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Abstract.-We consider the Cauchy problem for a higher order linear parabolic equation in a layer. The coefficients, the initial function and the right hand side satisfy a Hölder condition with different exponents along the different axes of independent space variables only. It is  established that if these anisotropic properties are independent, then the higher derivatives with respect to the space variables of the solution  to this problem also possess these properties . We establish new a priori estimates for the solution to this problem in anisotropic Hölder norm. In this connection, however, we also obtain an estimate for the modulus of continuity with respect to the time of   those higher derivatives  of the corresponding solutions. 
On the basis of our new a priori estimates   to the solutions  of the Cauchy problem for higher order linear parabolic equations, we obtain the solvability theorem to this problem in anisotropic  Hólder spaces.

These results of the linear theory are then used to obtain the local existence and uniqueness of the solution to the Cauchy problem for higher order nonlinear parabolic equations in anisotropic Hölder spaces.
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1 Introduction

In the present work we consider the Cauchy problem for  the higher order linear parabolic equation
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and for the  nonlinear parabolic equation 


[image: image2.wmf])

u

D

,...,

u

x

D

,

u

,

x

,

t

(

A

t

u

m

2

x

=

           (2)
in the layer   
[image: image3.wmf]n

T

E

]

T

,

0

[

´

=

P

with the initial condition

[image: image4.wmf])

x

(

|

u

0

t

j

=

=

                                 (3)                                                                                       

Here 
[image: image5.wmf])

x

,...,

x

(

x

n

1

=

 is a point of the 
n-dimensional Euclidean space 
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We assume that the coefficients of Equation (1) satisfy the uniform parabolicity :  for any non-zero vector 
[image: image11.wmf](

)

(

)

T

n

n

1

x

,

t

;

E

,...,

P

Î

Î

x

x

=

x

,

[image: image12.wmf](

)

n

k

n

1

k

1

k

m

2

k

m

2

k

k

1

m

...

,

0

.

const

,

x

,

t

a

)

1

(

x

x

=

x

>

=

l

å

x

l

>

x

-

=

+

(4)
We establish new a priori estimates for the solutions 
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with respect to 
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only and these anisotropic properties are  independent. In this connection, however, we also obtain an estimate for the modulus of continuity with respect to the time t of the leading derivatives 
[image: image18.wmf]m

2

k

,

u

D

k

x

=

 ( See theorems 1,2 ).
Note that in the works [1]-[9]  and many others, the a priori estimates of this type have been obtained under the fulfilment of a (general) Hölder condition with respect to the totality of variables (t,x) on the coefficients and the independent term of equation (1).
In the works [10 ]- [16 ] have been established  new a priori estimates for solutions 
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 to the problem (1),(3) in some isotropic Hölder norms, under the assumption that the coefficients and the independent term are continuous, satisfy the isotropic Hölder condition in 
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only. In this connection, however, is also obtained an estimate for the modulus of continuity with respect to the time t of the leading derivatives 
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We apply our results in the linear theory to establish the local solvability with respect to the time t, in anisotropic  Hölder  spaces, to the Cauchy  problem for the nonlinear parabolic equation (2) (See theorem 4) in 
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In the present work, the equation (2) is linearized directly. No conditions are imposed here on the nature to the growth of the nonlinearity for the function 
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The main assumption concerning to the function 
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(5) We require less smoothness conditions from the functions
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In this work the function 
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where
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For the functions 
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We will denote by 
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For the functions 
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We will denote by
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For the functions 
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where  d is a nonzero real number.
With respect to the coefficients of the equation (1) we assume that 
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In all the work we will denote by K  any const. depending on 
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2. Auxiliary lemmas 
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Lemma 2. Let the function 
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Lemma 3. Let the function 
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Lemma 4. Let 
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2. A priori  estimates

Theorem 1
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Furthermore the conditions ( 4 ) and ( 18 ) hold. 
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By virtue of lemma 4 , the functions 
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We get from the estimate (28) that the functions
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Now we can get from lemma 3 and (29) that the functions 
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By other hand the functions 
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Applying the interpolation inequalities (See [16]) with
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Remark. We can reduce the Cauchy problem with non-zero initial condition 
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Proof. The function
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4. Existence and uniqueness theorems.

Theorem 3. Suppose that all conditions of theorem 1 are true. Then there exits a unique  solution 
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We can get the proof of this theorem on the basis of our new priori  estimates established in this work and with the aid of the method of  continuity in a parameter. (see [4] and  [20] ).
We proceed now to formulate the local existence theorem for solutions to the  nonlinear problems for the equation (3). Here we consider that the function
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For equation (2) we consider in addition to the parabolicity condition (5) that there exists a domain 
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Theorem 4. Suppose that all assumptions with respect to the function 
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The proof of this theorem is similar to the proof of Theorem 4 in [16].  
Remark. We can reduce the Cauchy problem with non-zero initial condition 
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5. Conclusions.
The novelty of this work consist in the fact that we have established new a 
priori estimates for solutions of higher order linear parabolic equations, unlike the known [1]-[9],which are based on 
the fulfilment of a Hölder condition with respect to the totality of the variables 

(t, x) on the coefficients of the equation (1).Our estimates are obtained only under the assumption of the anisotropic Hölder condition of the coefficients of the equation (1) with respect to the space variables.

We establish the existence and uniqueness of the solution to the Cauchy problem for higher

order linear parabolic equations in a new set of functions ,the functions that satisfy the anisotropic Hölder condition with respect to space variable only.
These results are applied to obtain the solvability of the Cauchy problem for nonlinear parabolic equations in general Hölder anisotropic spaces.

The derivatives respect to x of the corresponding   solutions  satisfy the anisotropic Hölder condition with respect to the space variables and with respect to the time.
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