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Abstract: - This paper presents a new strategy for computing useful configurations; using a probabilistic 
roadmap method for free flying objects in a known indoor environment. We introduce two geometric features 
based on straightness and volume characteristics, which can be extracted of the geometry form of the objects into 
the environment. We describe a new method for sampling difficult configurations into narrow corridors taking 
advantage of these features.  Simulation results using different benchmarks in motion planning show the 
potential of our approach. 
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1   Introduction 
Designing a path planer is a central topic in robotics 
research. The ultimate goal of a path planner is to 
produce a valid path from an initial to a final 
configuration. However, the discrepancies between 
the geometric virtual world where the actions are 
planned, and the mechanical world where the robot 
operate, constrain the selection of actions which can 
be included in a solution path. 

An important issue in PRM planners is the 
method for choosing the random configurations for 
the construction of the roadmaps. Recent works have 
considered many alternatives to a uniform random 
distribution of configurations as means for dealing 
with the narrow passage problem. A resampling step, 
creating additional nodes in the vicinity of nodes that 
are connected with few others, is shown in [10]. 
Nodes close to the surface of the obstacles are added 
in [3]. A dilation of the configuration space has been 
suggested in [8], as well as an in depth analysis of the 
narrow passage problem. In [17] a procedure for 
retracting configurations onto the free  
space medial axis is presented. In [4] a probabilistic 
method for choosing configurations close to the 
obstacles is presented. 

Probabilistic roadmap (PRM) have proven to 
be an effective tool to capture the connectivity of a 
robot's collision-free space and solve path-planning 
problems with many degrees of freedom (dofs) 
[1,3,9] and/or complex admissibility (e.g., 
nonholonomic, stability, dynamic, and visibility 
constrains) [12,13,16]. A PRM planner samples the 
configuration space at random and retains the 
collision-free point as free configurations. The free 
configurations and local paths form the probabilistic-
roadmap. The motivation is that it is often 

impractical to explicitly compute the collision free 
subset (the free space) of a configuration space. 

Several promising heuristics for path 
planning have been proposed, of which we mention a 
few here. The Randomized Path Planner (RPP) of 
Barraquand and Latombe [5] is a potential field 
method that uses random walks to attempt to escape 
local minima. Although this method has been shown 
to work well for many dof robots, there exist simple 
situations in which it performs poorly (i.e., does not 
find a solution) [7,9].  Researchers have proposed 
various potential functions (e.g., [6]) and other 
techniques. In general, potential field methods can be 
quite effective when the configuration space (C-
space) [15] is relatively uncluttered. However, they 
have not been as successful for planning in crowed C-
space.  
 
2   Our Results 
We propose a new algorithm which combines these 
two approaches by generating random networks 
whose nodes lie on the obstacles surface. Our central 
observation is that it is possible improve the 
connectivity of configuration space using geometric 
features on the workspace to find free configurations 
close to the obstacles. The main novelty in our 
approach is a new method for generating roadmap 
candidate points. In particular, we attempt to generate 
candidate points distributed around each obstacle on 
work-space taking advantage on their geometric 
features. Using this approach, high quality roadmaps 
can be obtained even when work-space is crowded. 
Experimental results with free flying objects with six 
degrees of freedom (dof) will be shown. 

The approach extends fairly easily to 
dynamic environments. Our approach can be applied 



to some important situations that have so far not been 
satisfactorily solved by heuristic methods (Paths 
through long, narrow passages in crowded Work-
space can be found).. 
 
3   Building the Roadmap 
3.1 Problem Constrains 
 
This work takes account several constrains on the 
motion planning problem, first the heuristic is focus 
to solve the planning problem for free flying objects 
into a three dimensional space. Second, the technique 
assumes the size of the bodies which conform the 
environment (including the robot) are relatively small 
than the environment size, besides we assume an 
obstacle can be formed by several small ones. This 
proposal does not compute the geometric features 
which it is using, the technique assumes that this 
characteristics can be extracted and are used to 
approximate the form of the bodies defined into the 
environment (given the constrains mentioned before). 
The last constrains allow to take advantage of the 
bodies form, because as we already said, an obstacle 
can be built by others small ones, therefore the 
straightness and volume features are defined for each 
one. The Figure 1 shows how this features are 
defined for each part of the obstacle (where the 
obstacles is a grid). 

 
Figure 1. A big obstacle can be separeted into small ones, 

this is a good advantage on the present approach 
 

 
Figure 2. Defining important features on the geometry 

objects 

3.2 Algorithm Desciption 
 
The description of the algorithm is divided into three 
parts: first approximation of the configuration space, 
improving the connectivity using geometric features 
and planning. The following sections describe how 
the algorithm works and we give some details about 
its implementation. Some figures are included to 
show the main idea behind this new technique. 

