
Formal method using demodulation
against viral software metamorphism

a
Ruo Ando, Yoshiyasu Takefuji

Graduate School of Media and Governance,Keio University,
5322 Endo Fujisawa, Kanagawa, 252 Japan

 http://www.neuro.sfc.keio.ac.jp
aa

Abstract: - Recent cyber attacks and viruses become more sophisticated. Metamorphic virus such as Win32 simile
have a great impact on anti-virus software developers, which evades signature matching by inserting redundant
fake assembler operation codes. In this paper we present a formal method applying the equality substitution called
demodulation for detecting metamorphic viral coding. Proposal technique is based on theorem proving, which is
possible to take high degree of human expertise. ATP(Automated Theorem Proving) involves verifying the
correctness of the target code using formal specification language reflecting the experience of skilled programmer.
In the stage of scanning, SoS(Set of Support) strategy is employed. For the searching to be feasible and more
effective, the resolution of more than one clauses not in SoS is inhibited in order to prevent the prover go into
abundant searching place. Target code is added to the list of set of support with repeating equality substitution to
generate unit conflict. Experiment shows the effectiveness of proposal formal method for detecting metamorphic
viral coding.a
Key-Words: - Metamorphic Virus, Formal method, Equivalence validation, Set of Support, Demodulation, Unit
conflict, Assembly code formulation
a as
1 Introduction
The number of security incidents is still constantly
increasing, which imposes a great burden on both
the server administrators and client users. Despite
the short history, computer viruses is becoming one
of the most important issue. Although it has been
about one decade since computer viruses became
expected occurrence, Viruses, worms and Trojan
damages personals, companies government. Code
red, nimda and Msblaster recently are a valid
example showing we suffer the great damege if we
keep using the computer unpatced. We have come
to accept the updating a software regularly and
uniformly. Besides, the cost of maintaining and
updating vulnerable software is increasing
gradually but certainly.
a
1.1 Metamorphism : viral code hiding
Recent cyber attacks and viruses become more
sophisticated, while many users begin to equip anti
virus scanners that is mainly relies on signature
matching. Recently virus is improved rapidly so as
to evade signature matching. Symantec Corporation
published the paper[1] introducing metamorphic
viruses against the impact of W32 simile computer
virus, loading complex viral code hiding techniques.
Viral code hiding techniques which avoid the string
matching are not new phenomenon. This kind of
technology is first appeared in early 1990’s, called

polymorphic computer virus. Polymorphic viral
coding applies encryption for its body to nullify the
virus scanning. Still now polymorphic virus is
challenging to detect completely and effectively.
However, there exists detection method and
scanners that survives and improved from DOS
16bit days for Polymorphic coding attack[2].

Metamorphic virus can change whole its body
with no encryption. Instead of encryption,
metamorphic viral code are generated by inserting
redundant assembler, replacing register and
changing magic word so as not to disturb the same
action of pre-morphed virus in targeting operating
system. As a result, after metamorphic coding, the
virus can change its body while keeping the same
function. As we discuss in section 3.1, once some
virus become metamorphic, little piece of viral code
are scattered over the whole infected program body.
Consequently virus scanner cannot detect it with the
sequence matching.

Although metamorphic virus is not appeared
newly like polymorphic viruses, with the rapid
improvement and complication in 32 bit processors
and operating system, metamorphism is applied
studiously by virus writers. While there are actually
the scanners that survived DOS polymorphic days,
no one can find the effective way of detecting viral
metamorphism. Besides, it is hard to automate the
heuristic process of detecting metamorphic

compared with another viral code hiding techniques.
It is expected

s
1.2 Software verification and validation
As the information processing system become
sophisticated and complicated, software
verification is now a broad and complex disciple for
software developers who aim to assure that their
product satisfies all the expected requirements. On
technical aspect, software verification could be
classified into two fundamental approaches.
Dynamic verification is processed on the execution
of a program, or checks its behavior on simulation.
Static verification is a process to inspect whether
some requirements of software is satisfied by
mathematical or logical method. Formal
verification is based on later one, which verifies the
equivalence of the target code and the given code
described as correct. Formal methods takes
advantages in the sense that these do not depend on
traditional logic simulation or test vectors,
consequently provide more complete coverage of
the program behavior.

