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Abstract   This paper shows the study and results of 

the three layers slot resonator with Photonic Band Gap 
(PBG) substrate. The full wave Transverse 
Transmission Line (TTL) method is used to calculate 
the complex resonant frequency, using  double spectral 
variables. This method presents efficient and concise 
calculus in the determination of the structure 
parameters. Numerical results for the resonant 
frequency of three Layer’s substrate slot antenna, for s 
and p polarization of  PBG material, for different  
thickness substrate and resonator length are presents.   

  
Key Worlds   TTL Method, PBG-Photonic Band 

Gap, Multilayer, Slot antenna.  
 

I. INTRODUCTION 
 

Multilayer microwave resonator shows complexity when 
more accuracy methods are applied [1]–[2]. In this paper 
the concise full wave Transverse Transmission Line 
(TTL) method is used to calculate the complex resonant 
frequency of three Layer’s substrate slot antenna with 
Photonic Band Gap (PBG) substrate. 

Photonic band gap material exhibits energy band gap. In 
a photonic crystal if a photon has energy in the band gap it 
not propagates through of the material in the light 
direction. This PBG has periodic array of cylinder air with 
diameters and spacing  less than one light wavelength  [3]-
[6]. This substrate can improve the bandwidth and  
eliminate propagation of undesirable modes and increases 
the antenna efficiency. 

The choice of the structure has objective expand 
application the method in multilayer resonators because 
the increase of bandwidth for 4%[7] if maintain a fine 
substrate (h/λ0<0.01) and low permittivity. This paper 
presents the comportment of the microwave resonator in 
function aperture of slot. 

 Fig. 1 shows one three Layer’s substrate slot resonator. 
The thickness of the patch resonator and the ground plane 
are perfect conductors 
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Fig. 1 – (a) Cross section of the three Layer’s substrate slot resonator, 

(b) Cut of slot resonator  region.  
 

 
II. TTL METHOD 

 
 The general equations of the fields in the TTL method 

are obtained after using the Maxwell’s equations,as: 

(1) 
were the index ‘T’ shows the transversal components 
directions (x, z): 

zExEE zixiTi ˆˆ +=                       (2.1) 

zHxHH zixiTi ˆˆ +=                     (2.2) 
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The equations are used for the analysis in the spectral 
domain, in the " x " and " z "directions.  

   Therefore it should be applied to the field equations of 
double Fourier transform defined as: 
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The electromagnetic fields are obtained: 
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where: 
i = 1, 2, 3, represent three dielectric regions of the 
structure; 

2222
ikni k−+= βαγ                   (4.5) 

is the propagation constant in y direction; αn is the 
spectral variable in “x” direction and βk is the spectral 
variable in “z” direction. 

∗== rii kk εµεω 2
0

22    is the wave number  of ith  
dielectric region; 

0ωε
σ

εε i
riri j−=∗    is the relative dielectric constant of 

 the material with losses; 
ω = ωr + jωi  is the  complex angular frequency; 

0εεε ⋅= ∗
rii  is the dielectric constant of the material; 

 
III. THE ADMITANCE MATRIX 

 
The equations above are applied to the resonator, being 

calculated the Ey and Hy fields through the solution of the 
Helmoltz equations in the spectral domain [8]-[9]: 
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  The solutions of these equations for the three regions of 
the structure are applied and using the boundary 
conditions, the general equations of the electromagnetic 
fields are then obtained. The following equations relate 
the linear current densities in the sheets ( xgJ~  and zgJ~ ) 
and the magnetic fields in the interface y = s (Fig.1 a): 

zgx3x2 J~H~H~ =−                             (6.1) 

 xgz3z2 J~H~H~ −=−                        (6.2) 
   The substitutions of the magnetic fields [10], after 
various calculus gives, 

zgzgxg J~E~E~Y =+ xzxx Y                  (7.1) 

xgzgxg J~E~E~Y =+ zzzx Y                  (7.2) 
 
that in matrix’s form is:       
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The " Y " matrix is the dyadic Green admittance function 
of the slot antenna[11]. 
 

