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Abstract: - The main step of system design algorithm is the optimization procedure that minimizes the cost 
function of the design process and determines the optimum values of all system elements. The operations 
number evaluation for different strategies gives the possibility to select the optimal or quasi-optimal strategy that 
has the minimal computer time. 
 From the optimization theory point of view the traditional design strategy can be determined as an 
optimization of some cost function with constraints. The model of the system is the constraints in that case. The 
evaluation of operations number for the system design has been done on basis of the general design strategy. 
More general methodology for the system design was elaborated by means of the optimal control theory 
approach. In this case the problem of the system design can be formulated as the classical problem of the 
optimal control for the some functional minimization. In this context the aim of the optimal control is to result 
each right hand side of the main system of the differential equations to zero for the final time and minimize the 
total computer time. These equations include the special control functions that are introduced to generalize the 
total design process. Optimal dependencies of the control functions uj give the minimum computer design time. 
The optimal behavior of the control functions is the kernel of the time-optimal design algorithm. 
 Some properties of an additional acceleration effect of the design process were analyzed. The special 
selection of the optimization process start point provides the acceleration effect with a great probability. The 
positions  of the optimal switch points of the control vector were found on the basis of the analysis of the special 
Lyapunov function of the design process by means of the time derivative minimization. The combination of the 
acceleration effect and the optimal switch points of the control vector serve as the principal ideas to the time-
optimal design algorithm construction. 
 
Key Words: - Optimal system design, control theory approach, Lyapunov function. 

 
1 Introduction 
The electronic system design by the traditional 
methodology includes the formulation of the 
principal equation system, the definition of the 
number of independent variables K and the number 
of dependent variables M and some type of 
optimization procedure use. The principal system of 
equations for the electronic circuit can be formulated 
as algebraic or integral-differential system. This 
system can be interpreted as the relations between 
independent and dependent variables. From the 
optimization problem point of view this system can 
be determined as the system of constraints for the 
cost function minimization.  
 On the other hand it is possible to use the idea of 
general optimization [1] for the electronic system 
design. On this way the independent variables vector 
includes arbitrary number of the systems components 

from K to K+M. In that case the cost function 
includes additional penalty terms that simulate the 
relation equations. This approach includes 2M 
different design strategies and serves as the source for 
the time-optimal strategy search. 
 The reformulation of the optimization process on 
heuristic level was proposed decades ago [2]. This 
process was named as generalized optimization and it 
consists of the Kirchhoff law ignoring for some parts 
of the system model. The special cost function is 
minimized instead of the circuit equation solve. This 
idea was developed in practical aspect for the 
microwave circuit optimization [3] and for the 
synthesis of high-performance analog circuits [4] in 
extremely case, when the total system model was 
eliminated. This design strategy can be named as the 
modif ied traditional design strategy and it is an 
alternative to de traditional design strategy. 



 Nevertheless all these ideas can be generalized to 
reduce the total computer design time for the system 
design. This generalization can be done on the basis 
of the control theory approach and includes the 
special control function to control the design process. 
This approach consists of the reformulation of the 
total design problem and generalization of it to obtain 
a set of different design strategies inside the same 
optimization procedure [5]. An additional 
acceleration effect [6] serves as the first principal 
component of the optimal algorithm construction. 
The second principle can be defined as the special 
start point selection [7] for the design algorithm 
initialization. Nevertheless, the main problem of the 
time-optimal algorithm construction is the problem of 
the optimal switch point position  search for the 
control functions switching.  

 
2 Operations Number Evaluation 
For the computer time comparison of different kinds 
of design strategy and for optimal algorithm 
elaboration it is necessary to evaluate the operations 
number. 
 By general design strategy, in case when the 
number of independent parameters is variable and 
equal to   K+ Z   the following two systems are used: 
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In this case the total operations number N  for the 
solution of the systems  (1), (2)  can be evaluated as: 
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when the Newton's method is used for the system (2) 
solution. Formula (3) gives the operations number for 
the traditional design strategy when Z=0 and for the 
modified traditional design strategy when Z=M. 
Sometimes the necessary operation number C  for the 
cost function C(X) calculation do not has dependency 
from the independent parameters number  K+Z,  but 
for the majority of electronic systems is in proportion 

to the sum K+Z ( ( )C c K Z= + ). Formula (3) in this 
case is transformed into following expression: 
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 An analysis of the operations number N as the 
function of Z by formula (4) gives us the conditions 
for the minimal computer time. In case when the 
system (2) is the linear one this general design 
strategy almost has no preference in computer time as 
shown in [1]. Formula (4) gives the optimum point  
Z opt

 that is within the region (0, M) for the nonlinear 

system (2). 
 In more general case, when the system's model 
can be separate on two parts as linear and nonlinear  
we have the following systems : 
 
a) nonlinear part is given by 
 
  ( )g Xj = 0        (5) 
 
