Piezewise polynomial approximations for weakly singular integral equations with discontinuous coefficients

KRISTIINA HAKK 1, ARVET PEDAS 2

1 Estonian Information Technology College
Rävala 14, 10143 Tallinn
2 University of Tartu
Liivi 2, 50409 Tartu
ESTONIA

kristiina.hakk@itcollege.ee, arvet.pedas@ut.ee

Abstract: We study the attainable order of a piecewise polynomial collocation method for the numerical solution of linear integral equations with weakly singular or other nonsmooth kernels. In particular, the kernel may have the form \(K(t, s) = g(t, s)|t - s|^{-\nu}, \) \(0 < \nu < 1, \) where \(g \) is proposed to be smooth only on \([0, b] \times ([0, b] \setminus \{d\}), 0 < d < b. \) We show that the proposed method is of maximal possible order if the grid is chosen appropriately.

Key words: Fredholm integral equation, weakly singular kernel, collocation method.

1 Introduction

Let \(\mathbb{R} = (-\infty, \infty), \mathbb{N} = \{1, 2, \ldots\}, \mathbb{N}_0 = \{0\} \cup \mathbb{N}. \) For \(\Omega \subset \mathbb{R}^n, \) by \(C^m(\Omega) \) we denote the set of \(m \) times continuously differentiable functions \(x: \Omega \to \mathbb{R}, C^0(\Omega) = C(\Omega). \) The set \(C[a, b] \) of continuous functions \(x: [a, b] \to \mathbb{R} \) is a Banach space with respect to the norm \(\|x\|_{C[a, b]} = \max_{a \leq t \leq b} |x(t)|. \)

Let us consider an integral equation of the form

\[
u(t) - \int_0^b K(t, s)\nu(s)ds = f(t), \quad 0 \leq t \leq b,
\]

with \(f \in C[0, b] \) and \(K(t, s) = g(t, s)|t - s|^{-\nu}, \) \(0 < \nu < 1, \) where \(g \) is a sufficiently smooth function on \([0, b] \times [0, b]. \) Solutions of integral equations of this type will in general contain singularities in their derivatives at the endpoints of the interval \([0, b], \) even for smooth forcing functions \(f \) (see, for example, \([1, 5, 6]). \) Therefore difficulties in constructing of high order numerical methods for solving (1) arise. To overcome these difficulties, one can thicken near 0 and \(b, \) the grid which is used to built approximate solution \(\{1, 5, 6\}. \)

In the present paper we study the case if \(g \) is proposed to be smooth only on \([0, b] \times ([0, b] \setminus \{d\}), \) with \(d \in (0, b). \) In this case the derivatives of the solution \(\nu(s) \) of equation (1) may have singularities at \(s = d, \) also \(\{4, 5\}. \) Therefore, to get numerical algorithms of higher order for solving (1), we shall thicken the grid near \(s = d, \) too. In fact, we shall construct a piecewise polynomial collocation method for the numerical solution of a wide class of weakly singular integral equations and show that it is of maximal possible order if the grid is chosen appropriately.

2 Smoothness of the solution

We consider a kernel \(K \) in the form

\[
u(t, s) = g(t, s)\kappa(t, s)
\]

with \(g \) and \(\kappa \) satisfying the following assumptions (A1) and (A2), respectively.

(A1) The function \(g = g(t, s) \) is \(m \) times \((m \geq 1) \) continuously differentiable with respect to \(t \) and \(s \) for \(t \in [0, b], s \in [0, b] \setminus \{d\}, 0 < d < b, \) and its derivatives are bounded in the regions \([0, b] \times [0, d] \) and \([0, b] \times (d, b]. \) Let \(p \) \((0 \leq p \leq m) \) be an integer defined as follows: \(p = 0 \) if \(g \) may have a discontinuity across the line \(s = d; p \geq 1 \) if \(g \in C^{p-1}([0, b] \times [0, b]). \)