a
2 Related work
In this section we discuss about some technologies
detecting computer viruses. Detection method could
be categorized into two types: 1)signature matching
dealing with knows misuse viral coding and
2)heuristic scan applying discover method to find
unregistered computer virus[3]. Heuristic scan is
almost as same meaning as anomaly detection
adopting data-mining techniques for secure network
[4]. Another type is adaptive protection, which is
implemented compiler to inspect the integrity of call
pointers when program is executed.
a
2.1 Signature matching
Signature matching is searching the particular byte
sequences in files according to each format, .COM
file, .EXE file, .out file, scripts and macros. If
predefined sequences are found, some action such
as alarm, nullifying is triggered. In the sense that
signature matching hardly generate false positive
alarm, this technique is still core mode of anti virus
detection. Signature matching, while made more
flexible by pre-qualifying files and type of
infections, and using wild cards, still requires exact
matches between infection and signature. Also [5]
shows the effectiveness in anomaly detection of
process behavior by tracing system call sequence

Although the Anti virus software have relies much
on signature-based techniques including regular
expression and wild card, it could be pointed out
that this method is sometimes CPU intensive, and
costs a lot in frequently managing signature. And to
ensure signature definitions, these should be
updated from server of each vendor regularly and
uniformly. Consequently time lag of updating could
be the cost and cause to be exploited when it is not
updated.
a
2.2 Heuristic scan
Recently anti virus software began to equip
heuristic scan. Heuristic scanning is the operation to
complement signature matching in finding
potentially malicious code (or actual viral code)
that have not been released and corresponded by
anti virus software vendor[6]. Instead of looking for
specific strings, heuristic scanning deal with higher
information such as assembler operation code or
commands in order to find uncategorized viruses or
possibility of malicious code.

The word heuristic (hyu-RIS-tik), which is
originated from Greek word heuriskein, means the
way to determine something in a methodic or
experimental way. A skilled programmer can notice
the sign of malicious operation from normal one
when he inspects the program carefully by some
debugging tools. Heuristic scan is applied so that
the experience or knowledge of debug expert in to a
anti virus software. These scanning techniques are
now available in many popular anti virus software
although there still many way proposed to evade
heuristic scanners. When it is executed, heuristic
scanner searches hundreds of operation code,
instructions and behaviors that viral code may
include and calculate possibility according to the
threshold the user has set up. Nowadays, it is
summarized by AV vendors that about 70-80% of
unknown virus can be detected in heuristic scan.
a
2.3 Formal methods
Formal method provides an mathmatical solution to
malicious code detection. The advenatages of thie
technique is for improving performance to detect,
reducing code size and increase confidence in the
correctness of target code. Also, formal method is
categorized into static and dynamic inspection.
Static method searches the property usually
performed without executions of a program[7][8]
whereas dynamic method finds the property for a

specific input with partially execution of programs.
Concerning static method, there are two
methodologies applied. Control graph to determine
whether the target program satisfies the given
properties[9]. Formal representation defines correct
or suspicious property of the program. This is also
called proerty checking, which could be classified
into theorem proving, equivalence checking, and
model checking. Model checking has been
researched strenuously over the last decade. This
mehods is inspecting for the existence of a FSM
(finite state machine) in another FSM[10].
s
3 Metamorphic viral coding
As we discussed in section 1.2, there are two
methods to evade the string template
matching:polymorphic and metamorphic coding.
Although the polymorphic viruses are hard to
prevent still now, there exists a countermeasures
that have been improve since DOS 16 bit era.
Polymorphic virus must have a executable code
section that operating system can recognize. Then,
once decrypted or decrypting engine is discovered,
this could be manageable by signature scanner and
eradiated. Through the last decade when the
architecture of 32 bit processors or operating system
becomes sophisticated and complicated,
metamorphism is studiously applied by virus
writers. As matters stand, there is no decisive
technique for detecting metamorphic viral coding.
Anti virus software companies says that less than
70- 80 % of viral metamorphism could be detected.
In this section, we discuss four types of
metamorphic viral coding, which are the same in
mutating operating code and magic word form the
same higher action.
s
3.1 Register replacement
As some simple techniques of metamorphic coding,
we can exploit the exchangeability of some registers
in IA 32 architecture.
A
POP EDX
MOV EDI, 0008H
MOV ESI,EBP
MOV EAX 000DH
ADD EDX, 005FH
MOV EDX,[EDX]
MOV [ESI+EAX*0000CCC9,EBX]
a
POP EAX

