
 1

Toward a Multi-Tier Index for Information Retrieval System

EMAD S. ELABD, AHMED Z. EMAM ,NABIL A. ISMAIL,FAWZY A. TURKY
Information System Department and Computer Science Department

Menoufia University, Faculty of Computers and Information
Shebin Elkoom , Menoufia

EGYPT
 http://mufic.com

Abstract: - Text Information Retrieval(TIR) is considered the heart of many applications such as Document
Management System(DMS). TIR that used for DMS requires different techniques of data structure than that
used in the search engine. Search engine, requires special hardware (super computers with high memory) to
perform information retrieval algorithms. In this paper, a new approach is developed to make it easy for DMS
to perform the retrieval process with high performance. Conventional approaches are based on single inverted
file but our approach is based on object and multi-tier inverted index files structure.

Keywords: Text Information Retrieval (TIR) , Inverted Index file, Multi-tier Inverted file, Document

Management Systems (DMS)

1- Introduction
Information is the most important resource for all
organizations either large or small and considered
as valuable assets. The amount of information to be
dealt with has increased dramatically with the
advent of Internet and other communication means.
The growing need to manage information
abundance has given rise to fast evolution of
Knowledge Management Technology (KMT).
KMT core and fundamental component is
Document Management Systems (DMS). The
information overload problems in information
intensive organizations may be way out by
technologies providing intelligent information
retrieval with easy access to information from
anywhere to anyone[1].
 The DMS are relatively new so the
definition is fluctuated and not concrete and in
many cases the definition of DMS is application
dependent. The main functions of the document
management system different from one application
to another. For example, the DMS used in law
company concentrate on the version functionality
of the application and the DMS used in financial
organization concentrate on the security
functionality. Therefore, DMS can be defined as a
class of information technology that is used to
coordinate electronic document management,
storage, and retrieval [2].

 Another definition stated that document
management is the automated control of electronic
documents through their entire life cycle, from
creation to archiving. The DMS basic functions are

Storage and Full Text Retrieval, Descriptive File
Naming, Multi-file Document Control, Version
Control, Archiving, Library Services and Indexing,
Document Security, Workflow Management,
Document History, and Presentation/Distribution
Services as shown in fig.(1).

Figure(1): Basic functions of Document
Management System

Document
Security

Multi-file
document

control

Library
services

&
Indexing

Descriptive
filenaming

Archiving
&Docume
nt History

Version
Control

Workflow
management

Presentation
/ distribution

services

Document
Management

System

Storage
and Full

Text
Retrieval

 2

Storage and Full Text Retrieval is considered to be
one of the most important functions of DMS. Many
researches developed different approaches tends to
improve the performance of the text retrieval
process.

1-1 IR indexing techniques

The first phase of Text Retrieval (TR)
process is indexing process. There are three main
categories of TR indexing techniques : inverted
files , suffix arrays and suffix trees, and signature
files. Inverted files technique is considered to be
currently the best choice for most applications. The
main advantages of inverted files technique is easy
to build and Keyword-based search. Suffix trees
and arrays are faster for phrase searches and other
less common queries, but are harder to build and
maintain. Finally, signature files were popular in
the 1980s, but nowadays inverted files outperform
them[6]. From the view of query evaluation speed
and space requirements, inverted files are distinctly
superior to signature files. Also, inverted files
require less space and provide greater functionality
than signature files. So, the nominated techniques
for our work is inverted files. There are many
effected factors that affect the performance of
inverted files approach. Construction time of the
inverted files and searching time using it are the
critical factors in text retrieval process.

The paper organized as follows : section 2
describes the previous work , section 3 defines the
problem statement, section 4 describes the
proposed approach , section 5 contains the
experimental results, and the last section is the
summary and conclusion.

2- Literature Review

The previous work in this research field
follows mainly two directions. First direction is
sequential processing, which use one processor at a
time to construct the inverted files index used in the
information retrieval. Second direction is the
parallel processing, which uses multi processor to
construct the inverted file index. Both cases
produce one file indexes all the documents or multi
files have the same format each file indexed some
documents.

2-1 Sequential processing

An inverted file is the sorted list of
keywords (attributes), with each keyword having
links to the documents containing that keyword.

The first file that contains list of keywords is called
dictionary file and the second file that contain the
documents linkage is called the posting file, as
shown in fig(2). Harman[3] mentioned that there
are many structures that can be used to implement
inverted files: sorted arrays, B-trees, tries, and
various hashing structure, or hybrid structures.
This inverted file can be searched using binary
search. So, using sorted arrays can be easy to
implement and are reasonably fast for search.

