PAGE
1

Design and analysis of FPGA based self-timed system with specific focus to xilinx FPGAs
M.SRIRAMAN
Electronics and Communication Engineering
Anna University

Ceg, Anna university, guindy, Chennai-25

INDIA

Abstract:- The ASIC based self-timed systems use custom cells, which are not commercially available to the design community. Hence, Asynchronous self-timed designs have been a concept restricted to certain organizations around the world, which can afford the cost and effort. In order to make the methodology widely available it should be possible to build these systems using basic components available to the entire design community. In this dissertation work the focus will be on building a self-timed system using components available in a basic Xilinx FPGA, which is the most widely used FPGA in the world. The flow will be based on designing basic macro modules, which are consistent in timing in themselves and building bigger designs using such macro modules. At the end of the dissertation work a set of guidelines and design flow will be available to the design community to design self-timed systems using FPGAs. An example design of an arbitration based memory access module is given to illustrate the credibility and desirability of the methodology. It is part of a complex design in a larger chip and was a nightmare to meet the 125 MHz timing in Xilinx Virtex FPGA. Also it has some performance bottlenecks in terms of giving the required throughput. The self-timed design will be used to show that the design will exceedingly meet both the timing requirement and the performance requirement in the same FPGA.

Keywords:-Self timed systems, Macro modules, Delay insensitive, Dual rail, Bundled data signaling.
1. Introduction

The current day VLSI systems predominantly employ clock based synchronous systems owing to their design simplicity and predictability. Though started as early as 1950, the asynchronous design methodologies have not picked up much due to many reasons like lack of proper methodologies, possible design hazards, non-availability of synthesis tools etc. The indisputable popularity of the synchronous design methodology was also a key reason behind the design community not giving much botheration to the asynchronous design methodologies. The clock-based synchronous systems have been able to cater to the growing needs of the design community so far. But, as the complexity, size and speed of the system increases, they bring with them major issues like speed limited by the worst case timing delay, global synchronization with low skew, power consumption due to all-time active clock and many more with all centered around the clock signal. The aim of this thesis work is to analyze the gradual applicability of asynchronous designs to certain parts of synchronous designs, which can significantly boost the performance. The resulting systems are mixed synchronous-asynchronous systems. The type of asynchronous circuits dealt with in this work is also called self-timed systems since they don’t need any external signal to synchronize or time their operations. This work is towards evolving a set of guidelines that will help self-timed systems realizable using commercially FPGAs
2. Issues/Challenges with Synchronous design
Synchronous design has enjoyed monopoly in the VLSI based design field since its birth. The key reasons behind this are:
1. Simplicity

2. Accessible to all design community without needs for any special components that are proprietary to only certain groups around the world

3. Robustness

4. Extensive tool support

5. Matured over the years with a well defined flow and methodology

The synchronous design is a ‘ready to jump’ methodology that anyone can start designing and taping out chips with not much of difficulty. But, with increasing needs on speed and complexity a severe bottleneck to synchronous design methodology is imminent. The bottleneck comes from multiple angles. The following are the few key issues/challenges limiting the applicability of synchronous design methodology to future chips.
1. The killer clock.

2. Power factor.

3. Portability/Scalability.

4. Performance-Worst case!
3. Self-Timed systems

Since the invention of transistor asynchronous designs have existed. Unfortunately they did not gain enough popularity owing to their complexity and absence of any big community to aid its progress. The asynchronous design methodology holds a lot of promises that can easily overcome the challenges that face the synchronous designs [9].The following are the advantages of asynchronous over synchronous design.
1. Clock less design.
2. Cool chips-power saving.

3. Portability.

4. Performance-Average case!

In spite of the advantages the asynchronous design community faces many disadvantages, which is a primary cause of it not gaining enough popularity over synchronous design that it deserves. Some of them are:

1. Non-availability of standard and clear-cut flow to all.
2. Usage of custom VLSI components for asynchronous design by the players in the industry makes it difficult for others to use them for wide manufacturing of commercial products.
3. Robustness of the design is a major challenge to be overcome by the design community

4. Testability of the Asynchronous chips. Non-availability of commercial tools for verification and synthesis of asynchronous circuits
Though this work cannot solve all the issues, it intends to solve the first and the second issues.
4. Self-Timed designs – Issues/Limitations