The algorithm is based on geometric features 
of the obstacles and the robot, as we said in previous 
section. We describe the method including a first 
sampling stage and an algorithm to improve the 
connectivity. 

 
3.3 Definitions and Geometric Features 
 
Let  V = V0,...,Vn be a set of obstacles in the 
workspace W. Let ri be the radius associate to the 
sphere which involve each body in the workspace 
(including the robot). 

Let di be the distance between two 
configurations, one of them associate to the robot and 
the another one associate to the obstacle Vi. 

Let c(Vi) be the random configuration 
computed by the heuristic using the obstacle Vi.  

The workspace is read from different files, 
these files contain the triangle meshes which 
represent the geometry of each body into the 
workspace. Using such representation, the algorithm 
computes several parameters which will be used by 
the heuristic and are defined as following: 

 
Mass Center. This metric is calculated as the average 
of the xs, ys, and zs values of the vertex for a body into 
the environment. This parameter might not be placed 
into the object. 
The Body Radius. This parameter is computed using 
the distance between the center mass and the farest 
vertex into the object. This metric is used to calculate 
the sphere which the object will be surrounded. The 
Figure 2 shows how radius is used to obtain the 
sphere to surround the body. 
Straightness. Let qi be the vector which define the 
direction of the “straightness” feature for each Vi Є 
B, and qri will define the same feature on the robot. 
This feature indicates the direction which the body 
presents its long side. The Figure 3 shows how this 
feature can be see for an object. 
Volume. Let voli be the “volume” of the obstacle Vi 
with respect the volume of the sphere used to 
surround it. Both, the “straightness" and “volume" 
features are used to improve the connectivity of the 
roadmap and the Figure 2 shows a geometric 
representation of this parameter. 



 
Figure 3. The rotation axis is defined in the same direction 

of the straightness feature. 

 
 

Figure 4. First approximation using spheres surrounding 
the robot and computing a reduced number of 

configurations. 
 
 
3.4 Building the Roadmap 
 
The roadmap is an undirected graph R=(N,E). The 
nodes in N are a set of configurations of the robot 
appropriately chosen over the free C-space. The 
edges in E correspond to (simple) paths; an edge 
between two nodes corresponds to a feasible path 
connecting the relevant configurations. These paths 
are computed by an extremely fast, though not very 
powerful planner, called the local planner. During the 
query phase, the roadmap is used to solve different 
path planning problems in he input scene. Given a 
start configuration qinit and a goal configuration qgoal, 
the method first tries to connect qinit  and qgoal to some 
two nodes qinit' and qgoal' Є N. If successful, it then 
searches R for a sequence of edges in E connecting 
qinit' to qgoal'. Finally, it transforms this sequence into a 
feasible path for the robot by recomputing the 
corresponding local paths and concatenating them. 
First Approximation. During this stage, the 
algorithm uses spheres to surround the robot. The 
Figure 4 presents the view of the first sampling (in all 
the figures we are presenting the explications in a two 
dimensional space). Using spheres (or circles into 
two dimensional space), we have two advantages, 

first the robot has the characteristic to rotate in any 
direction (α , β, λ), which will be used for the local 
planner in the improving stage, and second, the cost 
of collision detection is reduced, because the routine 
is limited to detect when two spheres are in collision 
(the sphere associated to each obstacle and the other 
one associated to the robot). In this process just a 
small number of configurations will be computed. 
Expanding the Roadmap. If the number of nodes 
computed during the first approximation of the 
roadmap is large enough, the set N gives a fairly 
uniform covering of Cfree. In easy scenes R is well 
connected. But in more constrained ones where Cfree 
is actually connected, R often consists of a few large 
components and several small ones. It therefore does 
not effectively capture the connectivity of Cfree . 

The purpose of the expansion is to add more 
nodes in a way that will facilitate the formation of the 
large components comprising as many of the nodes as 
possible and will also help cover the more difficult 
narrow parts of Cfree. The identification of these 
difficult parts of Cfree is no a simple matter and the 
heuristic that we propose below goes only a certain 
distance in this direction. 

