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Abstract: - This work presents a comparison of algorithms employed to solve the job-shop scheduling problem (JSSP), in the light of constraint programming techniques using a basic heuristic, a dichotomic search heuristic and a tabu search algorithm. The results were compared against the optimal solution obtained with the Mixed Integer Formulation (MIP) solved with CPLEX V 8.0.  The set of JSSP were selected from Beasley’s OR-library and the constraint programming tools were implemented using ILOG Scheduler 5.1 and ILOG Solver 5.1. 
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1   Introduction

Constraint Programming is a paradigm aimed for solving hard search problems.  Although the application scope of constraint programming methodologies is nowadays focused on industrial activities such as planning, scheduling, timetabling, routing, its applicability surpasses the boundaries of such areas and reaches any problem wherein large groups of states – combinatorial problems -- must be generated or scanned by search algorithms.  This versatility relies upon the way constraint programming attack problems, separating their definition from the solving method employed.   Models are defined in terms of a group of variables with a finite domain of possible values, conditions as equations or inequalities that combine one or more of these variables. The objective is the combination of possible values for all the variables that satisfy all the constraints in the model or are deducted from combining the original ones [10].  

     Once the model is determined, one may select the most appropriate heuristics to solve the problem, depending upon the nature of the results expected and the environment involved (whether a near-to-optimal solution is sufficient or an optimal result is a must, or if the response time is critical or not).  The system may find a near-to-optimal or “good” solution or several possible solutions or that there exists no combination of variable’s values for which the constraints are satisfied.   The detachment of the model from the solution algorithm represents a significant advantage over declarative programming techniques, allowing flexibility, extensibility and restructuring in the modeling stage. The degree of efficiency and precision of the results obtained will be determined by the algorithms employed and inner methodologies among which can be mentioned:   Backtracking or Generate-and-Test paradigms for state determination; Consistency checking for search space reduction; Constraint Propagation techniques with look-ahead or forward-checking methodologies incorporated; Variable Ordering for the most important variables and algorithms employed (greedy, stochastic or approximation techniques).   The specific implementation of CP-based languages allows an assortment of possibilities: mathematical representations (for time precedence constraints, start and ending times, flow-time descriptions, and the like quantities), first-order logic descriptions (for timing and relational terms) [11], or OOP techniques (such as in ILOG Scheduler and Solver) [3, 4, 8].
     A common practice in the manufacturing field involves the scheduling of activities, wherein the order of execution of the different activities and the distribution of resources over that period of time is crucial.  Scheduling problems belong to the NP-hard category and are quite difficult to automate due to several factors: their combinatorial complexity nature, conflicting requirements that most of the time deter an optimal schedule, and the uncertainty of execution due to stochastic and dynamically-changing environmental causes.

     Among combinatorial problems, JSSP is one of those having a lot of applicability in the industrial domain, networking and manufacturing. However, solving such problems is not an easy task, since JSSP is one of the most difficult problems of the NP-hard ones. Thus, instead of investigating the use of ‘exact algorithms’, it is often preferred to adopt ‘approximation algorithms’. Vaessens et al. [12] have compiled many of these methodologies emphasizing local search techniques, such as simulated annealing, tabu search, genetic algorithms, and traditional heuristics as the bottleneck one. Improvements to these particular techniques have proven to be adequate to solve JSSP. Neural networks have been employed by Jain et al. [5], genetic algorithms by Kobayashi et al.[6], and tabu search by Chambers et al. [2].

     Meanwhile, several constrained-based systems and programming tools have been successfully developed over the years to tackle this sort of problems. Some of them have proven to be very effective when combined with heuristics and exact methodologies.  In this category we can mention ISIS[11] (developed for a turbine component manufacturing plant in Westinghouse), TOSCA (provides pre-scheduling analysis for feasibility purposes, high-level scheduling with preference features, and detailed scheduling capabilities using common Lisp), CHIP (developed by European Computer-Industry Research Center), and ILOG Solver [7,11] (developed by a company derived to the French National Research Institute for Artificial Intelligence using C++ as the core library).   

As mentioned by Le Pape[8], in scheduling, a well-defined categorization of problems can be determined: pure scheduling problems, resource allocation ones and finally hybrid scheduling.  In the first group, the capacities for each resource are known and the determination of the activities over time must be determined (Flow-shop and Job-shop problems belong to this class).  In resource allocation problems the demand is known and the allocation of resource is the objective pursued, so that the demand is equaled or exceeded (such as shift personnel assignment or transportation crew distribution problems).  In joint or hybrid problems a combination of resource allocation and pure scheduling defines the model [3, 8].