(A2) The function \(\kappa = \kappa(t, s) \) is \(m \) times \((m \) is fixed in the assumption (A1)) continuously differentiable with respect to \(t \) and \(s \) for \(t, s \in [0, b], t \neq s, \) and there exists a real
number \(\nu, -\infty < \nu < 1 \), such that the estimate
\[
\left| \left(\frac{\partial}{\partial t} \right) \left(\frac{\partial}{\partial t} + \frac{\partial}{\partial s} \right)^j \kappa(t, s) \right| \leq c \left\{ \begin{array}{ll}
1, & \text{if } \nu + i < 0, \\
1 + |\ln |t - s||, & \text{if } \nu + i = 0, \\
|t - s|^{-\nu - i}, & \text{if } \nu + i > 0,
\end{array} \right.
\]
holds with a positive constant \(c \) for all \(t, s \in [0, b], t \neq s \) and for all \(i, j \in \mathbb{N}_0, i + j \leq m \).

For \(i = j = 0 \), condition (3) yields
\[
|\kappa(t, s)| \leq c \left\{ \begin{array}{ll}
1, & \text{if } \nu < 0, \\
1 + |\ln |t - s||, & \text{if } \nu = 0, \\
|t - s|^{-\nu}, & \text{if } \nu > 0.
\end{array} \right.
\]
Thus, a kernel (2) is at most weakly singular for \(0 \leq \nu < 1 \). For \(\nu < 0 \), the kernel (2) is bounded but its derivatives may have diagonal singularities. Most important examples of kernels of type (2) are given by
\[
K(t, s) = g(t, s)|t - s|^{-\nu}, \quad 0 < \nu < 1,
K(t, s) = g(t, s) \ln |t - s|,
\]
where \(g \) is a function which satisfies the condition (A1).

For equations (1) with smooth kernels, the smoothness of the kernel \(K \) and the forcing function \(f \) determines the smoothness of the solution \(u \) on the closed interval \([0, b]\). If we allow weakly singular kernels of type (2), with smooth coefficient functions \(g: [0, b] \times [0, b] \to \mathbb{R} \), then the resulting solutions are typically nonsmooth at the endpoints of the interval of integration \([0, b]\), where their derivatives become unbounded. If \(g \) is proposed to be smooth only on \([0, b] \times ([0, b] \setminus \{d\})\), where \(0 < d < b \), then the derivatives of the solution \(u(t) \) of equation (1) may have singularities at \(t = d \), also (see Lemma 1 below). In order to characterize those singularities we introduce a set of functions \(C^{m, \nu}_{d, p}[0, b] \).

Let \(m \in \mathbb{N}, \nu \in \mathbb{R}, \nu < 1, 0 < d < b, p \in \mathbb{N}_0, p \leq m \). Define \(C^{m, \nu}_{d, p}[0, b] \) as the collection of continuous functions \(u: [0, b] \to \mathbb{R} \) which are \(m \) times continuously differentiable in \((0, b) \setminus \{d\}\) and such that the estimate
\[
|u^{(j)}(t)| \leq \left\{ \begin{array}{ll}
1, & \text{if } j < 1 - \nu, p \in \{0, 1, \ldots, m\}; \\
1 + |\ln t| + |\ln (b - t)|, & \text{if } j = 1 - \nu, p \in \{1, \ldots, m\}; \\
1 + |\ln t| + |\ln |d - t|| + |\ln (b - t)|, & \text{if } j = 1 - \nu, p = 0; \\
t^{1 - \nu - j} + (b - t)^{1 - \nu - j}, & \text{if } 1 - \nu < j < 1 - \nu + p, p \in \{1, \ldots, m\}; \\
t^{1 - \nu - j} + |\ln |d - t|| + (b - t)^{1 - \nu - j}, & \text{if } j = 1 - \nu + p, p \in \{1, \ldots, m - 1\}; \\
t^{1 - \nu - j} + |d - t|^{1 - \nu - j + p} + (b - t)^{1 - \nu - j}, & \text{if } j > 1 - \nu + p, p \in \{0, \ldots, m - 1\},
\end{array} \right.
\]
holds with a positive constant \(c = c(u) \) for every \(t \in (0, b) \setminus \{d\} \) and \(j = 1, \ldots, m \).

