
New Approach for PRMs Based on Geometric Features

ANTONIO BENITEZ AND DANIEL VALLEJO
Department of Computer Engineering
Universidad de las Américas - Puebla

Sta. Catarina Mártir, Cholula, Puebla. 72820
MEXICO

 http://www.udlap.mx/~sc098381

Abstract: - This paper presents a new strategy for computing useful configurations; using a probabilistic
roadmap method for free flying objects in a known indoor environment. We introduce two geometric features
based on straightness and volume characteristics, which can be extracted of the geometry form of the objects into
the environment. We describe a new method for sampling difficult configurations into narrow corridors taking
advantage of these features. Simulation results using different benchmarks in motion planning show the
potential of our approach.

Key-Words: - Probabilistic Roadmap Methods, geometric features, robotics.

1 Introduction
Designing a path planer is a central topic in robotics
research. The ultimate goal of a path planner is to
produce a valid path from an initial to a final
configuration. However, the discrepancies between
the geometric virtual world where the actions are
planned, and the mechanical world where the robot
operate, constrain the selection of actions which can
be included in a solution path.

An important issue in PRM planners is the
method for choosing the random configurations for
the construction of the roadmaps. Recent works have
considered many alternatives to a uniform random
distribution of configurations as means for dealing
with the narrow passage problem. A resampling step,
creating additional nodes in the vicinity of nodes that
are connected with few others, is shown in [10].
Nodes close to the surface of the obstacles are added
in [3]. A dilation of the configuration space has been
suggested in [8], as well as an in depth analysis of the
narrow passage problem. In [17] a procedure for
retracting configurations onto the free
space medial axis is presented. In [4] a probabilistic
method for choosing configurations close to the
obstacles is presented.

Probabilistic roadmap (PRM) have proven to
be an effective tool to capture the connectivity of a
robot's collision-free space and solve path-planning
problems with many degrees of freedom (dofs)
[1,3,9] and/or complex admissibility (e.g.,
nonholonomic, stability, dynamic, and visibility
constrains) [12,13,16]. A PRM planner samples the
configuration space at random and retains the
collision-free point as free configurations. The free
configurations and local paths form the probabilistic-
roadmap. The motivation is that it is often

impractical to explicitly compute the collision free
subset (the free space) of a configuration space.

Several promising heuristics for path
planning have been proposed, of which we mention a
few here. The Randomized Path Planner (RPP) of
Barraquand and Latombe [5] is a potential field
method that uses random walks to attempt to escape
local minima. Although this method has been shown
to work well for many dof robots, there exist simple
situations in which it performs poorly (i.e., does not
find a solution) [7,9]. Researchers have proposed
various potential functions (e.g., [6]) and other
techniques. In general, potential field methods can be
quite effective when the configuration space (C-
space) [15] is relatively uncluttered. However, they
have not been as successful for planning in crowed C-
space.

2 Our Results
We propose a new algorithm which combines these
two approaches by generating random networks
whose nodes lie on the obstacles surface. Our central
observation is that it is possible improve the
connectivity of configuration space using geometric
features on the workspace to find free configurations
close to the obstacles. The main novelty in our
approach is a new method for generating roadmap
candidate points. In particular, we attempt to generate
candidate points distributed around each obstacle on
work-space taking advantage on their geometric
features. Using this approach, high quality roadmaps
can be obtained even when work-space is crowded.
Experimental results with free flying objects with six
degrees of freedom (dof) will be shown.

The approach extends fairly easily to
dynamic environments. Our approach can be applied

to some important situations that have so far not been
satisfactorily solved by heuristic methods (Paths
through long, narrow passages in crowded Work-
space can be found)..

3 Building the Roadmap
3.1 Problem Constrains

This work takes account several constrains on the
motion planning problem, first the heuristic is focus
to solve the planning problem for free flying objects
into a three dimensional space. Second, the technique
assumes the size of the bodies which conform the
environment (including the robot) are relatively small
than the environment size, besides we assume an
obstacle can be formed by several small ones. This
proposal does not compute the geometric features
which it is using, the technique assumes that this
characteristics can be extracted and are used to
approximate the form of the bodies defined into the
environment (given the constrains mentioned before).
The last constrains allow to take advantage of the
bodies form, because as we already said, an obstacle
can be built by others small ones, therefore the
straightness and volume features are defined for each
one. The Figure 1 shows how this features are
defined for each part of the obstacle (where the
obstacles is a grid).