     Quoting Giffler and Thomson’s classical definition of a JSSP, the essential parts can be listed as follows:

1. There are n jobs, each of which is processed by one or more of m machines (not necessarily all of them)

2. The processing of each job on every machine is known as an operation or activity.  Operations are to be scheduled, that is their starting times must be determined.

3. An operation once started, it can not be interrupted.

4. Some pairs of operations may have to be executed sequentially, some others must be executed in that fashion (those activities pertaining to the same job, for instance)

5. Each operation must be executed in an interval of time (that is to say, its duration time)

6. Operations for each job must be processed linearly one after the other, and no job is to be processed twice on any machine or must use a unary resource.

7. Each operation must be completed before any succeeding activity may start.

Although an interesting feature of scheduling models is the variety of objective functions available for its optimization, such as maximum or mean flow time, lateness or tardiness, the main goal while solving a JSSP is to determine the shortest maximum completion time, known as makespan.
2   MIP Formulation for the JSSP

The MIP (mixed integer problem) formulation of JSSP includes the following informationmodel must be determined.  Since job-shop scheduling involves determining the beginning time of every activity in each job for each processing unit (machine), start time decision variables are indexed by both, jobs and machines [9].
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     The objective function is expressed in terms of a new variable z that represents the total completion time, the makespan. So the objective function is stated as:
                    minimize  z
   

      (2)

     As above-mentioned the operations in every job must take place sequentially, i.e. their respective starting time variables are subject to precedence limitations. So to state that job j must complete on machine k before activity i can be started is expressed as:
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    Where 
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  represents the start time of job j on machine k; 
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  is the processing time or duration of job j on machine k and 
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  is the start time of job j on machine i.  The last activity has a precedence constraint in relation to z, the makespan:
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    In order to define constraints related to machine conflicts, that is to say, jobs scheduled simultaneously on the same machine, discrete decision variables must be included in the model:
                 
[image: image7.wmf]þ

ý

ü

î

í

ì

=

D

0

1

jik

y

   

                    (5)

where the binary variable yjik  denote jobs j and i cause a scheduling conflict on machine k, and in case job j is to be scheduled before job i  its value will be 1; if the inverse decision is taken its value will be 0.  In other words, two constraints must be added to the MIP model indicating whether job j will execute before job i or inversely, as indicated next:
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    If jobs j and i both require machine k, then the starting time variable of job j, 
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would come first for the upper equation if the value of the binary variable yjik  is equal to 1.  As a rule of thumb the value of M is chosen large enough so that the constraint that does not apply in the scheduling will be discarded by adding the durations of the jobs, mathematically:
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    These models can be solved to optimality by Branch and Bound. We used CPLEX 8.0 to find optimal values in medium size models.
maximum completion time, known as makespan.
2   Constraint Programming and JSSP

In order to address the JSSP by constraint programming, we used the ILOG Scheduler 5.1  and the ILOG Solver 5.1 programming tools. Every strategy been followed along with the heuristics above-mentioned will be described in detail.

    The core steps followed to solve a scheduling problem via ILOG tools are:

1. To define the problem.- Filling the matrixes related to the jobs, operations, machines and duration of  operations.

2. To define the model.- To accomplish this, the ILOG Scheduler classes and objects are activated (defining unary resources for the machines, naming and assigning resources to the activities, setting precedence constraints, and establishing the initial makespan value).

3. Calling the specific heuristic method to solve the problem (defined by goals and combining different search methods along with the heuristic aforementioned), while printing status information of partial solutions.

4. The final step consists of printing the results with a user-defined output format, in case the algorithm searches the problem domain and concludes whether a solution was found or was impossible to obtain one in a finite  time frame.
2.1
Basic Heuristic Subsection
Steps in basic heuristic[3] to solve JSSP :
1. Define the problem by “disjunctive scheduling”; i.e., the activities, will be linked via temporal constraints, and each of them will require a unary resource.  For any pair of activities Ai and Aj requiring a common resource or being processed by the same machine, either Ai will execute first  or Aj will do so, so as to minimize the total execution time. 

2. Define the origin and horizon of the scheduling, i.e. the initial and the ending times values for the whole schedule, the activities comprised in the problem, the temporal constraints (indicating that any activity Ai starts after or before another activity Aj), the unary resource constraints (indicating that activity Ai is tied to resource or machine Mk), and the optimization criterion (in JSSP,  the minimum makespan).