IV. RESONANT FREQUENCY 
 

The electric fields in the slot interface are expanded in 
terms of known base functions, as [12]-[16]: 
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where axi and azj are unknown constant and the n and m 
terms are positive and integer numbers. Using one base 
function for each component : 

),(~~
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),(~~
knzzzg faE βα⋅=                  (10.2) 

And  choosing base functions in the space domain 
expressed by [13]: 
 
  fx(x,z) = fx(x).fx(z)                       (11.1) 
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Whose Fourier transformed  are:  
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where J0 is the Bessel function  of first specie and zero 
order.   
   The Gallerkin method and the Parseval theorem [17] are 
applied to (8), to eliminate the current densities and the 
new equation in matrix’s form is obtained, 
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   The solution of the determinant of the characteristic 
equation  (13), supplies the complex resonant frequency 
[18]. 
 

V. PBG STRUCTURE 
 

One of the problems that appear  when  working with 
photonic material is the determination of the effective 
dielectric constant. For  a non-homogeneous structures 
submited the incident sign goes at the process of multiple 
spread. A solution can be obtained through of numerical 
process called of homogenization [19]-[20]. 

The process is based in the theory related to the 
diffraction of the incident electromagnetic plane wave 
imposed by the presence of air cylinders immerged in an 
homogeneous material [6]. 

Choosing a Cartesian coordinates system of (O, x, y, z) 
axes shown in the Fig. 2, consider firstly a cylinder with 
relative permittivity ε1, with traverse section in the xy 
plane, embedded in a medium of permittivity ε2. For this 
process the two dimensional structure is sliced in layers 
whose thickness is equal at the cylinder diameter. In each 
slice is realized the homogenization process. 

According to homogenization theory the effective 
permittivity depends on the polarization [8]. For s and p 
polarization, respectively, the effective permittivity are: 
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Fig. 2.  Homogenized two dimensional PBG crystal. 

 
where β is defined as the ratio of the area of the cylinders 
over the area of the cells and α is an independent 
parameter whose value s equal to 0.523. The A1 and A2 
variables in (15.3) and (15.4) were included for simplify 
the (15.2) equation. 
 

V.  NUMERICAL RESULTS 
 

The computational program used to calculate the 
resonant frequency, with PBG material, was developed in 
Fortran PowerStation and the Matlab for Windows. 

The fig.3 shows the compare of accuracy of the TTL 
method in the structures when compare with bilateral fin 
lines resonator in limit case (when the slot aperture L is 
equal at LL). Three Layer’s substrate as function of length 
of patch at width equal 5 mm. The thickness substrates of 
one and two regions are 1.4 mm, the third region is the 
space. The relative permittivity is 10.233 for s polarization 
without loss. 

The Fig. 4 shows the real frequency of resonator 
rectangular three Layer’s substrate as function of length of 
patch at width equal 15 mm. The thickness substrate of 
one and two regions is 1.4 mm, the third region is air. The 
relative permittivity is 10.233 for s polarization and 
8.7209 for p polarization without loss. This graphic can 
observe the non linear variation of resonant frequency for 
length of slot, caused by insertion of the multiwall and 
gaps in the PBG substrate application.   

 
 
 



 
Fig. 3.   Resonant Frequency as function of resonator and comparison 
with bilateral fin-line cavity slot resonator, for s polarization of  PBG 

material 
   

 

 
Fig. 4.   Resonant frequency of three Layer’s substrate antenna, for s and 

p polarization of  PBG material. 
 

Considering the variation of two layer in the Fig. 5 
shows the real frequency of resonator as function of 
thickness of second layer with RT-DUROID material (εr 
=2.22). The patch and width equal 20mm, the first region 
with 1.4mm of thickness of PBG material for S 
polarization  and third region is air. The relative 
permittivity is 10.233 for s polarization considering losses 
of 0.5 S/m. This graphic can observe the non linear 
variation of resonant frequency for thickness.   

 

 
Fig. 5.   Resonant frequency of three Layer’s substrate antenna, for s  

polarization of  PBG in the layer 1 as  function of the thickness of 
second region with RT-DUROID material. 

 
VI. CONCLUSION 

 
   The three Layer’s microwave slot  patch antenna were 
analyzed using the full wave Transversal Transmission 
Line – TTL method. The equations that represent the 

electromagnetic fields for the layers are obtained, 
according this concise and effective procedure. Applying 
the moment method the complex resonant frequency was 
calculated considering layers with Photonic Band Gap 
(PBG) material. This resonant frequency was calculated 
through double spectral variables. This method shows 
great facility in the structure parameters determination. 
Numerical results for the resonant frequency, using the 
Fortran Power Station language with good comparison, 
were presented. 
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