Figure (2): Implementation of inverted file using
sorted array.

Yates [6] described an approach called the
full inverted indices. That approach used a full
position description for each word in the document
and occurrences number. The shortcoming from
using this approach is the overhead size of the
inverted file, which represents 30% to 40% of the
original document.

M. Marin [17] stated that the size of
inverted files is large and take space, which is 30%
to 100% of the original document size.
a system called Glimpse is implemented using
block addressing idea to speedup the construction
of the inverted file is developed in [4]. Later, block
addressing indices are analyzed by R. Beaza-Yates
and G.Navarro.[5], where some performance
improvements are proposed. The main advantages
of using block addressing is the shrinking of the
inverted file size to become only 5% overhead of
the original text size.

Yates [6] provided a complete comparison
among four types addressing used in indexing
process. Table (1) shows the sizes of the inverted
file as approximate percentages of the size the of
whole text collection. Four granularities and three
collections are considered in this comparisons.

Comput 4
.
.

Sistring 2
.
.

1
2
7
8
.
2
5
.
.

.

.

Doc.#1

Doc.#2

.
.
.

Keyword- Hits- Link Doc.# Link Documents

Dictionary file Posting file

 3

Table (1): sizes of the inverted file as approximate
percentages of the size the whole text collection

 Baeza-Yates and B.Ribeiro-Neto, Modern
Information Retrieval, page 195

* Full inversion (all words,.exact positions, 4-
byte pointers)
** Document size (10KB), 1, 2,3 bytes per
pointer, depending on text size
*** 2 or 1 byte(s) per pointer independent of
the text size

The inverted files construction process

entirely performed into the main memory and the
resultant files stored eventually into secondary
storage disk. Building inverted files in memory
requires very high memory size, which may or may
not be available. For large text files, the inverted
file will not fit into the memory, which force to
utilize the swapping/partial indexing techniques.
Yates[6] presented the partial index approach by
dividing the original text file into small buckets,
which appropriate to fit into the main memory.
Then merging all partial indices resulted in the
same level in a hierarchical manner. Finally store
the final resulted index file into the secondary
storage disk. The whole process described in
fig.(3).

Figure(3): Partial Indices technique merging the
partial indices in a binary fashion. Continuos
rectangular represent partial indices, while dashed
one represent merging operations . the numbers
inside the merging operation show a possible
merging order

Harman and Candela (1990) developed a
new method of producing an inverted file for large
data sets without Sorting. The main idea was to
avoid using of explicit sorts by right-threaded
Binary tree.

A Fast Inversion Algorithm is another
technique called FAST-INV developed by Fox and
Lee in Virginia Tech. This technique assumes two
principles. The first principle is the large primary
memories are available to support large size
databases indexing and reduce the overall cost. The
second principle is the inherent order of the input
data to avoid very expensive polynomial or even
nlogn sorting algorithms complexity for large files.

2-2 Parallel processing

Bulk-Synchronous Parallel (BSP) model of
computing had been proposed to enable the
development of portable and cost-predictable
software which achieves scalable performance
across diverse parallel architectures[14, 15]. BSP is
a distributed memory model with a well-defined
structure that enables the prediction of running
time. Unlike traditional models of parallel
computing, the BSP model ensures portability at
the very fundamental level by allowing algorithm
design to be effected in a manner that is

 Small
collection
(1 MB)

Medium
collection
(200MB)

Large
Collection
(2GB)

Indexing
 Type

All
But
Stop
Word

All
words

All
But
Stop
Wor
d

All
words

All
But
Stop
Word

All
words

* Addressing
words

45% 73% 36% 64% 35% 63%

** Addressing
documents

19% 26% 18% 32% 26% 47%

*** Addressing
64k blocks

27% 41% 18% 32% 5% 9%

*** Addressing
256 blocks

18% 25% 1.7% 2.4% 0.5% 0.7%

Level 1
(Initial
dump)

I-1..4

3

I-1..2 I-3..4

I-1 I-2 I-3 I-4

21

Level 3
Final
index

Level 2

 4

independent of the architecture of the parallel
computer. Shared and distributed memory parallel
computers are programmed in the same way as they
are considered emulators of the more general BSP
machine[17].