3. Let a basic algorithm select an initial pair of unscheduled activities (Ai, Aj) using a common resource (Mk); then to decide which is the most favorable ordering (either Ai comes first in the schedule or Aj) keeping the inverse ordering for backtrack purposes, and finally repeat the same ordering process for every pair of activities in the schedule.  However, considering only the complexity of the ordering algorithm -- being O(n2)-- and adding the combinatorial character in a JSSP, turns its practical implementation via a programming tool into a predicament, in terms of memory consumption and timing responsiveness.

    An alternative heuristic [3], by which the algorithm’s complexity of the ordering of activities is reduced to O(n), is carried out by a predefined goal and summarized in the following steps:
1. Calculate an initial simple horizon upper bound value, being the addition of activity durations.

2. For the activities not ordered so far in the schedule, select a critical resource (having a limited availability in a period of time starting from the earliest start time of the activities involved and ending in the latest end time for the same activities).  Viewing a resource criticality in terms of slack defined as the difference between its supply (the availability; being one in this case) and its demand, the most critical resource is the one having the least slack value.

3. Any activity is chosen to be executed first among the unordered activities.  The specific criterion in the algorithm takes into account the activity with the earliest start time (the most urgent one) and in case other activities collide with the one selected, the one with the minimal latest start time will be considered.  

4. Steps 1 and 2 are repeated to order the activities related to the critical resource selected 

5. Steps 1 to 3 are repeated for activities using a common resource (for machine conflict considerations)

6. The predefined goal, the objective function, is to reduce the makespan value by a single unit after each iteration (after time and precedence constraints are propagated).

2.2
Dichotomic Search Program
Making some adjustments to the abovementioned heuristic, the number of iterations is reduced.  
    Among those, we mention [3]:

1. Instead of using the predefined goal of reducing by a single unit the makespan value after each iteration, the makespan interval is divided in two halves (dichotomized), and the search algorithm must decide whether the feasible value for the solution is found above or below the middle point or: 

(makespan upper bound+makespan lowerbound) / 2.

2. The initial upper and lower bounds for the makespan are calculated by propagating the initial constraints and selecting the lowest upper value available through an extra goal that resolves machine conflicts, respectively.  In this way, the domains for variables, as well as the search space for the makespan are reduced, but although the timing responsiveness is improved, as will be verified by the results displayed in upcoming sections, with this approach “harder” iterations are attached to the problem (since we are dealing with near optimal values).

3. The decision making process takes into account not only local focused decision, but global aspects so that the whole schedule is affected homogeneously. 

    The two most relevant adaptations are reviewed next, interleaved with flowcharts depicting the most relevant parts in the algorithm [3].

    In order to obtain an upper bound for the makespan the following steps are performed:

1. A routine to solve conflicts is defined, that is aimed to add precedence constraints to the original model, deciding which resource constraint will be considered first.  In order to do that, unranked resource constraints are selected in pairs, their related activities are extracted with their minimal and maximal values for start and end times, used to calculate the overall impact of scheduling one after the other and inversely (as seen in Fig. 1). The impact is settled taking into consideration the differences between ending and starting times of precedent and subsequent activities respectively, and since we verify both orders, the one with the lowest value (shortest difference) should be selected, nonetheless the inverse should be kept for backtracking purposes (see Fig. 2).

2. In order to make decisions having an overall perspective, rather than locally (just involving the two specific activities), the impact quantity is multiplied by the number of unranked activities, for the whole schedule, linked to the ones analyzed.  

Regarding the dichotomic search process, the makespan range is dichotomized, and following each iteration, it is verified whether the value for a feasible solution is found above or below the middle point, updating the boundary values after each iteration.  The process will be terminated when the upper and lower values are the same.  However, the slack calculation decision is determined in terms of the earliest and latest of precedent and subsequent activities, respectively.
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Fig. 1. Select Most Opportunistic Conflict module by dichotomic search module for the basic heuristic constrained programming  code. (2.1), (2.2),… depending on your various Sections.

