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Abstract

In [Appl. Math. Comput. In press] a reducing index method
has been proposed for some cases of semi-explicit DAEs(differential
algebraic equations). In this paper, this method is generalized to
more cases. Also, numerical implementation of generalized method
is presented by pseudospectral method. In addition, aforementioned
methods will be considered by one example.
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1 Introduction

It is well known that differential algebraic equations can be difficult to solve
when it has a higher index (index greater than one, [1]). Higher index DAEs
are ill posed and an alternative treatment is the use of index reduction meth-
ods (see, e.g., [4,5,7,10]), whose essence is the repeated differentiation of the
constraint equations until a low-index problem (an index-1 DAEs or ordinary
differential equations ) is obtained. But repeated index reduction by direct
differentiation leads to instability of the resulting ODE, and this causes drift-
off the numerical error in the original constraint grows. In this case, stabi-
lized index reduction methods were used to overcome the difficulty. In [3,8,9],
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for some cases of linear semi explicit DAEs, with higher index, an efficient
reducing index method was proposed which has not need to the repeated
differentiation of the constraint equations. This method was well solved the
DAEs with and without constraint singularities and them were numerically
solved by pseudospectral method with and without domain decomposition.
Here, this proposed reducing index method is extended to general case of
linear semi explicit DAEs.

Now consider a linear (or linearized) semi-explicit DAEs:

X(m) =
∑m

j=1 AjX
(j−1) + By + q, (1a)

0 = CX + r, (1b)

where, Aj, B and C are smooth functions of t, t0 ≤ t ≤ tf , Aj(t) ∈
Rn×n, j = 1, ...,m,B(t) ∈ Rn×k, C(t) ∈ Rk×n, n > k, n ≥ 2, and CB is
nonsingular (the DAEs has index m + 1). The homogeneities are q(t) ∈ Rn

and r(t) ∈ Rk. Early in [3,8,9] , for k = 1, the index of problem (1) has been
reduced by introducing a simple formulation. In this paper, we will reduce
the index of (1) when k > 1. For this reason, we put

y = (CB)−1C[X
(m) −∑m

j=1 AjX
(j−1) − q], (2)

and by substituting (2) into (1.a), we obtain an implicit DAE which has
index m, as follows,

∑m
j=0 EjX

(j) = q̂, (3)

where Ej(t) ∈ Rn×n, j = 0, 1, ...,m, and except E0(t), others are singular
matrices. Note that system (3) has k equations less than system (1).
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2 A simple formulation for index reduction

In this section, DAEs (1) is considered when m = 1 and k = 2. To extend it
to general case (1) is easy. Now consider the Hessenberg index-2 system,

X
′
= AX + By + q, (4a)

0 = CX + r. (4b)

where, A = (aij)n×n, B = (bij)n×2, C = (cij)2×n, n ≥ 3 and

det(CB(t)) 6= 0 t ∈ [t0, tf ] (5)

From (4a) and (5), we can write

y = (CB)−1C[X
′ − AX − q], t ∈ [t0, tf ] (6)

and substituting (6) into (4a), implies,

X
′
= AX + B(CB)−1C[X

′ − AX − q] + q.

So, problem (4) transforms to the system:

det(CB(t))[I −B(CB)−1C][X
′ − AX − q] = 0, (7a)

CX + r = 0, (7b)

Here, the overdetermined system (7) will be transformed to a full rank
DAE system with n equation and n unknowns which has index one.

Theorem 1. The index-2 DAE system (4), with n=3, is equivalent to
index-1 DAE system (8),[

M
0

]
X

′
+

[
−MA

C

]
X =

[
Mq
−r

]
, (8)

such that,
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M =
[

b21b32 − b22b31 b12b31 − b11b32 b11b22 − b12b21

]
, (9)

Proof : As it is seen, the DAE system (4) is transformed to overdeter-
mined system (7) by using (6). Since n = 3, we have,

det(CB(t)) = (c11c22 − c12c21) (b11b22 − b12b21)+(c11c23 − c13c21) (b11b32 − b12b31) +
(c12c23 − c13c22) (b21b32 − b22b31) ,

Now, if we define

c1 = c11c22 − c12c21, c2 = c11c23 − c13c21, c3 = c12c23 − c13c22,
b1 = b11b22 − b12b21, b2 = b11b32 − b12b31, b3 = b21b32 − b22b31,

then we can rewrite det(CB(t)) as below,

det(CB(t)) = (c1b1 + c2b2 + c3b3)(t) 6= 0. t ∈ [t0, tf ] (10)

Also, we have

Mn×n = det(CB(t)) [I −B(CB)−1C] = c3b3 −c3b2 c3b1

−c2b3 c2b2 −c2b1

c1b3 −c1b2 c1b1

 , (11)

(10) and (11) imply that rank(M) = 1. In addition, if we define M =[
b3 −b2 b1

]
, by considering (7), we have

M
[
X

′ − AX − q
]

= 0,
CX + r = 0,

and it implies that[
M
0

]
X

′
+

[
−MA

C

]
X =

[
Mq
−r

]
,

So, the overdetermined system (7) is transformed to system (8), with 3
equations and unknowns. In continuation, we must show that the system
(8) is full rank and has index 1. For this reason, it is sufficient to show that
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[
M
C

]
n×n

is nonsingular (according to algorithm (4.1) mentioned in [7]). But

by computing the determinant of

[
M
C

]
n×n

, we have

det

([
M
C

])
= det (CB(t)) 6= 0. t ∈ [t0, tf ]

Hence, by theorem 1 a simple formulation is presented to reduce the index
of DAE system (4) when n = 3. For n > 3, to present a simple formulation,
as well as n = 3, is not possible and to reduce the index of (4), it is need to
impose a condition as below.