Figure 1. A big obstacle can be separeted into small ones,

this is a good advantage on the present approach

Figure 2. Defining important features on the geometry

objects

3.2 Algorithm Desciption

The description of the algorithm is divided into three
parts: first approximation of the configuration space,
improving the connectivity using geometric features
and planning. The following sections describe how
the algorithm works and we give some details about
its implementation. Some figures are included to
show the main idea behind this new technique.

The algorithm is based on geometric features
of the obstacles and the robot, as we said in previous
section. We describe the method including a first
sampling stage and an algorithm to improve the
connectivity.

3.3 Definitions and Geometric Features

Let V = V0,...,Vn be a set of obstacles in the
workspace W. Let ri be the radius associate to the
sphere which involve each body in the workspace
(including the robot).

Let di be the distance between two
configurations, one of them associate to the robot and
the another one associate to the obstacle Vi.

Let c(Vi) be the random configuration
computed by the heuristic using the obstacle Vi.

The workspace is read from different files,
these files contain the triangle meshes which
represent the geometry of each body into the
workspace. Using such representation, the algorithm
computes several parameters which will be used by
the heuristic and are defined as following:

Mass Center. This metric is calculated as the average
of the xs, ys, and zs values of the vertex for a body into
the environment. This parameter might not be placed
into the object.
The Body Radius. This parameter is computed using
the distance between the center mass and the farest
vertex into the object. This metric is used to calculate
the sphere which the object will be surrounded. The
Figure 2 shows how radius is used to obtain the
sphere to surround the body.
Straightness. Let qi be the vector which define the
direction of the “straightness” feature for each Vi Є
B, and qri will define the same feature on the robot.
This feature indicates the direction which the body
presents its long side. The Figure 3 shows how this
feature can be see for an object.
Volume. Let voli be the “volume” of the obstacle Vi
with respect the volume of the sphere used to
surround it. Both, the “straightness" and “volume"
features are used to improve the connectivity of the
roadmap and the Figure 2 shows a geometric
representation of this parameter.

Figure 3. The rotation axis is defined in the same direction

of the straightness feature.

Figure 4. First approximation using spheres surrounding
the robot and computing a reduced number of

configurations.

3.4 Building the Roadmap

The roadmap is an undirected graph R=(N,E). The
nodes in N are a set of configurations of the robot
appropriately chosen over the free C-space. The
edges in E correspond to (simple) paths; an edge
between two nodes corresponds to a feasible path
connecting the relevant configurations. These paths
are computed by an extremely fast, though not very
powerful planner, called the local planner. During the
query phase, the roadmap is used to solve different
path planning problems in he input scene. Given a
start configuration qinit and a goal configuration qgoal,
the method first tries to connect qinit and qgoal to some
two nodes qinit' and qgoal' Є N. If successful, it then
searches R for a sequence of edges in E connecting
qinit' to qgoal'. Finally, it transforms this sequence into a
feasible path for the robot by recomputing the
corresponding local paths and concatenating them.
First Approximation. During this stage, the
algorithm uses spheres to surround the robot. The
Figure 4 presents the view of the first sampling (in all
the figures we are presenting the explications in a two
dimensional space). Using spheres (or circles into
two dimensional space), we have two advantages,

first the robot has the characteristic to rotate in any
direction (α , β, λ), which will be used for the local
planner in the improving stage, and second, the cost
of collision detection is reduced, because the routine
is limited to detect when two spheres are in collision
(the sphere associated to each obstacle and the other
one associated to the robot). In this process just a
small number of configurations will be computed.
Expanding the Roadmap. If the number of nodes
computed during the first approximation of the
roadmap is large enough, the set N gives a fairly
uniform covering of Cfree. In easy scenes R is well
connected. But in more constrained ones where Cfree
is actually connected, R often consists of a few large
components and several small ones. It therefore does
not effectively capture the connectivity of Cfree .