Inverted index files construction and
utilization by BSP model has been tackled using
two approaches, which are local index approach
and global index approach[9, 10, 11, 12, 13]. In the
local index approach the documents are assumed to
be uniformly distributed onto the processors. A
local inverted-lists index is constructed in each
processor by considering only the documents there
stored respectively. For example, assume a server
operating upon a set of p identical machines, each
containing its own main and secondary memory,
then p individual inverted-lists structures
performed. If a query consisting of one term must
be solved by simultaneously computing the local
sub-lists of document identifiers in each processor
then producing the final global list from these p
local sub-lists. The second approach utilize the
whole collection of documents to produce a single
inverted lists index, which is identical to the
sequential one.

 Distributed algorithms for building global
inverted files for large collections distributed across
a high-bandwidth network of workstations were
discussed by Ziviani et al.[16]. Three distributed
algorithms provided to build global inverted files
for very large text collections. The distributed
environment they use is a high bandwidth network
of workstations with a shared-nothing memory
organization. The text collection assumed to be
evenly distributed among the disks of the various
workstations. These three algorithms are Local
Buffer and Local Lists (LL Algorithm), Local
Buffer and Remote Lists (LR Algorithm), and
Remote Buffer and Remote Lists (RR Algorithm).
These algorithms differ in the place to build the
local and global inverted files

In summery, there are two directions to
construct inverted files used in IR; sequential and
parallel direction. Both directions require unlimited
memory for reasonable results.

3- Problem Statement

The process of searching data in DMS
depends on the used IR techniques. The most
common indexing technique uses the inverted
index file, which represent data as indexed data.
Literature review in the pervious section point out
that traditional method for construction inverted
file depends on very high specification computers

systems, which may not be available for small
companies. This was the most important barrier for
small companies to adapt DMS. In addition,
searching a data into inverted file and update the
inverted file are the main processes for information
retrieval into DMS. The critical affected factors of
indexing process are the construction time and the
searching time. The common trend tends to reduce
the construction time using parallel concept, which
requires more hardware. The proposed approach
based upon using multi-tire partial indexing to
reduce the construction time for inverted index file
and use less hardware requirement to perform faster
search.

4- Proposed Approach

The inverted index file constructed from
the developed algorithms is one file with each
record of the file contains (word, number of
documents containing the word ,total frequency ,
[id-frequency] of each document the word appeared
in) as shown in fig.(4)

 Figure (4): record of the inverted file used in the
previous methods .

The second method for construction is the
inverted index file which represents two associated
files, the first file (dictionary) contains (word,
number of documents containing the word ,total
frequency, pointer to the second file) and the
second file (posting) contains ([id-frequency] of
each document the word appeared in it) as shown in
fig.(5)

Figure (5): record of the inverted file used
dictionary files and posting files

Word number of
documents
contain the

word

total
frequency

[id-frequency]
of each document the

word appeared in

Ram 3 6 1-3(ram is appeared in
DOC 1 three times)
2-1
3-2

Dictionary posting
Word Number of

documents
contain the
word

total
frequency

 id frequency

Ram 3 6 1
2
3

3
1
2

 5

In search of a word in the inverted index file, we
search of the word on the whole file and get the
record of it, which contains all information related
to that word.

There are several experiment done before
developing the proposed technique. The first trial
was building inverted index file as a tree structure
for all the text in the main memory. In case of small
computer systems, the large text files led to large
tree size, which consume the whole memory and
reduce the system performance.

The next direction was to utilize the fixed
size sorted array structure. That structure enhance
the performance but the whole text size was
undetermined, which make it hard to shape out the
size of that array. Therefore, the dynamic sorted
array with partial indices concept was the
nominated direction to improve the system
performance. This method is considered as one of
the reliable and appropriate approaches in
construction of the inverted index file. thus, this
approach will be the basic and reference structure
technique for the new approach. In the pervious
developed methods, quick sort technique was used
as sorting technique for all sorted array and binary
search used as search technique.

 The new approach based on partial indices
and multi-tier concept by creating a separate files
for all words starts by the same alphabetic character
and one more file for all words start by special or
numeric characters as a second tier. The directory
of the twenty seven files considered as a first tier
used in searching process. The number of resulted
inverted files is 27 file and each record of that file
consist of (word starts by that character, number of
documents contain the word, total frequency, [id-
frequency] of each document the word appeared in
it). Another method is constructing 27 files as
dictionary files and 27 as posting files. The second
method is preferable to perform better in search and
memory space. The construction process for each
file is shown in fig. (6) and real example presented
in fig. (7).