The following result characterizes the regularity properties of solutions to equation (1), see [4,5].

Lemma 1. Let the conditions (A1) and (A2) about the kernel (2) be fulfilled. Let \(f \in C^{m, \nu}_{d, p}[0, b] \), with \(m, \nu, d, p \), fixed in the assumptions (A1) and (A2). If the integral equation (1) has an integrable solution \(u \in L^1(0, b) \) then \(u \in C^{m, \nu}_{d, p}[0, b] \).

3 Piecewise polynomial interpolation

For given \(N = 4n, n \in \mathbb{N}, b, d, r, r_d \in \mathbb{R}, 0 < d < b, r, r_d \geq 1 \), let
\[
\Delta_N = \{ t_0, t_1, \ldots, t_N : 0 = t_0 < t_1 < \ldots < t_N = b \}
\]
be a partition (a grid) for the interval \([0, b]\) with the following nodes \(t_0, \ldots, t_N \):
\[
t_j = \frac{d}{2} \left(\frac{j}{n} \right)^r, \quad j = 0, 1, \ldots, n;
\]
\[
t_{n+j} = d - \frac{d}{2} \left(\frac{n-j}{n} \right)^r, \quad j = 1, \ldots, n;
\]
\[
t_{2n+j} = d + \frac{b-d}{2} \left(\frac{j}{n} \right)^r, \quad j = 1, \ldots, n;
\]
\[
t_{3n+j} = b - \frac{b-d}{2} \left(\frac{n-j}{n} \right)^r, \quad j = 1, \ldots, n.
\]
Then \(\Delta_N \) is called a graded grid for \([0, b]\). In the present context the so-called grading exponents \(r, r_d \) will always satisfy \(r \geq 1 \) and \(r_d \geq 1 \). These parameters characterize the accumulation of nodes.
t_0, t_1, \ldots, t_N near the points of possible unboundedness of the derivatives of the solution u of equation (1) (see Lemma 1). For larger r and r_d the grid Δ_N is thicker near 0, d and b. We use two different parameters r and r_d because the order of singularity of the solution u can be different at points 0, b and d. If $r = r_d = 1$ then the grid points (5) are uniformly located in the intervals $[0, d]$ and $[d, b]$.

It follows from (5) that an estimate

$$h_N \equiv \max_{j=1, \ldots, N} (t_j - t_{j-1}) \leq c N^{-1} \quad (6)$$

holds with a positive constant c which is independent of N.

For $m \in \mathbb{N}_0$, let $S_m^{(0)}(\Delta_N)$ and $S_m^{(-1)}(\Delta_N)$ be the spline spaces of piecewise polynomial functions on the grid Δ_N:

$$S_m^{(0)}(\Delta_N) = \{ u \in C[0, b] : u|_{\sigma_j} \in \pi_m, j = 1, \ldots, N \}, \quad S_m^{(-1)}(\Delta_N) = \{ u : u|_{\sigma_j} \in \pi_m, j = 1, \ldots, N \}. \quad (7)$$

In (7) π_m denotes the set of polynomials of degree not exceeding m and $u|_{\sigma_j}$ is the restriction of u to the subinterval $\sigma_j = [t_{j-1}, t_j]$ ($j = 1, \ldots, N$). Note that the elements of $S_m^{(-1)}(\Delta_N)$ may have jump discontinuities at the interior grid points t_1, \ldots, t_{N-1}.

In every subinterval $[t_{j-1}, t_j]$, $j = 1, \ldots, N$ we define $m \in \mathbb{N}$ interpolation points

$$\xi_{j,q} = t_{j-1} + \frac{\eta_q + 1}{2}(t_j - t_{j-1}), \quad q = 1, \ldots, m; \quad j = 1, \ldots, N, \quad (8)$$

where

$$-1 \leq \eta_1 < \ldots < \eta_m \leq 1 \quad (9)$$

is some fixed system of m parameters on the interval $[-1, 1]$, which is the same for every j and N.