The purpose of the expansion is to add more
nodes in a way that will facilitate the formation of the
large components comprising as many of the nodes as
possible and will also help cover the more difficult
narrow parts of Cfree. The identification of these
difficult parts of Cfree is no a simple matter and the
heuristic that we propose below goes only a certain
distance in this direction.

In this phase, we generate a set N of
candidate roadmap nodes, each of which corresponds
to a point in C-space. The general strategy of the
node generation process is to construct a set Ni of
candidate nodes for each object Vi such that each
c(Vi) Є Ni lies near to obstacle Vi . The set of roadmap
candidate nodes is the union of the candidate sets
computed for each obstacle Vi Є B, i.e., N = Ui Ni.
We now consider how to compute the candidate set
for each obstacle. To obtain a high quality roadmap
we would like the nodes to be uniformly distributed
around the obstacles and close to them. This
technique attempt to take advantage of some
geometric features of the robot and the obstacles to
obtain information that allows guide the search of
useful configurations.

The first geometric feature used is called
“Straightness". This feature indicates the direction
on which the object presents its long side and it is
given by a vector vi , which we have used as the
direction of the rotation axis. The Figure 3 shows the
way which the rotation axis is represented on the
robot and the obstacles. We can see that the object
will sweep a minor area as result of defining the
rotation axis in the same direction of the straightness
feature.

The second geometric feature used is
“Volume". This feature give to the algorithm an
approximation about how big is the object respect the
volume of the sphere which is surrounded. After
several empirical tests, we have computed the values

for the MAX and MIN parameters, which will be
used to calculate a scale factor to be used in the next
stept of the heuristic called for us the elastic band
process. The values in the Figure 5 presents these
results.

If the volume feature is small, that means
that, its value is less than 25% of the volume sphere
then we can think the object is very thin, therefore,
many configurations can be computed near to its
mass center.

Figure 5. MAX and MIN values obtained using the volume
feature after several empirical experiments.

Figure 6. Parallel and perpendicular configurations around
the obstacle.

Finding points close to the obstacles. We now
consider how to generate m points close to the Vi.
For now, assume that we know the number of points
we wish to obtain. Ideally, these m points should be
uniformly distributed around the Vi. Using
straightness feature, we propose the heuristic method
outlined below to generate the points.

1. First, the algorithm search a collision configuration
c(Vi) on the Vi obstacle, such c(Vi) is calculated
uniformly distributed around the sphere which the
obstacle is surrounded (a vicinity for each Vi is
defined).

2. Next, the technique attempts rotate this
configuration until it will be parallel to the obstacle
(that is vri ║ vi), if the parallel configuration is not in
collision then it is added to Ni, else the process called
elastic band is applied searching to turn it in free
configuration, which will lie close to the Vi obstacle.

3. Once a parallel configuration has been processed,
the algorithm computes the perpendicular
configuration (that means that vri ┴ vi) taking the
c(Vi) calculated in step 1. In the same way like in step
2, if the new perpendicular configuration is not in
collision then it is added to Ni, else the elastic band
process is applied. The Figure 6, shows how the
parallel and perpendicular configurations can be seen
around the Vi.
The Elastic Band Process This process works as
following, first it calculates the distance vector di
between the obstacle position and the c(Vi)
configuration, and attempt to approach and moving
away the robot with respect to the obstacle. To
compute this operation, the process scale the di vector
to calculate the next position where the c(Vi)will be
placed. The next algorithm describes this process.

Elastic Band Heuristic

1. ri = radius of i-obstacle
2. ci_init = position of the i-obstacle
3. robot.get_parameters (MAX,MIN) Volume feature
4. k=0
5. di = distance vector between Bi- and the robot
6. do
7. scalar = random between (MAX and MIN)
8. scale(di, escalar) the distance vector is scaled
9. c(Bi)=get_configuration_with_position (di)
10. rotate_robot_on_rotation_axis() Straightness

feature
11. k=k+1
12. while (c(Bi) is not free and k < CTE)
13. add_configuration c(Bi) to the roadmap

The metric used to obtain the vector distance is the
Euclidean distance in three dimensional space, and
the scale factor is computed using the “volume”
feature of the objects, see Figure 5. Thus, the scale
factor will be able to be initialized since a low value
(scale=MIN). This value has an important role,
because we are interesting in configurations close to
the objects, that mean that, the mass center of the
objects will have to be near.