MOV EDX,0008H
MOV EDX,EBP
MOV EDI,000DH
ADD EAX,005FH
MOV ESI,[EAX]
MOV [EDX+EDI*0000CCC9],ESI
List1. Register replacement
a

List 1 shows the metamorphic coding of
generating two different forms by replacing register.
In this case, edx is replaced by eax, ebx by edi, edi
by ebx, and esi by ebx. As a result, when this kind of
code is translated in machine language, string
template is changed.
a
3.2 Magic number permutation
Some metamorphic virus mutates a new form by
changing magic word. List2 shows the substitution
of magic word into ESI is permutated. The line 1 is
malformed by using register EDI and EDX. And in
line 2, substitution of 110000FFH is translated
through EDX and EBX.
a
MOV DWORD PTR [ESI] ,11000000H
MOV DWORD PTR [ESI+0004],110000FFH
a
MOV EDI,11000000H
MOV [ESI],EDI
POP EDI
PUSH EDX
MOV DH,40
MOV EDX,110000FFH
PUSH EBX
MOV EDX,EBX
MOV [ESI+0004],EDX
List2. Register permutation
a

Compared with the case 1, which could be
detected by crafted string matching such as
half-byte wild cards, the next case go further to
change magic value 11000FFH.
a
MOV EDX,11000000H
MOV [ESI],EBX
POP EDX
PUSH ECX
MOV ECX,11000000H
ADD ECX,000000FFH
MOV [ESI+0004],ECX
List3. Magic number permutation
a

List3 shows dividing the magic word 110000FF
into 11000000 and 000000FF. Consequently, wild
card based string matching become disable to find
the magic number.
a
3.3 Reordering instructions
Compared with polymorphic viruses which decrypt
themselves to a constant virus body in memory, this
type of metamorphic does not come to be constant
because jump instruction is inserted at random.
a
INSTRUCTION_A
INSTRUCTION_B
INSTRUCTION_C:
a
LABEL_2:
INSTRUCTION B
JMP
FAKE INSTRUCTIONS
START:
LABEL_3:
INSTRUCTION_C:
LABEL_1:
JMP
FAKE INSTRUCTIONS
List4. Reordering instructions
a

List4 shows the obfuscation of entry point to
avoid the searching of the beginning of the
executable code section. As a result, signature is
scattered in amongst the original code. Furthermore,
in this technique virus can inserts fake instruction
between core instruction and jump code. In
extremely case of this kind of method, Zperm virus
generates millions of iterations to surpress the anti
viral emulation speed.

These four types of metamorphism are the same
in the sense that there could be translated as the
certain abstraction from both core and fake
instructions regardless of its various malforming
forms. In other words, whatever the code is
permutated, the function that each morphed code
has to achieve is the same, consequently a kind of
higher action can be logged as event in device driver.
With the example in section 1.2 overflow is finally
occurred despite its malformation of assembler code.
Adversely, as long as we can only investigate on the
assembler instruction level, we cannot go out of
heuristic or data mining frameworks. From the next
sections, we propose a insertion of new layer, called

driver based protection layer, to obtain the highly
abstracted action of metamorphic code.
s
3.4 Complexity of metamorphism
In this section we discuss about the complexity to
detect the morphed viral code. Through last decade,
operating system and CPU have become more
sophisticated and complicated accompanying with
implementation of many function, consequently we
do not use all instructions and operations at the
same time for one purpose. Adversely, many
combinations of routines come to be possible to
achieve the same function. Metamorphic viruses are
exploiting this point of modern computer system.
Morphed virus writer implements n functions in
order to generate n! variations. For example, if
Win32 metamorphic virus such as W32/ghost has
16 routines, the combination could be:
Combination = 16! = 20922789888000
Besides, the computer viruses choose the
unpredictable one among these combinations using
random number using some value of TLB (thread
information block).
Selection = random (seed)
Seed : FS:Och /EIP
Also another register transition that is usually
unpredictable could be the seed of random number.
 s
MOV EAX DWOR PTR _XXX$[EBP]
PUSH EAX
MOV ESI,[EDX](*)
LEA ECX, DWORD PTR _BUF$[EBP]
MOV EDI,[EBX-04X](*)
PUSH ECX
NOP(*)
CALL _STRCPY
ADD ESP,8
List5. Inserting fake operations
s