In this phase, we generate a set N of 
candidate roadmap nodes, each of which corresponds 
to a point in C-space. The general strategy of the 
node generation process is to construct a set Ni of 
candidate nodes for each object Vi such that each 
c(Vi) Є Ni lies near to obstacle Vi . The set of roadmap 
candidate nodes is the union of the candidate sets 
computed for each obstacle Vi Є B, i.e., N = Ui Ni. 
We now consider how to compute the candidate set 
for each obstacle. To obtain a high quality roadmap 
we would like the nodes to be uniformly distributed 
around the obstacles and close to them. This 
technique attempt to take advantage of some 
geometric features of the robot and the obstacles to 
obtain information that allows guide the search of 
useful configurations. 

The first geometric feature used is called 
“Straightness". This feature indicates the direction 
on which the object presents its long side and it is 
given by a vector vi , which we have used as the 
direction of the rotation axis. The Figure 3 shows the 
way which the rotation axis is represented on the 
robot and the obstacles. We can see that the object 
will sweep a minor area as result of defining the 
rotation axis in the same direction of the straightness 
feature. 

The second geometric feature used is 
“Volume". This feature give to the algorithm an 
approximation about how big is the object respect the 
volume of the sphere which is surrounded. After 
several empirical tests, we have computed the values 



for the MAX and MIN parameters, which will be 
used to calculate a scale factor to be used in the next 
stept of the heuristic called for us the elastic band 
process. The values in the Figure 5 presents these 
results. 

If the volume feature is small, that means 
that, its value is less than 25% of the volume sphere 
then we can think the object is very thin, therefore, 
many configurations can be computed near to its 
mass center. 

 

 
 

Figure 5. MAX and MIN values obtained using the volume 
feature after several empirical experiments. 
 
 

 
 

Figure 6. Parallel and perpendicular configurations around 
the obstacle. 

 
Finding points close to the obstacles. We now 
consider how to generate $m$ points close to the Vi. 
For now, assume that we know the number of points 
we wish to obtain. Ideally, these m points should be 
uniformly distributed around the Vi. Using 
straightness feature, we propose the heuristic method 
outlined below to generate the points. 
 
1. First, the algorithm search a collision configuration 
c(Vi) on the Vi obstacle, such c(Vi) is calculated 
uniformly distributed around the sphere which the 
obstacle is surrounded (a vicinity for each Vi is 
defined). 
 

2. Next, the technique attempts rotate this 
configuration until it will be parallel to the obstacle 
(that is vri ║ vi), if the parallel configuration is not in 
collision then it is added to Ni, else the process called 
elastic band is applied searching to turn it in free 
configuration, which will lie close to the Vi obstacle. 
 
3. Once a parallel configuration has been processed, 
the algorithm computes the perpendicular 
configuration (that means that vri ┴ vi ) taking the 
c(Vi) calculated in step 1. In the same way like in step 
2, if the new perpendicular configuration is not in 
collision then it is added to Ni, else the elastic band 
process is applied. The Figure 6, shows how the 
parallel and perpendicular configurations can be seen 
around the Vi. 
The Elastic Band Process This process works as 
following, first it calculates the distance vector di 
between the obstacle position and the c(Vi) 
configuration, and attempt to approach and moving 
away the robot with respect to the obstacle. To 
compute this operation, the process scale the di vector 
to calculate the next position where the c(Vi )will be 
placed. The next algorithm describes this process.  
 
Elastic Band Heuristic  
 
1.    ri = radius of i-obstacle 
2.    ci_init = position of the i-obstacle 
3.   robot.get_parameters (MAX,MIN) Volume feature 
4.   k=0 
5.   di = distance vector between Bi- and the robot 
6.  do 
7.      scalar = random between ( MAX and MIN ) 
8.      scale(di, escalar) the distance vector is scaled 
9.      c(Bi)=get_configuration_with_position (di) 
10.    rotate_robot_on_rotation_axis()    Straightness  

feature 
11.    k=k+1 
12. while ( c(Bi) is not  free and k < CTE ) 
13. add_configuration  c(Bi)  to the roadmap 

 
The metric used to obtain the vector distance is the 
Euclidean distance in three dimensional space, and 
the scale factor is computed using the “volume” 
feature of the objects, see Figure 5. Thus, the scale 
factor will be able to be initialized since a low value 
(scale=MIN). This value has an important role, 
because we are interesting in configurations close to 
the objects, that mean that, the mass center of the 
objects will have to be near. 

The elastic band process works with parallel 
and perpendicular configurations which are computed 
around the obstacle.  



 
Figure 7. A distance vector between is scaled until reach a 

free configuration, approaching and moving the robot 
away from the obstacle. 

 

 
 

Figure 8. Elastic Band technique computes free 
configurations close to the obstacle surface. 
 