The elastic band process works with parallel
and perpendicular configurations which are computed
around the obstacle.

Figure 7. A distance vector between is scaled until reach a

free configuration, approaching and moving the robot
away from the obstacle.

Figure 8. Elastic Band technique computes free
configurations close to the obstacle surface.

While the vector distance is computing the

next configuration to be tested, the robot is rotated on
its rotation axis, searching to find a free
configuration. Figure 7 and Figure 8 presents how the
parallel and perpendicular configurations are
computed around the obstacle and how the scalar
vector is changing, approaching and moving the robot
away from the obstacle.

As result of this method in Figure 9 presents
the final connectivity, we can see that, many
configurations around each obstacles are computed,
consequently a better connectivity of configuration
space is calculated, therefore, problems containing
narrow corridors can be solved.

3.5 Connecting Roadmap Candidates

We now consider how to connect the candidate nodes
N = Ui Ni to create the roadmap. The basic idea is to
use a simple, fast, local planner to connect pairs of
roadmap candidate nodes. To save space, the paths
found in this stage will not be recorded since they can
be regenerated quickly. After the connections are
made, the connected components in the roadmap are
identified, e.g., by depth first search.

Ideally, the roadmap will include paths
through all corridors in C-space. The degree to which

this goal can be met depends upon a number of
factors: the number and distribution of the candidate
nodes, the effectiveness of the simple planner, and
the number of connections attempted for each
candidate node. Thus, a trade-off exists between the
quality of the resulting roadmap and the resources
(computation and space) one is willing to invest in
building it.

Clearly, the method used to determine
adjacencies in the roadmap will depend upon the
intended use of the roadmap. In addition, as outlined
below, the connection strategy (i.e., determining
which connections to attempt) may vary from
application to application. In the following, k is a
parameter, and distances are measured according the
chosen metric in C-space.

Figure 9. The connectivity computed after the Elastic Band
process

Many different connection strategies could

be used in path planning applications. For example,
the method used in [9] is to try to connect each node
c(Vi) Є N to its k nearest neighbors in N. A strategy
that could be improved the chance of finding
connections across wide work-space corridor is as
follow. First, we define a far configuration which
was computed during the first approximation of the
roadmap, and we define a near configuration which
was obtained in the expanding the roadmap stage.

Next, for each node c Є Ni attempts to
connect it to its k nearest neighbors in N and to its k
farthest neighbors in N. Note that both of these
strategies require a non-trivial amount of computation
to determine the k closest and the k farthest nodes.
Thus, it might be desirable to use some heuristic
method to identify the “close” and “far” nodes.

4 Planning
Planning is carried out as in any roadmap method: we
attempt to connect the nodes x1 and x2, representing
the start and goal configurations, respectively, to the
same connected component of the roadmap, and then

find a path in the roadmap between these two
connection points. The following approach, proposed
in [9], is well suited for our roadmap.

First, the simple planner is used to try to
connect the start a goal nodes to the roadmap;
connections are attempted between x1 and the k -
closets and farthest roadmap nodes. If no connections
are made for xi, then we execute a random walk and
try to connect the initial or the end node to the
roadmap. This can be repeated a few times if
necessary. If we still can not to connect both nodes to
the same connected component of the roadmap, then
we declare failure. After both connections are made,
we find a path in the roadmap between the two
connection points using depth-first-search. Recall that
we must regenerate the path between adjacent
roadmap nodes since they are not stored with the
roadmap. Finally, smoothing techniques can be
applied to improve the resulting path.

5 Implementation Details
We implemented a path planner for a free flying
objects with six degrees of freedom in a three
dimensional workspace.

Generally, whenever there was a choice
between implementation options, we choice the
simplest method, which was often also the least
efficient. This strategy was taken in order to produce
a working prototype quickly and test the general
concept of our approach.

Our implementation use this metric in both
the roadmap connection and the planning phases to
select the candidate nodes.

Number of candidate nodes. For simplicity, we
attempt to generate the same number of candidate
nodes for each obstacle. We did this by a uniform
randomized sampling of c nodes around the obstacle.
In our experiments c=25. Even if as previously
mentioned, for each of these nodes a number of 50
configurations are attempted during the elastic band
process. Thus, the method is computing around 75
nodes for each obstacle, even few of them are free
configurations.

