

 
In the figure, the circled points are the support 
vectors because by considering those points the 
margin of separation between them is maximized. As 
can be noted in the figure, the slack variables iξ  
represent the size of misclassification and the 
objective of the primal problem is to find the values 
of  and w iξ  that minimize the error of classification 
and the training error simultaneously. 
 
In order to achieve a solution for nonlinear separable 
patterns it is necessary to work in an alternate feature 
space, rather than the original input space. This can 
be done if we select an inner-product kernel ( )ixxK ,  
that is valid only if it satisfies Mercer´s theorem [22]. 
The election of a kernel allows the SVM to construct  
a decision surface that is nonlinear in the  input space 
but whose image in the feature space is linear. This is 
so because the kernel constitutes a mapping of a data 
set from the input space into a feature space. The 
SVM dual problem clearly illustrates this fact. It is 
formulated as follows: 
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The advantage of working with the dual problem is 
that it is only necessary to find the Lagrange 
multipliers to maximize the objective function. 
Otherwise, we would require to select a set of slack 
variables, the vector of weights and the value of b of 
the primal problem. We, therefore, solve the dual 
form for the XOR problem. However, we introduce 
the use of a GA to train the SVM. The kernel selected 

for solving this problem was and the C 

parameter was specified, consecutively, in two 
different ways: a) By directly providing it and b) 
Calculating it with the help of  VGA. 
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It is important to emphasize that the primal and dual 
cases constitute quadratic constrained optimization 
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problems. It is because of their inherent complexity 
that classical optimization techniques are not, in 
general, applicable and we must resort to a GA to 
train the SVM. 

 
3.2 Genetic Algorithms 
 
GAs have been successfully designed to solve 
numerical optimization problems. Even though GAs 
were designed to solve unconstrained optimization 
problems, they can be adapted to tackle the 
constrained cases [23] as we explain below. 
 
To use GAs one has to consider a set of issues which 
must be determined for the proper functionality of the 
algorithm: genome representation, fitness function, 
initial population, selection method, genetic operators 
for crossover and terminating criteria [24][25] among 
others. Our selection of these parameters is explained 
below. 
 
The first step is the selection of the population’s size. 
In this work we considered a population of size P = 
200. The initial population was randomly generated. 
Weighted binary fixed point representation was used. 
Each individual represents a Lagrange multiplier (αi, 
i=1,...,4) for the dual SVM problem. Every variable is 
to be expressed in fixed point format with one sign 
bit (0→+; 1→-), 1 integer bit and 20 decimal bits. 
With this representation  –2+2-20

 ≤ αi ≤ +2-2-20. A 
fixed point format has been used because it is an 
excellent representation in constrained optimization 
problems [26]. Fig. 3 illustrates the form of this 
representation. 

 

Fig. 3. Fixed point representation 
 

With this representation, the genome’s size is 88. 
When C was genetically determined, it was also 
included in the genome with a similar format. In 
those cases the size of each genome is 110 instead of 
88.   
 
Once the initial population (of size P) is generated, 
Vasconcelos´s model is used. This model considers 
full elitism and deterministic coupling, as follows. 
The genome is considered to be a ring of size . 
Individuals i and n-i+1 are selected. A random 

number is generated; if it is smaller than Pc (the 
probability of crossover) then a semi-ring of size /2 
is taken from each of the two parents; the resulting 
genomes pass on to the next population. Otherwise, 
the individuals are passed to the next population 
untouched. Uniform mutations occur with probability 
Pm = 0.05. 

l

l

 
The evaluation function is constructed following the 
methodology of SVMs. The solutions of XOR 
problem using the dual form are 0.25, 0.083 and 
0.0125 for the objective function (Q(α)) and 0.125, 
0.0417 and 0.0125 for the Lagrange multipliers (αi 
,i=1,..,4) with as 2, 3 and 4, respectively. However, 
we must remember that the dual problem is a 
constrained optimization problem. For this reason, it 
is necessary to modify the problem in order for it to 
be solved with a GA. The modification consists of 
transforming the constrained original problem a non-
constrained one. To do this, we have chosen a penalty 
function that has been used [27] effectively in the 
solution of constrained optimization problems. The 
penalty function is: 
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where K is a large constant [O(109)], p is the number 
of constraints and s is the number of these which 
have been satisfied. 
 
Finally, the execution of the GA is terminated after a 
predefined number of generations; this bound was set 
to 150. 
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We designed two algorithms to solve the XOR 
problem employing a SVM. In the first, C = 1; in the 
second C is included in the genome. It is important to 
mention that C was always positive.  
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In both experiments, a probability of mutation of 
Pm=0.05 and a probability of crossover of Pc=0.9 are 
set. The best n individuals in the population (n is the 
number of individuals at the offset) are selected to 
survive in each generation. 
 