  ( )j r M Y= −1 2, ,...,    

           
b) linear part is given by 
 
  A X  =  B 
 
where  [ ]r ∈ 0 1, ;   A and B  are  matrices  of  the 
order  ( ) ( )1 − ⋅ −r M Z .  For this case the formula 
for the operations number evaluation has the 
following form: 
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 The analysis of this formula shows that for the 
majority of the practice problems it is correct that the 
optimum point of the function  N(Y,Z)  is within the 
dominion. This case is illustrated  in  Fig. 1. The 
optimum point (Yopt

,Z opt
) minimizes the necessary 

computer time for the large system design and has 
dependency from the electronic system size and 
topology. This optimal point can be fined by the 
different  methods, for example we can use the 
gradient method, the Newton method or Davidon-
Fletcher-Powell (DFP) method. 



 
 Fig. 1.  Behavior of the function  N(Y,Z). 
 
 The optimization of the space dimension number 
of independent parameters leads to reduction of the 
total operation number and therefore to reduction of 
the total computer time for electronic system design. 
The analysis of different types of electronic systems 
shows that the optimal space dimensions of 
independent parameters can reduce the total computer 
time to 100 - 500 times. This optimal space 
dimension has dependency from electronic system 
size and topology. In this work the problem of 
optimum order of the space dimension is solved by 
more general approach on basis of optimal control 
theory. The total computer time is served as the 
objective function for the optimal algorithm search. 
 
3 General Formulation 
The design process for any analog system design can 
be defined [5] as the problem of the generalized cost 
function ( )UXF ,  minimization by means of the 
vector equation: 
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with the constraints: 
 

  ( ) ( )1 0− =u g Xj j ,       (8)  
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where NRX ∈ , ( )XXX ′′′= , , KRX ∈′  is the vector of 

independent variables and the vector MRX ∈′′  is the 
vector of dependent variables ( MKN += ), ( )Xg j  

for all  j is the system model, s is the iterations 

number, st is the iteration parameter, 1Rts ∈ , 
H ≡H(X,U) is the direction of the generalized cost 
function ( )UXF ,  decreasing, U is the vector of the 

special control functions ( )U u u um= 1 2, ,..., , where 

uj ∈Ω; { }Ω = 0 1; . The generalized objective function 

( )UXF ,  is defined as: ( ) ( ) ( )UXXCUXF ,, ψ+=  
where ( )XC  is the ordinary design process cost 
function, which achieves all design objects and 
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permits to redistribute the computer time expens e 
between the problem (8) and the optimization 
procedure (7) for the function ( )UXF , . The control 
vector U is the main tool for the redistribution 
process in this case. Practically an infinite number of 
the different design strategies are produced because 
the vector U depends on the optimization current 
step. The problem of the optimal design strategy 
search is formulated now as the typical problem for 
the functional minimization of the control theory. The 
functional that needs  to minimize is the total CPU 
time T  of the design process. This functional depends 
directly on the operation number and more generally 
on the design trajectory that has been realized. The 
main difficulty of this problem definition is unknown 
optimal dependencies of all control functions uj . 
This problem is the central for such type of the design 
process definition. 
 
4 Design Trajectory Stability 
An additional acceleration effect of the design 
process was discovered [6] on basis of the described 
methodology, by means of the start point of the 
vector X variation. This effect appears for all 
analyzed circuits when al least one coordinate of the 
start point is negative and gives the possibility to 
reduce the total computer time additionally. 
Acceleration effect is produced when the switch is 
realized from the quasi modified traditional design 
strategy to quasi traditional strategy [7]. This effect 
can serve as the basis for the optimal algorithm 
construction in case when the sequence of the switch 
points of the control functions uj  is found. So, the 

main problem to construct the optimal algorithm is 
the problem of the optimal switch point of the control 
functions searching during the design process. 
 To obtain the optimal sequence of the switch 
points during the design process, we need to define a 
special criterion that permits to find the optimal 
control vector U. The problem of the minimal time 
strategy searching is connected with the more general 
problem of the stability of each design trajectory. 
Total design time depends on characteristics of the 



design trajectories and first of all depends on the 
design trajectory convergence. However the 
convergence is the effect of the design trajectory 
stability. There is a well known idea to study of any 
dynamic process stability properties by means of the 
Lyapunov direct method. We have been defined the 
system design algorithm as the dynamic controllable 
process. In this case we can study the stability of each 
trajectory and the design process transit time 
properties on the basis of the Lyapunov direct 
method. We propose now to use a Lyapunov function 
of the design process for the optimal algorithm 
structure revelation, in particular for the optimal 
switch points searching. There is a freedom of the 
Lyapunov function choice because of a non-unique 
form of this function.  Let us define the Lyapunov 
function of the design process (7)-(8) by the 
following expression: 
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i
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where ia  is the stationary value of the coordinate ix , 

in other words the set of all the coefficients ia  is the 
one of the objectives of the design process. Let us 
define other variables iii axy −= . In this case the 

formula (9) can be rewritten as: 
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The design process (7)-(8) can be rewritten by means 
of the variables iy  in the same form. The function 