List5 shows the list inserting fake instructions
for redundant state in order to evade the signature
matching. In IA32 architecture, there are eight
generic registers available for programmers, all of
which are not used in one operation. Particularly,
ECX, EDX, ESI and EDI are often applied for
auxiliary use. It follows that at factorial of 4
combinations is possible without accounting order
of fake instructions.
s

Fig. 1 Redundant states(loop) of list 5

Concerning the magic number, every magic
number in windows operating system can be
decomposed arbitrarily into 32 bit memory address
number. However, the hexadecimal numbers from
0xBFFFFFFF to 0x00000000 such as 0x004235CC
is preferable because the address from
0xFFFFFFFF from 0xC0000000 is number in
kernel mode that is inclined to be hooked in
heuristic scanning. Thus, metamorphic viral coder
can generate the vast number of derivations using
the large memory space and abundant availability of
operations in IA and Win 32 complex architecture.

s
4 Proposal method
4.1 Validation using demodulation
In this paper we propose a detection using formal
method against metamorphic computer viruses
which checks the equivalence between
pre-obscuration signature and morphed code.
Our formal method is based on theorem proving
using demodulation for simplification and
canonicalization[11][12]. In the normal cases of
hardware and software checking, we prepare the
formal specification, and prove or disprove the
correctness of a system regarding the formulation of
system. In this paper, instead we formulate the
pre-obscuration signature as correct code, and
inspect the equivalence between this code and
metamorphic code. We can view these kind of
detection method just discussed as a translation
between computer languages.

Metamorphic virus writers mainly focus to
avoid signature matching using fake and redundant
instructions. On the other hand, virus scanners only
attempts to check if the target code has functionally
infected. The verification consists of proving that
two expressions are equivalent, where the first
expression is in the builder’s language and the
second is in the user’s language.In this context, we
defined the scanner’s language as canonical or
simplified form. To inspect the equivalence of these
two assembly code, the theorem proving strategy
called demodulation is applied in this paper.

Demodulation is designed to enable a theorem
prover to simplify and canonicalize information. To
be specific, this process applies unit equality clauses
in order to rephrase, rewrite, simplify and
canonicalizing expressions. A demodulator DM of
the form EQUAL(A,B) for terms A and B applies to
term C if and only if B is an instance of A or C is an
instance B. Clauses that represent information
semantically redundant (not syntactically
redundant) can be purged by this procedure.

s
4.2 Unit conflict
The termination condition, that is detection
condition for formal verifier that succeeds in the
target assembly code is that of finding a proof of
contradiction. In the methodology of formal
verification, proving that certain property follows
from a set of properties, facts and definitions is
directed by assuming the desired conclusion false.
Consequently, if expected property follows the
remaining clauses, assuming it false in principle
leads to a contradiction. This kind of contradiction
is called unit conflict in the context of theorem
proving based validation. The definition of unit
conflict would be described as:
s
Definition: Unit conflict
The unit conflict has been found when the two
clauses contains a single literal with opposite in sign,
and can be unified, where a clauses unit clause is the
one contains a single literal.

s
According to the definition above and proposal

analysis framework, unit conflict means the
equivalence between original assembly code and
metamorphic code. In other words, in the proposal
system, the generation of unit conflict leads to
succeeding of detection of morphed viral code. Two
clauses termed contradictory unit clauses if and only
if each two clauses contains a single literal, the two
are opposite in sign, and the two literals can be
unified.
s
4.3 Set of support
Set of support was introduced by L.Wos,
S.Robinson and Carson in 1965[13]. If the clause T
is retrieved from S, SOS is possible with the
satisfiability of S-T. Set of support strategy enable
the researcher to select one clause characterizing the
searching to be placed in the initializing list called
SOS. For the searching to be feasible and more

effective, the resolution of more than one clauses
not in SOS is inhibited in order to prevent the prover
go into abundant searching place.
s