Figure (6) : inverted files created in our approach

Figure (7): Example for a record of inverted files
created for character ‘a’.

The main benefits for using multi-tier
design will be enlarged search process for any
query. The first step is looking up in the first tier
file (file director) to identify the first letter in the
query and determine the file name in the second tier
to perform the search on it. The second step is
search in second tier, which is directed and accurate
by loading the directory and posting files into the
main memory.

5- Experimental Results
Real dataset considered as valuable assets

for any organization, the easy and inexpensive cost
is synthetic dataset creation. Therefore, all
experiments used in this research is synthetic
dataset. The creation of synthetic dataset was done
using a random function generator for words to
create a text document.

The partial indices as conventional
approach for constructing inverted index file was
implemented using a Visual Basic Ver6.0 on
windows platform using two different hardware
systems. The first hardware system is PII333 MHZ
with 64MB RAM. The second hardware system is
Dell server 2.8GHZ with 1GB RAM.

Table (2) columns represent the size of

original text file, size of index file, construction
time, and worst average time for searching in case
of using Dell server with the pervious configuration
and perform partial indexing technique.

Dictionary Posting
word number of

documents
contain the
word

total
frequency

 id frequency

amber 3 6 1
2
3

3
1
2

* Words start
by character ‘
a’ or ‘A’,

List of [id-
frequency]

Dictionary file Posting file

* Words start
by character ‘
z’ or ‘Z’,

List of [id-
frequency]

Dictionary file Posting file

* Special and
Numeric words

List of [id-
frequency]

Dictionary file Posting file

 6

Table (3) columns represent the size of

original text file, size of index file, construction
time, and worst average time for searching in case
of using Dell server with the pervious configuration
and perform multi-tier indexing technique.

 The inverted index file size and the original
text size are relatively correlated as shown in
figures (8) and (9) using Dell Server and PII 333
Mhz machines respectively, which means that
partial indexing and multi-tier indexing techniques
almost have the same effect in the creation process
of index file. Construction time of the inverted
index file is one of the most important factors to
measure the IR system performance. Fig.(10)
shows that there is no significant difference in
construction time using partial index technique or
multi-tier index technique on Dell server. While,
fig.(12) shows a major and highly significant
difference in searching time (worst case average)
using multi-tier index technique than using partial
index technique on Dell server. On other words,
multi-tier indexing techniques have superior
performance than partial index technique on Dell
server platform.

Figure (8):Inverted files size using Partial Indexing
and multi-tier on Dell Server

Table (2) : Inverted files construction and
searching time using Partial Indexing using Dell
Server
Partial Indexing Technique

Text File
Size

Size of
inverted

file
Construction

Time /s
Searching
Time /s

1K 2K 0.094 0.016
4K 4.5K 0.109 0.016
8K 5K 0.125 0.016
16K 14.5K 0.156 0.016
32K 17K 0.219 0.016
64K 56K 0.313 0.016
128K 67K 0.656 0.016
256K 89K 0.953 0.016
512K 134K 1.782 0.016
1M 2.72M 10.906 0.281
2M 3.27M 23.297 0.297
4M 4.3M 49.469 0.313
8M 5.2M 106.031 0.313
10M 5.43M 123.062 0.578
20M 6.51M 261.828 0.578
30M 7.49M 397.766 0.578
50M 9.48M 714.563 0.593
100M 14.6M 1553.797 0.61

Table (3) : Inverted files construction and
searching time using Multi-tier Indexing using
Dell Server
Multi-Tier Indexing Technique

Size of
text file

Size of
inverted

file
Construction

Time /s
Searching
Time /s

1K 20.5K 1.225 0.016
4K 26.5K 1.235 0.016
8K 26.5K 1.250 0.016
16K 27.5K 1.312 0.016
32K 40K 1.328 0.016
64K 62K 1.469 0.016
128K 76K 1.609 0.016
256K 99.5K 1.985 0.016
512K 142K 2.469 0.016
1M 2.57M 10.125 0.016
2M 3.08M 21.172 0.016
4M 4.14M 45.219 0.016
8M 6.18M 97.921 0.016
10M 5.05M 99.750 0.031
20M 6.2M 220.140 0.031
30M 7.21M 358.094 0.031
50M 9.17M 647.953 0.031
100M 14.2m 1407.687 0.032