To a given continuous function $u : [0, b] \rightarrow \mathbb{R}$ we assign a piecewise polynomial interpolation function $P_N u = P_{N,m-1} u \in S_m^{(-1)}(\Delta_N)$ which interpolates u at the nodes (8). Let $P_N = P_{N,m-1} : C[0, b] \rightarrow S_m^{(-1)}(\Delta_N)$ be an interpolation operator which assigns to every continuous function $u : [0, b] \rightarrow \mathbb{R}$ its piecewise interpolation function $P_N u:

$$P_N u \in S_m^{(-1)}(\Delta_N), \quad u \in C[0, b], \quad (P_N u)(\xi_{j,q}) = u(\xi_{j,q}), \quad q = 1, \ldots, m; \quad j = 1, \ldots, N. \quad (10)$$

Thus, $(P_N u)(t)$ is independently defined in every subinterval $[t_{j-1}, t_j]$ ($j = 1, \ldots, N$) and may be discontinuous at $t = t_j, j = 1, \ldots, N - 1$; we can treat $P_N u$ as a two-valued function at these points. If $\eta_1 = -1, \eta_m = 1$ then $P_N u$ is a continuous function on the interval $[0, b]$.

Let E and F be Banach spaces. By $\mathcal{L}(E, F)$ we denote the Banach space of all linear bounded operators $A : E \rightarrow F$ with the norm $\| A \|_{\mathcal{L}(E, F)} = \sup_{x \in E, \| x \|_E \leq 1} \| Ax \|_F$. It follows from [5] that $P_N \in \mathcal{L}(C[t_{j-1}, t_j], C[t_{j-1}, t_j])$ ($j = 1, \ldots, N$) and $P_N \in \mathcal{L}(C[0, b], L^\infty(0, b))$. Moreover, the norms of these operators are uniformly bounded in N:

$$\max_{j=1, \ldots, N} \| P_N \|_{\mathcal{L}(C[t_{j-1}, t_j], C[t_{j-1}, t_j])} \leq c, \quad N \in \mathbb{N}, \quad (11)$$

Here c is a positive constant which is independent of j and N. On the basis of (11) we obtain that

$$\| u - P_N u \|_{L^\infty(0, b)} \rightarrow 0 \quad \text{as} \quad N \rightarrow \infty \quad (12)$$

for every $u \in C[0, b]$. A consequence of this is

Lemma 2. Let $S : L^\infty(0, b) \rightarrow C[0, b]$ be a linear compact operator. Then

$$\| S - P_N S \|_{\mathcal{L}(L^\infty(0, b), L^\infty(0, b))} \rightarrow 0 \quad \text{as} \quad N \rightarrow \infty. \quad (13)$$

In the following we present a result about the rate of the error $\| u - P_N u \|_{L^\infty(0, b)}$.

Lemma 3. Let $u \in C_{d,\nu}^m[0, b], m \in \mathbb{N}, -\nu < \nu < 1$, $p \in \{0, 1, \ldots, m\}$. Let the node points (8) with grid points (5) and parameters (9) be used. Let $P_N : C[0, b] \rightarrow S_{m-1}^{(-1)}(\Delta_N)$ be determined by the conditions (10).

Then

$$\| u - P_N u \|_{L^\infty(0, b)} \leq c \varepsilon_N, \quad (13)$$

where c is a positive constant not depending on N and $\varepsilon_N = \varepsilon_N(m, \nu, p, r, r_d)$ is defined as follows:

$$\varepsilon_N = N^{-m}, \quad (14)$$
\[m < 1 - \nu, \ p \geq 0, \ r \geq 1, \ r_d \geq 1; \]
\[m = 1 - \nu, \ p = 0, \ r > 1, \ r_d > 1; \]
\[m = 1 - \nu, \ p > 0, \ r > 1, \ r_d \geq 1; \]
\[1 - \nu < m < 1 - \nu + p, \ p > 0, \]
\[r \geq \frac{m}{1 - \nu}, \ r_d \geq 1; \]
\[m = 1 - \nu + p, \ p > 0, \ r \geq \frac{m}{1 - \nu}, \ r_d > 1; \]
\[m > 1 - \nu + p, \ p \geq 0, \]
\[1 \leq r < \frac{m}{1 - \nu}, \ r_d \geq \frac{m}{1 - \nu + p}; \]
\[\varepsilon_N = N^{-r(1 - \nu)} \] (15)
\[1 - \nu < m < 1 - \nu + p, \ p > 0, \]
\[1 \leq r < \frac{m}{1 - \nu}, \ r_d \geq \frac{m}{1 - \nu + p}; \]
\[\varepsilon_N = N^{-\min\{r(1 - \nu), r_d(1 - \nu + p)\}} \] (17)
\[m > 1 - \nu + p, \ p \geq 0, \]
\[1 \leq r < \frac{m}{1 - \nu}, \ 1 \leq r_d < \frac{m}{1 - \nu + p}; \]
\[\varepsilon_N = N^{-r_d(1 - \nu + p)} \] (18)

for
\[m > 1 - \nu + p, \ p \geq 0, \]
\[r \geq \frac{m}{1 - \nu}, \ 1 \leq r_d < \frac{m}{1 - \nu + p}. \]

Proof. We follow the approach and techniques of [5]. It follows from (11) that
\[\|u - P_N u\|_{L^\infty(0, b)} \leq c \max_{j=1, \ldots, N} \max_{t_{j-1} \leq t \leq t_j} |u(t) - v(t)|, \]

where \(c\) is a positive constant not depending on \(N\) and \(v\) is an arbitrary element of the space \(S_m^{-1}(\Delta_N)\). Thus, in order to study the rate of the error \(\|u - P_N u\|_{L^\infty(0, b)}\), we have to estimate \(|u(t) - v(t)|\) for a suitable \(v(t)\) on every subinterval \([t_{j-1}, t_j], j = 1, \ldots, N = 4n\). In particular, taking
\[v(t) = u(t_j) + u'(t_j)(t-t_j) + \frac{1}{2!}u''(t_j)(t-t_j)^2 + \ldots + \frac{1}{(m-1)!}u^{(m-1)}(t_j)(t-t_j)^{m-1}, \]

where \(t \in [t_{j-1}, t_j], j = 1, \ldots, n\), and using (4) for the derivatives of \(u \in C_{m, \nu}^{d, p}[0, b]\), we can estimate \(u(t) - v(t)\) on the subinterval \([t_{j-1}, t_j] \subset [0, \frac{b}{4}], j = 1, \ldots, n\); in a similar way we can derive the estimates for \(u - v\) (with a suitable \(v \in S_m^{-1}(\Delta_N)\)) on other subintervals \([t_{j-1}, t_j] \subset [\frac{b}{4}, b], j = n + 1, \ldots, 4n\); see [2] for a detailed proof.

4 Collocation method
We look for an approximation \(u_N\) to the solution \(u\) of equation (1) determining \(u_N\) from the following conditions:
\[u_N(t) - \int_0^b K(t,s)u_N(s)ds - f(t) = 0, \quad t = \xi_i, p \]
\[u_N \in S_m^{-1}(\Delta_N), \quad m \geq 1, \]
\[p = 1, \ldots, m; \ i = 1, \ldots, N, \] (19)

with \(\{\xi_{i, p}\}\), given by (8).

Theorem 1. Let the following conditions be fulfilled:
1) \(K \in C_{d, 0}^{1, \nu}[0, b]\), \(\nu < 1, 0 < d < b\);
2) \(f \in C[0, b]\);
3) the homogeneous integral equation
\[u(t) = \int_0^b K(t,s)u(s)ds, \quad 0 \leq t \leq b, \] (20)

has only the trivial solution \(u = 0\);
4) the collocation points (8) with grid points (5) and parameters (9) are used.
Then equation (1) has a unique solution \(u^* \in C[0,b] \). For all sufficiently large \(N \), say \(N \geq N_0 \), the collocation conditions (19) determine for every choice of parameters \(-1 \leq \eta_1 < \ldots < \eta_m \leq 1\) a unique approximation \(u^*_N \in S_{m-1}^{(-1)}(\Delta_N) \) to \(u^* \) and

\[
\sup_{t \in [0,b]} |u^*_N(t) - u^*(t)| \to 0 \quad \text{as} \quad N \to \infty. \quad (21)
\]