Fig. 2 Set of Support Strategy
s

Figure2 show the resolution process in set of
support strategy, where
S={P and Q and R, ~P and R, ~Q and R, ~R}.
The restriction imposes the reasoning so that the
program do not apply an inference rule to a set of
clauses that are not the complement of set of
support.
s
4.4 Assembly code formulation
As we discussed before, canonicalizaion using
demodulation is applied in proposal system in order
to check the equivalence of two assembly code.
There could exist three ways to verify assembly
code. One is to translate the assembly code to
logic-level language. Another is to translate the
logic-level formulation to assembly code. A third
possibility is to translate both signature and
matching assembly code into a third one, and
inspect if the same result is obtained from those two
formulations. In this paper we adopt the third
technique.As is the usual case of viral code
detection, proposal method is aimed for processing
assembly language. For formulate the example we
discuss in the next section, the clause is
ASM(I3,MOV(ESI,ECX))
Where ASM means the assembly code can be
described in this manner and I3 is the number of
instruction order. In the process of verification we
are going to demodulate this clause to
ASM(expressions)
This could be expected to match the pre-obscuration
code.
As framework of verification, demodulation is
controlled by set of support strategy in following
steps.
ASM(I3,MOV(ESI,ECX))

STEP1: To formulate the pre-obscuration code and
morphed code by ASM function discussed above.
STEP2: Put the two ASM function in the set of
support with choice of forward demodulation as
inference rule.
STEP3: Instruct the reasoning program OTTER to
translate the two ASM formulation.If demodulation
generates unit conflict, then the equivalence of two
function is validated, which means the metamorphic
code is detected.

As attempted, because of the way the assembly
code has been formulated, a successful detection
will signed by unit conflict between the two ASM
clauses.

s
5 Sample test
To test the effectiveness of our formal method, we
used open source software called Otter (Organized
Techniques for Theorem-proving and Effective
Research) to deduct the equality of metamorphic
viral coding. Otter is a forth-generation Argonne
National Laboratory deduction system to prove
theorems stated in FOL with Knuth-Bendix
completion, weighting, and strategies for directing
and restricting searches.Sample test code is
proccessed by otter on Linux Kernel 2.6. The target
code is composed by using the technique of register
replacement and reordering instructions discussed
in section 3. List6 shows an example code
fragments of metamorphic coding selected we pick
up in this paper as mutated to a new form in a new
generation of the same virus.
s
Loop:
POP ECX
NOP
JMP ROUTINE1
ROUTINE3:
CALL EDI
XOR EBX,EBX
BEQZ N2
N2:
JMP Loop
JMP L4
ROUTINE2:
NOP
MOV EAX,0D601H
POP EDX
POP ECX
NOP
JMP ROUTINE3

ROUTINE1:
JECXZ Illegal_Code
XOR EBX,EBX
BEQZ N1
N1:
MOV ESI ECX
JMP ROUTINE2
ROUTINE4:
List6. Sample metamorphic code
a

Here we apply the expression ASM(x) which
means the assembly code can be described in this
manner to translate the routine into the list below.
s
ROUTINE1:
ASM(I4(I3,JECXZ(Illegal_Code)))
ASM(I5(I4,XOR(EBX,EBX)))
ASM(I6(I5,BEQZ(N1)))
List7. Fragment of assembly code formulation

s
Demodulation rewrite the list6 in two phases.

In the first phase, the substitution from left to right
is operated according to the literal I1 to I19. By
doing this, the instruction order obscured by
inserting redundant JMP is translated from top to
bottom. In the second phase we could tell this to an
automated reasoning program by giving it the
demodulator to delete the redundant instruction or
JMP operation code.

s
ASM(x,JMP(y))=ASM(x).
ASM(x,BEQZ(y))=ASM(x).
ASM(x,XOR(EBX,EBX))=ASM(x).
ASM(x,NOP)=ASM(x).
ASM(NOP,x)=ASM(x).
List8. Demodulators
a

If this code fragment is submitted to an
automated reasoning program in the set of support
and forward demodulation as the inference rule, list
demodulated in 31 steps to conflict to pre-obscured
code of list6. Thus code fragment given by list can
be translated in to list, proving that these two
assemble code is equivalent.