0

10000

20000

1K 32
K

51
2K 4M 20

M
50

M Text file size

In
ve

rte
d

fil
e

si
ze

(K
B)

Partial indexing Multi-tier indexing

 7

Figure (9):Inverted files size using Partial
Indexing and multi-tier on PII 333 Mhz

Figure (10): Inverted files construction time
using Partial Indexing and multi-tier on Dell
Server

Figure (11): Inverted files construction time
using Partial Indexing and multi-tier on PII
333 Mhz

Table (4) : Inverted files construction and
searching time using Partial Indexing using
PII 333Mhz
Partial Indexing Technique
Text File
Size

Inverted
File Size

Constructio
n Time /s

Searching
Time /s

1K 839byte 0.39 0.060
4k 3.34K 0.49 0.060
8K 4.13K 0.55 0.060
16K 13.5K 0.82 0.060
32K 16.5K 1.21 0.060
64K 55.1K 2.14 0.060
128K 66.4K 3.84 0.060
256K 88.5K 7.25 0.060
512K 133K 14.17 0.060
1M 2.27M 97.99 2.690
2M 3.27M 211.41 2.690
4M 4.3M 460.93 2.750
8M 6.32M 1020.18 2.750
10M 5.43M 1323.93 5.220
20M N/A N/A N/A
30M N/A N/A N/A
50M N/A N/A N/A
100M N/A N/A N/A

Table (5) : Inverted files construction and
searching time using Multi-tier Indexing using
PII 333 Mhz
Multi-Tier Indexing Technique
Text File
Size

Inverted
File Size

Construction
Time /s

Searching
Time /s

1K 0.86K 3.02 0.050
4k 3.11k 2.58 0.050
8K 3.9K 2.69 0.050
16K 12.9K 3.35 0.050
32K 15.5K 3.57 0.050
64K 50.9K 3.79 0.050
128K 62.9K 4.67 0.050
256K 85.1K 6.81 0.050
512K 128K 10.82 0.050
1M 2.56M 74.09 0.110
2M 3.06M 162.58 0.160
4M 4.13M 360.75 0.110
8M 6.17M 815.09 0.110
10M 5.04M 955.54 0.220
20M N/A N/A N/A
30M N/A N/A N/A
50M N/A N/A N/A
100M N/A N/A N/A

0
1000
2000
3000
4000
5000
6000

1K 8K 32
K

12
8K

51
2K 2M 4M 10

M

Text File Size

In
ve

rte
d

Fi
le

 in
de

x

Partial indexing Multi-tier indexing

0

500

1000

1500

2000

1K 8K 32
K

12
8K

51
2K 2M 4M 10
M

20
M

30
M

50
M

10
0M

Text file size

C
on

st
ru

ct
io

n
Ti

m
e(

se
c)

Partial Index Multi-tier Index

0
200
400
600
800

1000
1200
1400

1K 8K 32
K

12
8K

51
2K 2M 4M 10

M

Text file size

C
on

st
ru

ct
io

n
tim

e(
se

c)

Partial Index Multi-tier Index

 8

Figure (12): Inverted files searching time
using Partial Indexing and multi-tier on on
Dell Server

0

1000

2000

3000

4000

5000

6000

1K 8K 32
K

12
8K

51
2K 2M 4M 10

M

Text file size

Se
ar

ch
in

g
tim

e(
m

s)

Partial Indexing Multi-tier indexing

Figure (13): Inverted files searching time
using Multi-tier Indexing PII 333Mhz

 Like Dell server platform, the index file
size and the original text size are relatively
correlated as shown in tables (4) and (5) when
using PII 333 Mhz. platform. This was an
indictor to both partial indexing and multi-tier
indexing techniques which create an index file
with the same size. On other words, the size of
index file from both techniques are similar.
fig.(11) shows that there is no significant
difference in construction time using partial
index technique or multi-tier index technique

on PII 333 Mhz as on Dell server. While, fig.
(13) proof that there is a big significant
difference in searching time (worst case
average) using multi-tier index technique than
using partial index technique on PII 333 Mhz.

6 – Conclusion and Future Work
 It has been shown that Partial indexing
technique and multi-tier indexing technique
have the same or similar effect in construction
time and index file size. The index file
searching for a query is the most important
factor in IR performance evaluation. The
proposed approach proofs that the searching
time using multi-tier index is almost a linear
complexity and performance that can be
predicated. On other words, whatever the size
of the original text file the searching
performance using a multi-tier index technique
is relatively constant.
 There are several modifications that can
be applied in the proposed approach such as
increasing the level of multi-tier index
technique instead of two levels. Parallelizing
the construction process using multi-threads
techniques may also be applied. The role of
different operating systems is considered to be
one of the facts that should be studied in our
approach.