Proof. We consider equation (1) as the equation

\[
u = Tu + f
\]

in the Banach space \(L^\infty(0,b) \), with the operator \(T \), defined by \((Tu)(t) = \int_0^b K(t,s)u(s)\,ds \). It follows from the assumption 1) that \(T \) is compact as an operator from \(L^\infty(0,b) \) to \(C[0,b] \) and from \(L^\infty(0,b) \) to \(L^\infty(0,b) \), also. Since equation \(u = Tu \) has only the trivial solution \(u = 0 \), then there exists the inverse operator \((I - T)^{-1} \in \mathcal{L}(L^\infty(0,b), L^\infty(0,b)) \) and equation (22) has a unique solution \(u^* = (I - T)^{-1}f \in L^\infty(0,b) \). Since \(f \in C[0,b] \) and \(T \in \mathcal{L}(L^\infty(0,b), C[0,b]) \), then \(u^* \in C[0,b] \).

The collocation conditions (19) can be written in the form

\[
u_N = P_N Tu_N + P_N f,
\]

with \(P_N : C[0,b] \to S_{m-1}^{(-1)}(\Delta_N) \), defined in Sec. 3. By Lemma 2,

\[
\|T - P_N T\|_{\mathcal{L}(L^\infty(0,b), L^\infty(0,b))} \to 0 \quad \text{for} \quad N \to \infty.
\]

Using (24) we obtain that \((I - P_N T) \) is invertible for all sufficiently large \(N \), say \(N \geq N_0 \), and

\[
\|(I - P_N T)^{-1}\|_{\mathcal{L}(L^\infty(0,b), L^\infty(0,b))} \leq c, \quad N \geq N_0,
\]

where \(c \) is a positive constant which is independent of \(N \). This shows that for \(N \geq N_0 \) equation (23) has a unique solution \(u^*_N = (I - P_N T)^{-1}P_N f \). We have for it and \(u^* \), the solution of equation (22),

\[
(I - P_N T)(u^* - u^*_N) = (I - P_N T)u^* - (I - P_N T)u_N = u^* - P_N Tu^* - P_N f = u^* - P_N f - (P_N u^* - P_N f) = u^* - P_N u^*.
\]

Therefore,

\[
u^* - u^*_N = (I - P_N T)^{-1}(u^* - P_N u^*).
\]

Taking the norms and using (25), we have

\[
\|u^* - u^*_N\|_{L^\infty(0,b)} \leq c\|u^* - P_N u^*\|_{L^\infty(0,b)}, \quad N \geq N_0,
\]

where \(c \) is a constant which is independent of \(N \). Since \(u^* \in C[0,b] \), the convergence (21) follows from (12) and (26).

Theorem 2. Let the following conditions be fulfilled:

1) \(K(t,s) = g(t,s)\kappa(t,s) \) is subject to the conditions, stated in the assumptions (A1) and (A2) (see Sec. 2);

2) \(f \in C_{d,p}^{m,\nu}[0,b] \), with \(m, \nu, d, p \), fixed in (A1) and (A2);

3) equation (20) has only the trivial solution \(u = 0 \);

4) the collocation points (8) with grid points (5) and parameters (9) are used.

Then for all sufficiently large \(N \), say \(N \geq N_0 \), the collocation conditions (19) determine for every choice of parameters \(-1 \leq \eta_1 < \ldots < \eta_m \leq 1\) a unique approximation \(u^*_N \in S_{m-1}^{(-1)}(\Delta_N) \) to \(u^* \), the exact solution of equation (1). The following error estimate holds:

\[
\sup_{0 \leq t \leq b} \left| u^*(t) - u^*_N(t) \right| \leq c\varepsilon_N, \quad N \geq N_0,
\]

where \(c \) is a positive constant not depending on \(N \) and \(\varepsilon_N \) is defined by the formulas (14)-(18).