(10) satisfies all of the conditions of the standard 
Lyapunov function definition. In fact the function 
V(Y) is the piecewise continue, and has piecewise-
continue first partial derivatives. Besides there are 
three characteristics of this function: i) V(Y) >0, ii) 
V(0)=0, and  iii) ( ) ∞→YV  when ∞→Y . In this 

case we can discuss the stability of the zero point 
solution. On the other hand, the stability of the point 
( )Naaa ,...,, 21  is analyzed by the definition (9). It is 
clear that the both problems are identical. 
Inconvenience of the formula (9) is an unknown point 
( )Naaa ,...,, 21 , because this point can be reached at 

the end of the design process only. We can analyze 
the stability of all different design strategies on the 
basis of the formula (9) if we already found the 
design solution someway. On the other hand, it is 
very important to control the stability process during 
the design procedure. In this case we need to 

construct other form of the Lyapunov function that 
doesn’t depend on the unknown stationary point. Let 
us define the Lyapunov function by the next formula: 
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where F(X,U) is the generalized cost function of the 
optimization procedure. This function has the same 
properties as the function (9) for the sufficiently large 
neighborhood of the stationary point. Really, all 
derivatives 

ixF ∂∂ /  are equal to zero in the stationary 

point  a = ( )Naaa ,...,, 21 , so V(a,U)=0, on the other 

hand V(X,U)>0 for all X and at last, the function V(X) 
of the formula (11) is the function of the vector U  
too, because all coordinates ix  are the functions of 

the control vector U. The property iii) is not proved 
only, because nobody know the function V(X,U) 
behavior when ∞→X . However we can 

consider, from the practical experience, that the 
function V(X,U) increases in a sufficient large 
neighborhood of the stationary point. The direct 
calculation of the Lyapunov function time derivative 
gives the conditions of the process stability. The 
design process is stable if the Lyapunov function time 
derivative is negative. On the other hand, the direct 
method of Lyapunov gives the sufficient stability 
conditions but not necessary [8], so the process loses 
the stability (or not loses) if this derivative becomes 
positive.  The stability of the different design 
strategies for three-transistor cells amplifier of Fig. 2 
was analyzed by the Lyapunov direct method. 
 
 

 
 

 
Fig. 2. Circuit topology for three-transistor cell 

amplifier. 



The Lyapunov function time derivative dV/dt is a 
negative for all trajectories on the initial part of the 
design process; i.e. all admissible strategies are stable 
at the beginning. It is supposed that the integration 
step is sufficiently small. However, when the current 
point of the trajectory gets to the ε -neighborhood of 
the stationary point a some strategies can lose the 
stability because the Lyapunov function time 
derivative becomes positive. It means that all 
trajectories of this group do not guarantee the 
convergence from the ε -neighborhood. In fact, each 
of the trajectory of this group has own critical ε -
neighborhood, which defines the maximum 
achievable precision. Another consideration is 
important too: the design process convergence slow 
down strongly before the ε -neighborhood reaching 
for all strategies of this group. It means that the 
derivative dV/dt is the negative but very small on the 
absolute value. It is interesting that the traditional 
design strategy belongs to this group. The critical ε  
values of some design trajectories for the circuit of 
the Fig. 2 and two types of the optimization 
procedure are shown in Table 1.  

 
Table 1. Critical value of the ε -neighborhood for 

some design strategies. 
 

 
 
Three last strategies have the critical parameter ε  
practically on the boundary of the reachable 
computer precision. We used the double length words 
for all numbers during the computing. At the same 
time these strategies are characterized of the negative 
values of the derivative dV/dt during the all design 
process. This property guarantees the process 
stability. On the other hand, the first five design 
strategies have the critical ε -neighborhood, which 
depends on the intrinsic proper ties of the strategy. 
The derivative dV/dt is not negative when the current 
point approaches to the critical ε -neighborhood for 
all of these strategies. It results to relative instability 
and slowing down the design process. We can 
conclude that all strategies of this group, including 
the traditional one, have the problem with the 

stability when the high precision is needed and 
therefore the total design time for these strategies is 
very large. On the other hand there is a group of the 
strategies (for example 6,7 and 8 of the Table 1) that 
don’t lose the stability until practically any precision. 
The strategies of this group are characterized a large 
number of units in the corresponding control vector U 
and on the contrary, the strategies of the first group 
are characterized a large number of zeros as shown in 
Table 1. The time-optimal trajectory consists of the 
different design strategies in N-dimensional case, but 
it is very important that it includes strategies with the 
large number of units in the control vector on its final 
part. Therefore the time-optimal strategy has a very 
good stability and that’s why this strategy is more 
rapid than any other is. 