From the previous section it may appear that self-timed design will be clear winner over the synchronous designs and will be the favorite choice for the design community in future. But, it is not as simple as it sounds. Self-timed designs have a set of serious challenges that will cause their wide applicability to be postponed by more than a decade. Unless, these challenges are faced with an appropriate scalable solution, self-timed design will only be a far to reach dream for the VLSI design community. Some of the challenges are as follows:

1. Availability of design components
2. Design Hazards:[12],[18].

3. Memories in self-timed systems.
4. Ease of design.
5. Completion detection [10] [13].

6. External interfacing

7. Testability [11], [19].
5. Synchronous-asynchronous mixed design approach

In this thesis work a mixed synchronous-asynchronous design is attempted. In a bigger synchronous design certain parts, which are performance critical and difficult to meet the required timing can be replaced with a self-timed equivalent. The self-timed circuit will help in meeting the required performance of the overall design. With increasing complexity and speed of the current day designs there are some requirement in synchronous designs that stand in the way of meeting the required performance:

1. Increased pipelining to meet the frequency requirement. To keep the frequency of operation of the chip high designs are highly pipelined. These pipelines become a headache in latency sensitive designs like arbiters. Also pipelining increases the power consumption.

2. Highly complex designs have a lot of design blocks. In order to predictably meet the inter-module timing it is required to have affinity flopping for the inputs and outputs. All inputs should be clocked once before using in the module and all outputs should be clocked once before driving out of the module. This adds to latency

3. Memory interfaces should one affinity flopping near the module and one near the memory. This makes the memory access latency to be 5-6 cycles. Memory access arbiters greatly suffer due to this.
Every networking design has the above issues, which becomes a critical bottleneck to the designers in meeting the required performance of the design. Let us consider an example design of a memory access arbiter, which serves to multiple clients in accessing the memory

Fig 1 Synchronous memory arbiter

In the above fig a synchronous memory arbiter is shown. In this the arbitration latency can be 2-3 cycles and the memory access latency due to affinity flopping would be 5-6 cycles. Hence, the total access latency becomes 7-9 cycles. Each client would suffer a minimum of this much latency for memory accesses. This would be a major limiting factor for the performance of the designs. A self-timed system would fit into such a scenario neatly to save a lot of access cycles.

Fig 2 Self-timed design in a synchronous system

In the above example the arbiter and Memory have been replaced with a self-timed equivalent. Now, there is no pipelining and the only delays are combo and routing delays. This is surely much lesser than 7-9 cycles in the case of synchronous design. Also the total power of the circuit will reduce due to self-timed modules. One disadvantage that must be immediately visible in the example is the latency due to the synchronization at the asynchronous interface, which will be 4 cycles. The self-timed modules are advantageous if their total latency is lesser than 3-5 cycles. As the system grows more complex the arbiter will be having more latency and the self-timed system will be of sure advantage. In self-timed systems the four-way handshake is used for communications between any two blocks. Hence, every data unit that moves through the system will be associated with the request-ack signals. This combination of request-ack and data communication is called as bundled data signaling. In asynchronous systems it is important only that the correct sequence of signals be maintained. The timing of these signals is an issue of performance that can be handled separately. If this protocol is insensitive to delays through circuit components or the wires that are used to connect them it is known as a delay-insensitive protocol [1].Self-timed protocols are often defined in terms of a pair of signals that request an action, and acknowledge that the requested action has been completed. One module, the sender, sends a request event (Req) to another module, the receiver. Once the receiver has completed the requested action, it sends an acknowledge event (Ack) back to the sender to complete the transaction. In order to maintain this sequence of events, the communicating modules must obey the following rules:

Rule 1 The sender must not produce a new request event until the previous request event has been acknowledged.

Rule 2 The receiver must not produce an acknowledge event unless it has received a request event.

Rule 3 After initialization, the sender may produce a new request event.

[image: image1.wmf]

SENDER

RECEIVER

REQUEST

ACK

Fig 3 Delay insensitive control flow

In order to make the circuit delay independent the data signals are encoded in such a way that the destination can know when the data is ready so as to kick-start its operations. The most popular encoding is the dual rail signaling. Many of the references talk about this and this protocol is formally presented in [16].
6. Basics of asynchronous design
Asynchronous circuits do not use a global clock for synchronization instead they rely on the behavior and arrangement of the circuits to keep the signals proceeding in the correct sequence. In general these circuits are very difficult to design and debug without some additional structure to help the designer deal with the complexity.