While the vector distance is computing the 

next configuration to be tested, the robot is rotated on 
its rotation axis, searching to find a free 
configuration. Figure 7 and Figure 8 presents how the 
parallel and perpendicular configurations are 
computed around the obstacle and how the scalar 
vector is changing, approaching and moving the robot 
away from the obstacle. 

As result of this method in Figure 9 presents 
the final connectivity, we can see that, many 
configurations around each obstacles are computed, 
consequently a better connectivity of configuration 
space is calculated, therefore, problems containing 
narrow corridors can be solved. 
 
3.5 Connecting Roadmap Candidates 
 
We now consider how to connect the candidate nodes 
N = Ui Ni to create the roadmap. The basic idea is to 
use a simple, fast, local planner to connect pairs of 
roadmap candidate nodes. To save space, the paths 
found in this stage will not be recorded since they can 
be regenerated quickly. After the connections are 
made, the connected components in the roadmap are 
identified, e.g., by depth first search. 

Ideally, the roadmap will include paths 
through all corridors in C-space. The degree to which 

this goal can be met depends upon a number of 
factors: the number and distribution of the candidate 
nodes, the effectiveness of the simple planner, and 
the number of connections attempted for each 
candidate node. Thus, a trade-off exists between the 
quality of the resulting roadmap and the resources 
(computation and space) one is willing to invest in 
building it. 

Clearly, the method used to determine 
adjacencies in the roadmap will depend upon the 
intended use of the roadmap. In addition, as outlined 
below, the connection strategy (i.e., determining 
which connections to attempt) may vary from 
application to application. In the following, k is a 
parameter, and distances are measured according the 
chosen metric in C-space. 

 

 
 

Figure 9. The connectivity computed after the Elastic Band 
process 

 
Many different connection strategies could 

be used in path planning applications. For example, 
the method used in [9] is to try to connect each node 
c(Vi) Є N to its k nearest neighbors in N. A strategy 
that could be improved the chance of finding 
connections across wide work-space corridor is as 
follow. First, we define a far configuration which 
was computed during the first approximation of the 
roadmap, and we define a near configuration which 
was obtained in the expanding the roadmap stage. 

Next, for each node c Є Ni attempts to 
connect it to its k nearest neighbors in N and to its k 
farthest neighbors in N. Note that both of these 
strategies require a non-trivial amount of computation 
to determine the k closest and the k farthest nodes. 
Thus, it might be desirable to use some heuristic 
method to identify the “close” and “far” nodes. 

 
 
4   Planning 
Planning is carried out as in any roadmap method: we 
attempt to connect the nodes x1 and x2, representing 
the start and goal configurations, respectively, to the 
same connected component of the roadmap, and then 



find a path in the roadmap between these two 
connection points. The following approach, proposed 
in [9], is well suited for our roadmap. 

First, the simple planner is used to try to 
connect the start a goal nodes to the roadmap; 
connections are attempted between x1 and the k - 
closets and farthest roadmap nodes. If no connections 
are made for xi, then we execute a random walk and 
try to connect the initial or the end node to the 
roadmap. This can be repeated a few times if 
necessary. If we still can not to connect both nodes to 
the same connected component of the roadmap, then 
we declare failure. After both connections are made, 
we find a path in the roadmap between the two 
connection points using depth-first-search. Recall that 
we must regenerate the path between adjacent 
roadmap nodes since they are not stored with the 
roadmap. Finally, smoothing techniques can be 
applied to improve the resulting path. 
 
 
5   Implementation Details 
We implemented a path planner for a free flying 
objects with six degrees of freedom in a three 
dimensional workspace.  

Generally, whenever there was a choice 
between implementation options, we choice the 
simplest method, which was often also the least 
efficient. This strategy was taken in order to produce 
a working prototype quickly and test the general 
concept of our approach. 

Our implementation use this metric in both 
the roadmap connection and the planning phases to 
select the candidate nodes. 

 
Number of candidate nodes. For simplicity, we 
attempt to generate the same number of candidate 
nodes for each obstacle. We did this by a uniform 
randomized sampling of c nodes around the obstacle. 
In our experiments c=25. Even if as previously 
mentioned, for each of these nodes a number of 50 
configurations are attempted during the elastic band 
process. Thus, the method is computing around 75 
nodes for each obstacle, even few of them are free 
configurations. 
 
Collision detection. The dominant operation in the 
creation of the roadmap is collision detection: it is 
heavily used both in the node generation and in the 
roadmap connection phases. Thus, its efficiency is of 
vital importance to the overall efficiency of the 
method. So, collision detection was performed with 
the Rapid library [14]. 
 