Now the function (11) is used for the analysis of 
the design trajectory behav ior with the different 
switch points. We can define the system design 
process as a dynamic transition process that provides 
the stationary point during some time. The problem 
of the time-optimal design algorithm construction is 
the problem of the transition process searching with 
the minimal transition time. There is a well-known 
idea [8]-[9] to minimize the transition process time 
by means of the special choice of the right hand part 
of the principal system of equations, in our case the 
form of the vector function ( )UXH , . By this 
conception it is necessary to change the functions 

( )UXH ,  by means of the control vector U selection 
to obtain the maximum speed of the Lyapunov 
function decreasing (the maximum of -dV/dt ) at each 
point of the process. Unfortunately the direct using of 
this idea does not serve well for the time-optimal 
design algorithm construction. It occurs because the 
change of the design strategy produces not only 
continuous design trajectories (when we change the 
strategy jju ∀= ,0  to the strategy jju ∀= ,1  for 

instance) but non-continuous trajectories too (in 
opposite case). Non-continues trajectories had never 
been appeared in control theory for the objects that 
are described by differential equations, but this is the 
ordinary case for the design process on the basis of 
the described design theory. In this case we need to 
correct the idea to maximize -dV/dt at each point of 
the design process. We define another principle: it is 
necessary to obtain the maximum speed of the 
Lyapunov function decreasing for that trajectory part 
which lies after the switching point. In this case the 
trajectories with the different switching points are 
compared to obtain the maximum value of -dV/dt .  
This idea was tested for some nonlinear circuits. The 
four nodes nonlinear circuit is shown in Fig. 3.  

N Control functions vector Critical  epsilon neighborhood
U (u1, u2, u3, u4, u5, u6, u7) Gradient DFP

  method method
1             ( 0 0 0 0 0 0 0 ) 9.85E-11 9.76E-11
2             ( 0 0 0 0 0 0 1 ) 5.92E-06 6.25E-07
3             ( 1 0 0 0 0 0 0 ) 9.51E-07 9.35E-07
4             ( 0 1 1 0 0 0 0 ) 6.88E-12 5.33E-12
5             ( 0 1 1 0 1 0 0 ) 7.55E-15 4.17E-15
6             ( 1 1 1 1 1 0 1 ) 3.94E-17 3.53E-17
7             ( 1 1 1 1 1 1 0 ) 9.15E-16 6.65E-16
8             ( 1 1 1 1 1 1 1 ) 8.15E-17 4.74E-17



 
 

Fig. 3. Four-node circuit topology. 

 
This circuit has five independent variables as 

admittance 54321 ,,,, yyyyy  (K=5) and four 

dependent variables as nodal voltages 4321 ,,, VVVV  

(M=4). Non-linear circuit elements have the 

following dependencies: ( )2
21111 VVbay nnn −⋅+= , 

( )2
23222 VVbay nnn −⋅+= . Non-linearity parameters 

b bn n1 2,  are equal to 1.0. The numerical results for 
the above mentioned idea verification, were obtained 
for this circuit on basis of careful analysis of 
Lyapunov function time derivative. We need to find 
the optimal position of the control vector switch point 
between the modified traditional strategy and the 
traditional strategy. It is interesting the behavior of 
the Lyapunov function time derivative as the function 
of the control vector switch point position. The 
absolute value of this time derivative increase when 
the switch point come to the optimal position before 
it and decrease after the optimal position as shown in 
Fig. 4. It means that the maximum value of the time 
derivative serves as the strong criterion for the 
optimal switch point position determination.  
 
 

 
 

Fig. 4. Absolute value of Lyapunov function time 
derivative dependency on switch point S. 

5 Conclusion 
The problem of the time-optimal system design 
algorithm construction is solved more adequately as 
the functional optimization problem of the control 
theory. The main components of the optimal 
algorithm construction can be defined as: the 
additional acceleration effect of the system design 
process; the start point of the design process, which is 
selected with al least one negative component; and 
the optimal position of the necessary switch points of 
control vector that is defined by means of the careful 
current analysis of the time derivative of the special 
Lyapunov function of the system design process. 
These ideas can serve as the basis to the realistic 
time-optimal design algorithm construction. 
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