For the kernel selection it is necessary to specify the 

 parameter of the polynomial learning machine. 
This parameter is chosen as 2, 3 or 4. When this 
selection is made, the dual form for the solution of 
XOR problem is as follows: 
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Fig. 4 illustrates the correct solution of the XOR 
problem. The three dimensional graph in Fig. 4 
shows the effect of mapping data from the sample 
into a higher dimensional feature space. In this last 
space the XOR function becomes a linearly separable 
classification problem, i. e.,  the inputs (0, 0) and 

 may be separated from (0, 1) and (1, 0) in the 
feature space with a hyperplane. 

1)(1,

 
Fig. 4. The effect of kernel function in the input 

space. 
 

4.1 Solution with C not included in the 
genome. 

 
The results choosing C as 1 and consecutively 
selecting as 2, 3 and 4 are shown in table 1. This 
solution was obtained after 150 generations and with 
a population of  200 individuals.  

ρ

 
Table 1. Optimal solution with C set by hand . 

 

The values of the  are shown for different 

selections of   ( ’s values determine the degree of  
iα

ρ ρ
the polynomial kernel). The theoretical values for  

= 2, 3, 4 are 1/8, 1/24 and 1/80 respectively. The 
differences between the calculated and theoretical 
values are, therefore, negligible.  We also point out 
that the values for the constraints of the dual problem 
are reached very closely. 

ρ

 
4.2 Solution with C included in the genome. 
 
A second and novel experiment (since C is included 
in the genome) was also performed with good results. 
In fact, its results turned out to be as good as those of 
the previous problem. They are shown in Table 2.  

ρ α1 α2 α3 α4
2 0.1250 0.1250 0.1250 0.1250 
3 0.0417 0.0417 0.0417 0.0417 
4 0.0125 0.0125 0.0125 0.0125 

ρ Fitness C
2 0.2500 0.0000 0.3276
3 0.0833 0.0000 1.6028
4 0.0250 0.0000 1.0206

∑ ii dα

ρ α1 α2 α3 α4
2 0.1250 0.1250 0.1250 0.1250 
3 0.0417 0.0417 0.0417 0.0417 
4 0.0125 0.0125 0.0125 0.0125 

ρ Fitness C
2 0.2500 0.0000 0.3276
3 0.0833 0.0000 1.6028
4 0.0250 0.0000 1.0206

∑ ii dα

( )ixxK ,

(0, 1, 1) (0, 1) (1, 1) 

(1, 0, 1) 

(0, 0, 0)  
Table 2. Optimal solution with C included. 

(0, 0) (1, 0)  
(1, 1, 0) 

Notice that VGA finds the proper values for C and 
relieves the user from the task of guessing it. As 
before, the constraints are satisfied and the support 
vectors agree with the theoretical values closely. The 
optimal solution considers the total points of the 
training data (4) as support vectors (as required) 
because all optimal multipliers are positive and 
misclassification is selectively penalized by the 
method.  
 
 
5   Conclusions 
 
Although the XOR problem is, perhaps, the simplest 
prototype of a linearly nonseparable problem, it has 
canonically been used in the past to test the 
effectiveness of neural networks to the problem of 
classification in such cases. SVMs have been 
successfully applied to this kind of classification 
problems, but the election of parameters like C and 
the kernel function has traditionally been the user’s 
responsibility (for previous efforts to apply 
evolutionary techniques see, for instance, [28]). In 
this paper, we have shown that a particularly efficient 
breed of a  GA (VGA) can be used to optimize a 
SVM’s parameters by including them in the GA’s 

ρ α1 α2 α3 α4
2 0.1250 0.1250 0.1250 0.1250 
3 0.0417 0.0418 0.0416 0.0416 
4 0.0127 0.0127 0.0124 0.0125 

ρ Fitness
2 0.2500 0.0000
3 0.0833 0.0001
4 0.0250 0.0000

∑ ii dα

ρ α1 α2 α3 α4
2 0.1250 0.1250 0.1250 0.1250 
3 0.0417 0.0418 0.0416 0.0416 
4 0.0127 0.0127 0.0124 0.0125 

ρ Fitness
2 0.2500 0.0000
3 0.0833 0.0001
4 0.0250 0.0000

∑ ii dα



genome. It is to be expected, from theoretical 
considerations, that the VGA will also provide us 
with reasonable values for other parameters also 
usually put in by hand. The direction of  our research 
will be to a) Include other relevant parameters and b) 
To attack more complex problems. We expect to 
report soon on these issues. 
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