Theorem 2: Consider the index-2 DAEs system (4) with n=4, the i− th
and j − th rows of M = det(CB(t)) [I −B(CB)−1C] are linearly dependent
to other rows of M if

(c1ic2j − c1jc2i) (t) 6= 0 t ∈ [t0, tf ] (12)

Proof :Through using a Maple program, we conclude that

det(CB(t)) =
∑4−1

i=1

∑4
j=i+1 (c1ic2j − c1jc2i) (bi1bj2 − bj1bi2) , (13)

and if M is obtained by eliminating the i− th and j− th rows of M , then
we have rank(M) = rank(M) = 2.

In addition we have

det

([
M
C

])
= (c1ic2j − c1jc2i)× det2(CB),

which it implies that

rank

([
M
C

]
4×4

)
= 4.

Hence, the obtained system,
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M
[
X

′ − AX − q
]

= 0,
CX + r = 0,

is full rank and has index 1. It must be noted that, since det(CB(t)) 6= 0,
hence according to (13), there exist i and j such that condition (12) is hold.
Also the above discussion can be easily extended to DAEs problem with con-
straint singularities( according to [8]) and to reduce index of problem (4)
with k ≥ 3 we can apply the similar way by using an appropriate maple
program.

3 Implementation of numerical method

Here, the implementation of pseudospectral method is presented for DAEs
systems (4) and (8). This discussion can simply be extended to general forms
(1) and (3). Now consider the DAEs systems,

∑3
j=1 fj(t)x

′
j +

∑6
j=4 fj(t)xj−3 = q̂(t), (14a)∑3

j=1 cij(t)xj = −ri(t), i = 1, 2 (14b)

with initial condition,

x1(t0) = α, (15)

For an arbitrary natural number ν, we suppose that the approximate so-
lution of DAEs systems (14) is as below,

xj(t) =
∑ν

i=0 ai+(j−1)×(ν+1)Ti(s), j = 1, 2, 3 s ∈ [−1, 1] (16)

where

t = h(s) =
tf−t0

2
s +

tf+t0
2

, (17)

where a = (a0, a1, ..., a3ν+2)
t ∈ R3ν+3 and {Tk}∞k=0 is sequence of Cheby-

shev polynomials of the first kind. Here, the main purpose is to find vector
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a. Now, by using (17), we rewrite system (14) and (15), as below,

∑3
j=1

ds
dt

fj(h(s))x
′
j +

∑6
j=4 fj(h(s))xj−3 = q̂(h(s)), s ∈ [−1, 1] (18a)∑3

j=1 cij(h(s))xj = −r(h(s)), i = 1, 2 (18b)
x1(−1) = α, (18c)

By substituting (16) into (18) we have( for more details refer to [2,3])

∑3ν+2
i=0 aiΦi(s) ≈ q̂(s), (19a)∑3ν+2
i=0 aiΨij(s) ≈ −rj(s), j = 1, 2 (19b)∑ν
i=0 aiTi(−1) = α ⇒ ∑ν

i=0 ai(−1)i = α. (19c)

Relation (19c) forms a system with one equation and 3ν + 3 unknowns,
to construct the remaining 3ν + 2 equations we substitute Chebyshev-Guass
points,

sj = cos(2πj
2ν

) j = 0, 1, .., ν − 1

in (19a) and

sj = cos(2πj
2ν

) j = 0, 1, .., ν

in (19b) to obtain 3ν + 2 equations.

4 Numerical example

Here, we use ”ex” and ”ey” to denote the maximum absolute error in vectors
X = (x1, x2, x3) and y = (y1, y2). These values are approximately obtained
through their graphs. Results show the advantages of techniques, mentioned
in sections 2 and 3. Also, the presented algorithm in section 3, is performed
by using Maple 8 with 25 digits precision.

Example 1. Consider for 0 ≤ t ≤ 1,

X
′
= AX + By + q, (20a)
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0 = CX + r, (20b)

where

A =


3−2t
2−t

0 0
1

2−t
−1 0

0 0 −1

 , B =

 4− 2t 0
0 1

sin(2t) cos(2t)

 , C = BT ,

with initial condition, x1(0) = 1,and exact solutions, x1(t) = x2(t) =
x3(t) = et,and y1(t) = y2(t) = et

t−2
. q(t) and r(t) are compatible with above

exact solutions. This problem has index 2.

det(CB) = 1 + sin2(2t) + 4(2− t)2 + 4(t− 2)2 cos2(2t) 6= 0, t ∈ [0, 1]

Also according to (9),

M =
[
− sin(2t) (2t− 4) cos(2t) 4− 2t

]
.

Hence, by theorem 1 the index-2 DAE (20) converts to index-1 DAE (21)
as below,[

M
0

]
X

′
+

[
−MA

C

]
X =

[
Mq
−r

]
, (21)

In table 1, we record the results of running pseudospectral method for
example 1 with and without index reduction.

Maximum norm error for example 1

ν
Without index reduction

ex ey

With index reduction
ex ey

6 2.7(−3) 4.2(−3) 4.5(−4) 2.3(−4)
8 1.6(−4) 2.5(−4) 1.4(−6) 1.0(−6)
12 2.7(−6) 4.4(−6) 8.0(−12) 3.0(−12)
16 1.4(−7) 2.3(−7) 5.0(−17) 3.4(−17)

Table 1
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The advantage of using index reduction method (proposed in sections 2)
is clearly demonstrated for above example.
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