Collision detection. The dominant operation in the
creation of the roadmap is collision detection: it is
heavily used both in the node generation and in the
roadmap connection phases. Thus, its efficiency is of
vital importance to the overall efficiency of the
method. So, collision detection was performed with
the Rapid library [14].

Interconnection strategy. In the interconnection
phase, we would like to connect all the roadmap
candidate nodes into a single connected component.
Clearly, the interconnection strategy chosen can
greatly effect how close we come to this goal. Recall
that, we have a set Ni of roadmap candidate nodes for
each obstacle Vi in the workspace. The basic
approach we have taken is to attempt to connect each
node c Є Ni to its k nearest neighbors in N and to its k
farthest neighbors in N, where k is a constant.
Clearly, the larger k, the greater chance of
connection, but also the more computation
surrounded; for our experiments k=25.

Note that both of these strategies require a
non-trivial amount of computation to determine the k
closest and the k farthest nodes.

Local Planner. The local planner is used in both the
roadmap connection phase of the preprocessing and
in the planning. The efficiency of the local planner is
of crucial importance since the roadmap connection
phase required orders of magnitude more time than
any other part of the preprocessing. On the other
hand, the local planner most also be deterministic
since we do not want to store the paths connecting
nodes in the roadmap. Thus, great care should be
taken in selecting this planner and different methods
will be needed in different situations.

We used the following simple planner. Let x
and y be two configurations we wish to connect. The
local planner we tried was to move directly along the
straight line segment connecting x and y in
workspace, performing collision detection checks at
uniform intervals on the line segment. The distance
between subsequent points checked is determined by
the resolution needed for the current problem
instance.

Figure 10. Env1: Reggiani's Benchmark. The robot is
represented as “L”.

6 Experimental Results
We implemented a path planner for free flying
objects with six degrees of freedom in a three
dimensional workspace. The code was written in C++
on PC Intel Pentium 4, the CPU was a 2.4 Ghz with
512MB of RAM.

In the following, we analyze the performance
of the method (this performance is seen since the
capability of the method to solve the problems) on
few scenes. In all cases we used a free-flying object
robot with six dof. The various environments, and
some representative configurations of the robot, are
shown in Figures 10,11 and 12. Note that the
roadmap size is influenced by the number of
obstacles in the workspace since a set of roadmap
nodes is generated for each obstacle, i.e., the size of
the network is related to the complexity of the
environment. The three samples shown are presented
as result of the technique applied on the problems.
We present three problems, they have different
difficult level. The problems are labeled as Env1,
Env2 and Env3. Below we discuss the environments
in more detail.
Env1: This environment contains two grids, and the
robot is represented by “L”. The obstacles are placed
in such a way that there are many narrow corridors
between them. This roadmap is not easy to calculate,
because the distance between the grids is small and
the size of the robot is big. We can see in Figure 10
the solution computed by the algorithm. This sample
is a Reggiani's Benchmark.
Env2: This scene is presented with two obstacles and
we can see that the form of the robot is more
complex. There is a narrow corridor which becomes
difficult to solve, nevertheless, the heuristic is able to
find a path which goes through the corridor. The
Figure 11 presents this problem and some
configurations on the environment. This sample is a
Kavraki's Benchmark.
Env3: This problem is well known as the “alpha
puzzle” problem. There exist several different
versions of this problem [2]. The Figure 11 presents
the solution for the 1.5 version of the problem. This
problem have the difficult of having few
configurations into the corridor, therefore its
solutions is very complicated. Our method is able to
find a path to solve it. In the Figure 12 some
configurations into the corridor are shown.
 The Figure 13 presents a table where we can see the
performance of this new approach compared to our
implementation of the PRM [11]. The numbers show
how the new technique is able to solve the three
samples. We test both algorithms using

approximately the same number of configurations on
the roadmap.

Figure 11. Env2: Kavraki's Benchmark. The form which

the robot presented is more complex.

Figure 12. Env3: Amato's Benchmark. The alpha puzzle

problem version 1.5

Figure 13. Table of results, comparing the Basic PRM and

The Elastic Band Technique.