0
100
200
300
400
500
600
700

1K 8K 32
K

12
8K

51
2K 2M 4M 10

M
20

M
30

M
50

M
10

0M

Text file size

Se
ar

ch
in

g
Ti

m
e(

m
s)

Partial Index Multi-tier indexing

 9

References:
[1] J. Vain and Juhan-Peep Ernits , “Electronic
Document Management” ,”
http://www.cc.ioc.ee/training/unesco/onlinegov
/docsys/detailed/, UNESCO project
"Developing Telematics and Information
Networks for On-Line Governance" at the
Tallinn Technical University
[2] G. Cleveland, Document Management
Systems, Information Technology Services,
National Library of Canada ,March 7, 1997 .
[3] D. Harman, E. Fox, W. Lee and R.
Baeza-Yates. Inverted files. In W. Francks and
R. Baeza-Yates ,editors, Information
Retrieval: Datastructure & Algorithms
,Chapter 3, pages 28-43. Prentice Hall,
England Cliffs, NJ, USA,1992
[4]Udi Manber and Sun Wu. GLIMPSE:A tool
to search through entire file systems. In Proc.
Of USENIX Technical Conference , pages 23-
32 , San Francisco,USA,January 1994.
ftp//cs.arizona.edu/glimpse.ps.z.
[5] R. Baeza-Yates and G. Navarro. Block-
addressing indices for approximate texte
retrieval. In Proc. Of the 6th CIKM Conference
, pages1-8, Las Vegas, Nevada, 1997.
[6] R. Baeza-Yates and B.Ribeiro-
Neto,Modern Information Retrieval, Chapter 3,
Indexing and Searching , with Gonzalo
Navarro. New York: Addison Wesley, 1999.
[7] J. ZOBEL , A. MOFFAT and K.
RAMAMOHANARAO : Inverted Files Versus
Signature Files for Text Indexing. Draft, June
19, 2002
[8] M. Araujo, G. Navarro, and N. Ziviani.
Large text searching allowin errors . In Proc.
WSP’97 , pages 2-20 , Valparaiso, Chile, 1997.
Carleton University Press .
[9] C. Badue, R. Baeza-Yates, B. Ribeiro, and
N. Ziviani. Distributed query processing using
partitioned inverted files. In Eighth
Symposium on String Processing and
Information Retrieval (SPIRE'01), pages 10-
20. (IEEE CS Press), Nov. 2001.
[10] S.H. Chung, H.C. Kwon, K.R. Ryu, H.K.
Jang, J.H. Kim, and C.A. Choi. Parallel
information retrieval on a sci-based pc-now. In
Workshop on Personal Computers based
Networks of Workstations (PC-NOW 2000).
(Springer-Verlag), May 2000.

[11] A.A. MacFarlane, J.A. McCann, and S.E.
Robertson. Parallel search using
partitionedinverted files. In 7th International
Symposium on String Processing and
Information Retrieval, pages 209-220. (IEEE
CS Press), 2000.
[12] B.A. Ribeiro-Neto and R.A. Barbosa.
Query performance for tightly coupled
distributed digital libraries. In Third ACM
Conference on Digital Libraries, pages 182-
190. (ACM Press), 1998.
[13] A. Tomasic and H. Garcia-Molina.
Performance of inverted indices in
sharednothing distributed text document
information retrieval systems. In Second
International Conference on Parallel and
Distributed Information Systems, pages 8-17,
1993.
[14] D.B. Skillicorn, J.M.D. Hill, and W.F.
McColl. Questions and answers about BSP.
Technical Report PRG-TR-15-96, Computing
Laboratory, Oxford University, 1996.Also in
Journal of Scientific Programming, V.6 N.3,
1997.
[15] A. Tomasic and H. Garcia-Molina.
Performance of inverted indices in
sharednothing distributed text document
information retrieval systems. In Second
International Conference on Parallel and
Distributed Information Systems, pages 8-
17,1993.
[16] B. Ribeiro-Neto , Edleno S. Moura,
Marden S. Neubert, and Nivio Ziviani
Efficient Distributed Algorithms to Build
Inverted Files , 1999 ACM.
[17] M. Marin. Index structures for distributed
text databases