2.3
Tabu Search

This strategy allows the performance of non-improving feasible moves, so that a local search “stall” situation (escaping from a local optimum), where no improving feasible moves are available can be overcome. The basic approach deals with a classification of moves as being “tabu” or forbidden, that would return to a solution recently visited; thus preventing short-term cycling (unfortunately not long-term cycling).  A taboo list is kept, where forbidden moves are stored.  Each iteration a non-taboo feasible move is chosen.  After it, any moves returning immediately to the previous point are added to the tabu list, these are not allowed for a few iterations, but in the long run made available again.  Since a non-feasible solution may “impair” the objective function, a so-called incumbent solution (
[image: image12.wmf]x

) helps keep track of the best solution reached so far.  This variable will contain the approximate optimum value.  This algorithm will improve a solution in case, improving moves are available in the neighborhood of the current position.
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Fig. 2. Get Opportunity module by dichotomic search module for the basic heuristic constraint- programming  code. 
     Borrowing the algorithm definition from Rardin [9], the tabu search algorithm steps are listed next:

1. Initialization. An starting feasible solution (x0) is the starting point, along with an iteration time limit t.  Incumbent solution  (
[image: image14.wmf]x

) is initialized to x0.  The taboo list is empty

2. Stopping Condition.  If there is no non-tabu feasible move to a feasible neighbor of current solution (xt) or if time limit is reached then stop the algorithm and the approximate solution is in the incumbent variable (
[image: image15.wmf]x

).

3. Move.  In case the stopping condition is surpassed, select a feasible non-taboo move as the increment to the next move ((xt+1)

4. Update Step.  xt+1( xt + (xt+1
5. Update Incumbent Solution.  If objective function value for xt+1 is higher to that of incumbent solution (
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) then do 
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 ( xt+1
6. Update Tabu List.  Remove from the tabu list of forbidden moves, those that have remained for a number of iterations, and add all those moves that lead from xt+1 to xt.  Its important to decide how many moves will be added to the tabu list after each iteration.  This will have an impact on the problem resolution:  too few will lead to cycling and too many restrict the search.

    Increment iteration limit by 1:  t ( t + 1 and return to step 2. at the end of this sentence [1]. 

4   Computational Results

The different constraint programming approaches were tested in a set of instances  taken from Beasley’s OR-library.  The benchmark problems were selected taking into account two characteristics: the increasing dimensions of jobs and machines and the degree of difficulty (i.e. problems with a non uniform data distribution for the durations).  It was seen that for medium to large sized problems the divergence from the Basic and Dichotomic algorithms was very low, and the response time was appropriate.  Even for the approximate tabu search algorithm the results did not differ greatly and the timing responsiveness was satisfactory.  
    For difficult problems, having medium-sized dimensions the results increased the response time, however again near-to-optimum results were obtained for the three techniques; in contrast, the exact solution Cplex time response increased exponentially.  For large size problems, the results obtained via the constrained programming algorithms could not be verified, due to the fact that an overflow in the memory due to combinatorial exponential grow, for the Cplex tool,  surpassed the computer capacity (see Fig. 3 and Fig. 4).

    The tables show the comparative results in terms of makespan and solution time for the four methods used.  

	OR Library
	Optimal
	Constraint Programming

	Instances
	CPLEX
	Basic
	Dichotomic
	Tabu

	6 by 6 (Fisher)
	55
	55
	55
	58

	10 by 10 (Adams)
	1151
	1234
	1234
	1288

	10 by 10 (Monika-doomed)
	385
	397
	397
	484

	10 by 10 (Bruce-deadlier)
	872 (best)
	899
	899
	1055

	15 by 5 (Lawrence)
	714 (best)
	958
	958
	958


Table 1. Makespan

	OR Library
	Optimal
	Constraint Programming

	Instances
	CPLEX
	Basic
	Dichotomic
	Tabu

	6 by 6 (Fisher)
	3.81
	0.78
	0.062
	0.062

	10 by 10 (Adams)
	12509.05
	21.782
	3.688
	0.1

	10 by 10 (Monika-doomed)
	9363.57
	651.781
	6.156
	0.1

	10 by 10 (Bruce-deadlier)
	37956.64*
	8.094
	0.11
	0.1

	15 by 5 (Lawrence)
	23487.82** 
	0.063
	0.016
	0.1


Table 2. Solution Time (secs)

4   Conclusion

The results attained, were similar to those obtained by Phillipe Baptiste and Claude Le Pape [7], and showed that the three constrained-based algorithms performed extremely well, not only in terms of closeness to an optimum result, whatever task-duration distribution the problem involved, i.e. uniform or non-uniform, but in terms of quick responsiveness.  It can be concluded that the ILOG group of programming tools (Solver, Scheduler, Cplex) is a very powerful and flexible software set that enables the development and modeling of highly efficient and flexible Constraint-programming code, for the core of the language allows the definition of goals and heuristics (such as Shuffle, Taboo search, Genetic Algorithms), as well as user-defined algorithms such as Dichotomic search and the like methodologies, employed to solve not only the JSSP but a great deal of hard-search problems linked to the research, industrial and manufacturing domains.
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