4 Conclusion
We have described a new randomized roadmap
method for motion planning for collision free path
planning. To test the concept, we implemented the
method for path planning for “free flying object” in a

three-dimensional space. The method was shown to
perform well. Currently, we keep on working on the
free flying objects problems, and we are working to
show the probabilistic completeness of this method.

References:

[1] J.M. Ahuactzin and K.Gupta. A motion planning

based approach for inverse kinematics of
redundant robots: The kinematic roadmap. In
Proc. IEEE Internat. Conf. Robot. Autom., pages
3609-3614, 1997.

[2] N. Amato. Motion Planning Puzzels Benchmarks.

http://parasol.tamu.edu/~amato/

[3] N. Amato, B. Bayazit, L. Dale, C. Jones, and D.

Vallejo. Obprm: An obstacle-based prm for 3D
workspaces. In P.K. Agarwal, L. Kavraki, and M.
Mason, editors, Robotics: The Algorithm
Perspective. AK Peters, 1998.

[4] N. M. Amato and Y. Wu. A randomized roadmap

method for path and manupulation palnning. In
Proc. IEEE Internat. Conf. Robot. Autoum,. Pages
113-120, Mineapolis, MN, April 1996.

[5] J. Barraquand and J.C. Latombe. Robot motion

planning: A distributed representation approach.
Internat. J. Robot. Res., 10(6):628-649,1991.

[6] J. Barraquad, B. Langlois, and J.C. Latombe.

Numerical potential field techniques for robot
path planning. IEEE Trans. Sys., Man, Cybern.,
22(2):224-241,1992.

 [7] D.J. Challou, M. Gini, and V.Kumar. Parallel

search algorithms for robot motion planning. In
Proc. IEEE Internat. Conf. Robotics and
Automation. (ICRA), volume 2, pages 46-51,1993.

[8] D. Halperin, L. E. Kavraki, and J.-C. Latombe.

Robotics. In J. Goodman and J. O'Rourke,
editors, Discrete and Computational Geometry.,
pages 755-778. CRC Press, NY, 1997.

[9] L. Kavraki and J.-C. Latombe. Randomized

preprocessing of configuration space for fast path
planning. In Proc. IEEE Internat. Conf. Robotics
and Automation., pages 2138-2145, San Diego,
CA, 1994.

[10] L. Kavraki and J. C. Latombe. Probabilistic

roadmaps for robot path planning. In K. G. and A.

P. del Pobil, editor, Practical Motion Planning in
Robotics: Current Approaches and Future
Challenges, pages 33-53. John Wiley, West
Sussex, England, 1998.

[11] L. Kavraki, P. Svestka, J.C. Latombe, and M.

Overmars. Probabilistic roadmaps for path
planning in high-dimensional configuration
spaces. In Proc. IEEE Internat. Conf. Robot.
Autoum,. 12(4): 566-580, August 1996.

[12] J.J. Kuffner Jr. and S.M LaValle. RRT-connect:

An efficient approachto single-query path
planning. In Proc. IEEE Internat. Conf. Robot.
Autoum,., 2000.

[13] D. Hsu, R. Kindel, J.C. Latombe, and S. Rock.

Randomized Kynodinamic Motion Planning with
Moving Obstacles. In Algorithmic and
Computational Robotic: New Directions, B.R.
Donald, K.K. Lynch, and D. Rus (eds.), AK
Peters , Natik, MA, pages 246-254, 2001.

[14] M. Lin, D. Manocha, J. Cohem and S.

Gottschalk. Collision detection: Algorithms and
applications. In Algorithms for Robotic Motion
and Manipulation (WAFR96)}, JP. Laumond and
M. Overmars \(Eds\), AK Peters 1997.

[15] T. Lozano-Pérez. Spatial planning: a

configuration space approach. IEEE Tr. On
Computers, 32:108-120, 1983.

[16] M. Overmars and P. Svestka. A probabilistic

learning approach to motion planning. In Proc.
Workshop on Algorithmic Foundations of
Robotics., pages 19-37 1994.

[17] S. A. Wilmarth, N. M. Amato, and P. F. Stiller.

Maprm: A probabilistic roadmap planner with
sampling on the medial axis of the freespace. In
Proc. IEEE Int. Conf. Robot. and Autom., Detroit,
MI, 1999.