Proof. Due to Theorem 1 we have to prove only the estimate (27). By Lemma 1, \(u^* \in C_{d,p}^{m,\nu}[0,b] \). Now the estimate (27) follows from Lemma 3 and the inequality (26).

5 Superconvergence phenomenon

Theorem 2 suggests that by using a collocation method based on piecewise polynomials of degree \(m - 1 \) \((m \geq 1)\) and graded grids of type (5), one can reach a convergence order

\[
\sup_{0 \leq t \leq b} \left| u^*(t) - u^*_N(t) \right| \leq cN^{-m}, \quad N \geq N_0
\]

for sufficiently large values of grid parameters \(r \) and \(r_d \), see (14)-(18) and (27).
In (28) the order \(m \) cannot be improved, whereas piecewise polynomials of the order \(m - 1 \) are used for the approximation. Nevertheless, as it will be seen from Theorem 3 below, the convergence order at the collocation points will be higher than \(O(N^{-m}) \) for a special choice of collocation parameters (9). Actually, we shall assume that the points (9) are the nodes of a quadrature formula

\[
\int_{-1}^{1} g(s) \, ds = \sum_{k=1}^{m} w_k g(\eta_k) + R_m(g),
\]

\(-1 \leq \eta_1 < \ldots < \eta_m \leq 1, \)

which is exact for all polynomials of degree \(m \).

Note that the weights \(w_k \) \((k = 1, \ldots, m) \) will not be used in our algorithms. The existence of a quadrature formula (29) which is exact for polynomials of degree \(m \) is used in the proof of the following

Theorem 3. Let \(\nu \in \mathbb{R}, \nu < 1, m \in \mathbb{N}, \)

\(0 < \rho < 1, \rho \in \{0, 1, \ldots, m+1\}. \) Assume that the following conditions are fulfilled.

(i) The kernel \(K(t,s) = g(t,s)\kappa(t,s) \) in equation (1) satisfies the conditions (A1) and (A2) with \(m+1 \) instead of \(m \).

(ii) \(f \in C_{d,p}^{m+1,\nu}[0,b]. \)

(iii) The integral equation (20) has only the trivial solution \(u = 0. \)

(iv) The collocation points (8) with grid points (5) and parameters (9) are used, where \(r \) and \(r_d \) are chosen so that

- if \(m < 1 - \nu, \rho \geq 0, \) then \(r \geq 1, r_d \geq 1; \)
- if \(m = 1 - \nu, \rho = 0, \) then \(r > 1, r_d > 1; \)
- if \(m = 1 - \nu, \rho \geq 1, \) then \(r > 1, r_d \geq 1; \)
- if \(1 - \nu + p > m > 1 - \nu, p \geq 1, \) then \(r \geq \frac{m}{1 - \nu}, r_d \geq 1; \)
- if \(m = 1 - \nu + p, p \geq 1, \) then \(r \geq \frac{m}{1 - \nu}, r_d > 1; \)
- if \(m > 1 - \nu + p, p \geq 0, \) then \(r \geq \frac{m}{1 - \nu}, r_d \geq \frac{m}{1 - \nu + p}. \)

(v) The quadrature formula (29) is exact for all polynomials of degree \(m. \)

Then for all sufficiently large \(N, \) say \(N \geq N_0, \)

the collocation conditions (19) determine a unique approximation \(u_N^* \in S_{m-1}^{(m-1)}(\Delta_N) \) to \(u^* \in C[0,b], \)

the exact solution of equation (1). For \(N \geq N_0, \)

the following error estimate holds:

\[
\max_{q=1,\ldots,m;\xi=1,\ldots,N} \left| u_N^*(\xi,q) - u^*(\xi,q) \right| \leq \begin{cases}
N^{-1}, & \text{if } \nu < 0, \\
N^{-1} \ln N, & \text{if } \nu = 0, \\
N^{-(1-\nu)}, & \text{if } \nu > 0.
\end{cases}
\]

Here \(c \) is a positive constant which is independent of \(N. \)

Proof. See [2,3].

Acknowledgement

This work was supported by Estonian Science Foundation, Grant 5859.

References