s
5 Conclusion and further work
The conventional anti-virus software, and file
scanner are all based on stored signatures.
Consequently these schemes have the limitation
against the new derivation using metamorphic
coding discussed in section 3. In this paper we

present a formal method applying equality
substitution called demodulation for detecting
metamorphic viral coding. As we discussed in
section 2.3, there are three techniques for formal
method: model checking, equivalence checking and
theorem proving. This paper shows that theorem
proving is effective for searching metamorphic code
in the sense that it can reflects high degree of human
expertise in its detection. Theorem proving involves
verifying the correctness of mathematic theorems
using a formal specification language. This is
semi-automatic and consequently able to reflect the
experience of skilled programmer. In the stage of
scanning, SoS(Set of Support) strategy is employed.
For the searching to be feasible and more effective,
the resolution of more than one clauses not in SOS
is inhibited in order to prevent the prover go into
abundant searching place. Target code is added to
the list of set of support with repeating equality
substitution to generate unit conflict, which shows
the effectiveness of proposal formal method for
detecting metamorphic viral coding. Demodulators
could be described from the experience specified for
skilled developer. This system enabled us to detect
metamorphic code effectively in the point that we
control scanning with demodulators heuristically
adopted.

For further work, instead of translating the
assembly code to another, instructing reasoning
program to determine which morphed code can be
generated satisfying the property of original code is
expected. Compared with demodulation technique,
this method can select the best form among possible
generation. It means that even if some clauses are
missed, it may be possible to detect by
semi-automatic deduction. Demodulation has a
close relationship to paramodulation both in origin
and in purpose. Each, if successful, causes an
equality substitution to take place. While
demodulation requires the equality literal to be in a
unit clause, paramodulation does not. Another vital
difference is that, while demodulation allows a
nontrivial variable replacement only in the
argument of the equality literal and in the term into
which the substitution is being attempted.

s
References:
[1] Szor, Peter and Ferrie, Peter. "Hunting for
Metamorphic." Virus Bulletin Conference,
September 2001.
[2] Stephen Pearce, “Viral Polymorphism”, paper
submitted for GSEC version 1.4b,2003.

[3]Ruo Ando, Yoshiyasu Takefuji,
"Two-stage quantitative network incident
detection for the adaptive coordination with SMTP
proxy", Computer Network Security, Lecture note
in computer science Springer,pp424-428,2003
[4] Dimitris A. Karras, Vasilis Zorkadis,
"Neural Network Techniques for Improved
Intrusion Detection in Communication Systems"
WSEAS CSCC,2001,pp318-323
[5] Kosoresow, Andrew P. and Steven A. Hofmeyr,
"Intrusion Detection Via System Call Traces", IEEE
Software, Sept.–Oct. 1997, pp 35-40.
[6]Symantec Bloodhound Technology
http://www.symantec.com
[7]J. Bergeron, M. Debbabi, J. Desharnais, M. M.
Erhioui, Y. Lavoie and N. Tawbi, “Static Detection
of Malicious Code in Executable Programs”. Proc.
of the International Symposium
on Requirements Engineering for Information
Security, 2001.
[7]Diomidis Spinellis. Reliable identification of
bounded-length viruses is NP-complete. IEEE
Transactions on Information Theory, 49(1):280-284,
January 2003.
[8] Mihai Christodorescu, Somesh Jha,”Static
Analysis of Executables to Detect Malicious
Patterns”,In 12th USENIX Security Symposium,
Washington, DC, August 2003
[9] O.Sheyner, J.Haines, S.Jha, R.Lippman, and
J.M.Wing, "Automated Generation and Analysis of
Attack Graphs", in proceedings of the IEEE
symposium on Security and Privacy, (Oakland,
CA.), May 2002.
[10]Hao Chen, Drew Dean and David Wagner.
“Model Checking One Million Lines of C Code.”,
Proc. of 11th Network and Distributed System
Security Symposium, 2004.
[11]Larry Wos, "The Problem of Demodulation
During Inference Rule Application", J. Autom.
Reasoning 9(1),pp141-143,1992
[12]Larry Wos, George A. Robinson, Daniel F.
Carson, Leon Shalla, "The Concept of
Demodulation in Theorem Proving". J. ACM 14,
pp698-709,1967
[13] Wos, L.; Robinson, G.; Carson, D., "Efficiency
and completeness of the set of support strategy in
theorem proving" J. ACM,pp. 536-541,1965
[14]Khaled.E.A.Negm,"Secure Mobile Code
Computing in Distributed Environment", WSEAS
TRANSACTIONS ON
COMUTERS,2003,pp506-513

[15]Diomidis Spinellis. Reliable identification of
bounded-length viruses is NP-complete. IEEE
Transactions on Information Theory, 49(1):pp
280-284, 2003.