Interconnection strategy. In the interconnection 
phase, we would like to connect all the roadmap 
candidate nodes into a single connected component. 
Clearly, the interconnection strategy chosen can 
greatly effect how close we come to this goal. Recall 
that, we have a set Ni of roadmap candidate nodes for 
each obstacle Vi in the workspace. The basic 
approach we have taken is to attempt to connect each 
node c Є Ni to its k nearest neighbors in N and to its k 
farthest neighbors in N, where k is a constant. 
Clearly, the larger k, the greater chance of 
connection, but also the more computation 
surrounded; for our experiments k=25. 

Note that both of these strategies require a 
non-trivial amount of computation to determine the k 
closest and the k farthest nodes. 
 
Local Planner. The local planner is used in both the 
roadmap connection phase of the preprocessing and 
in the planning. The efficiency of the local planner is 
of crucial importance since the roadmap connection 
phase required orders of magnitude more time than 
any other part of the preprocessing. On the other 
hand, the local planner most also be deterministic 
since we do not want to store the paths connecting 
nodes in the roadmap. Thus, great care should be 
taken in selecting this planner and different methods 
will be needed in different situations. 
 

We used the following simple planner. Let x 
and y be two configurations we wish to connect. The 
local planner we tried was to move directly along the 
straight line segment connecting x and y in 
workspace, performing collision detection checks at 
uniform intervals on the line segment. The distance 
between subsequent points checked is determined by 
the resolution needed for the current problem 
instance. 

 

 
 

Figure 10. Env1: Reggiani's Benchmark. The robot is 
represented as “L”. 

 



 
6   Experimental Results 
We implemented a path planner for free flying 
objects with six degrees of freedom in a three 
dimensional workspace. The code was written in C++ 
on PC Intel Pentium 4, the CPU was a 2.4 Ghz with 
512MB of RAM. 

In the following, we analyze the performance 
of the method (this performance is seen since the 
capability of the method to solve the problems) on 
few scenes. In all cases we used a free-flying object 
robot with six dof. The various environments, and 
some representative configurations of the robot, are 
shown in Figures 10,11 and 12. Note that the 
roadmap size is influenced  by the number of 
obstacles in the workspace since a set of roadmap 
nodes is generated for each obstacle, i.e., the size of 
the network is related to the complexity of the 
environment. The three samples shown are presented 
as result of the technique applied on the problems. 
We present three problems, they have different 
difficult level. The problems are labeled as Env1, 
Env2 and Env3. Below we discuss the environments 
in more detail. 
Env1: This environment contains two grids, and the 
robot is represented by “L”. The obstacles are placed 
in such a way that there are many narrow corridors 
between them. This roadmap is not easy to calculate, 
because the distance between the grids is small and 
the size of the robot is big.  We can see in  Figure 10 
the solution computed by the algorithm. This sample 
is a Reggiani's Benchmark. 
Env2: This scene is presented with two obstacles and 
we can see that the form of the robot is more 
complex. There is a narrow corridor which becomes 
difficult to solve, nevertheless, the heuristic is able to 
find a path which goes through the corridor. The 
Figure 11 presents this problem and some 
configurations on the environment. This sample is a 
Kavraki's Benchmark. 
Env3: This problem is well known as the “alpha 
puzzle” problem. There exist several different 
versions of this problem [2]. The Figure 11 presents 
the solution for the 1.5 version of the problem. This 
problem have the difficult of having few 
configurations into the corridor, therefore its 
solutions is very complicated. Our method is able to 
find a path to solve it. In the Figure 12 some 
configurations into the corridor are shown. 
 The Figure 13 presents a table where we can see the 
performance of this new approach compared to our 
implementation of the PRM [11]. The numbers show 
how the new technique is able to solve the three 
samples. We test both algorithms using 

approximately the same number of configurations on 
the roadmap. 
 

 
Figure 11. Env2: Kavraki's Benchmark. The form which 

the robot presented is more complex. 
 

 
Figure 12. Env3: Amato's Benchmark. The alpha puzzle 

problem version 1.5 
 

 
Figure 13. Table of results, comparing the Basic PRM and 

The Elastic Band Technique. 
 
4   Conclusion 
We have described a new randomized roadmap 
method for motion planning for collision free path 
planning. To test the concept, we implemented the 
method for path planning for “free flying object” in a 



three-dimensional space. The method was shown to 
perform well. Currently, we keep on working on the 
free flying objects problems, and we are working to 
show the probabilistic completeness of this method. 
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