6.1 Muller-C Element

Similar to flops in synchronous designs Muller-C elements act as timing reference points in self-timed systems. These Muller-C elements play key role in bundled data signaling in causing the request-ack control and data flow through the system. The property of the Muller-C element is such that the output of the element will become 1 only when both of the inputs are 1 and the output will go back to 0 only when the both the inputs become 0. Below is the symbol and circuit realization of a Muller-C element.

[image: image2.wmf]

C

X

Y

Z

X

Y

Z

Fig 4 Muller-C Element
There is strict timing requirement in realizing a muller-c element using the combo circuit shown above. It is that the feedback from z back to the circuit should be faster than any other feedback to the inputs x and y. This requires careful timing constraints on this path. In order do away with such a requirement an alternate way of realizing the muller-c element, which is flip-flop based is given here. The circuit is as in Fig 8. In future FPGAs the AND& NOR gates can be integrated into the FPGA itself with special pins instead of wasting 2 LUTs per component.
6.4 Examples of self-timed basic components using dual rail signaling

Self-timed components should fully follow the request-ack protocol requirement. It is that the operation should start only after all the input signals are in the valid state. This means that the output of the current module should become valid only after all the inputs to this module are valid. Also the output of this module should be go to Idle state only after all the inputs have gone to invalid state. AND gate, OR gate, MUX and REGISTER modules have been taken as example to demonstrate this function. The AND/OR and REGISTER modules are taken from [3].
[image: image3.wmf]
[image: image4.wmf]
Fig 9 Dual rail AND Gate design from [3]
In this design output lines will become valid only when the inputs are valid as per the dual rail signaling and outputs will go to idle only when the inputs have gone to idle. This is possible due to the Muller-C elements.
Below is the 2x1 Mux module realized using AND& OR gates.

[image: image5.wmf]

IN1

D

IN2

D

SEL

D

OUT

D

D

D

IN1

D

IN2

D

OUT

D

SEL

D

D

Fig 11 2x1 Dual Rail Mux using Dual Rail AND-OR Gates
7. A self-timed design flow for FPGAs

Before we venture into the design of this thesis work a proper flow is established for self-timed systems in FPGAs. The flow should consider that the design should be realizable in FPGAs, which have only limited type of components. The flowchart shown in fig 12 depicts the design flow for self-timed systems in FPGAs.
Example design

To illustrate the advantage of the mixed synchronous-asynchronous approach an example design is taken here with the use of which we traverse through the entire flow given above. The design involves a memory access arbiter with multiple clients contending to access a memory element. The challenges that a synchronous designer would face in designing this system are:

1. Client to arbiter interfacing latency

2. Arbitration latency incase of multiple clients

3. Memory access latency

4. Memory affinity flopping

First the design is achieved using synchronous approach. The performance bottlenecks will be studied. Later the same design is achieved using synchronous-asynchronous approach and the performance improvement will be studied. The logic, power data also will be compared at the end.
13.2 Requirements of the Memory Arbiter

1. Multiple clients requiring to access a memory element. The access can be read or a write access.
2. The memory access arbiter should be scalable to handle multiple clients
3. The arbitration scheme is priority based arbitration scheme

4. The memory can be placed anywhere in the chip and hence the access latency can vary significantly due to routing delay

2. Full Synchronous approach

The full synchronous design will have an arbiter that takes the requests from all the clients. The requests are detected at the rising edge and kept as sticky bits. A priority encoder chooses the next port to serve. Once chosen the selection logic is disabled till the memory access completes for the current access. A 4x1 multiplexer selects the signals for the selected port and performs the appropriate access. After memory access delay an ack is generated to the clients. The architecture is shown in the figure.

[image: image6.wmf]

Define the requirements of the design

Isolate the synchronous and self

-

timed blocks properly. Proper

synchronization will be required in the synchronous domain for

signals from self

-

timed domain. Similarly, the synchronous

domain sho

uld follow the dual data signaling protocol with the

self

-

timed domain.

In Self

-

timed domain break the functionality into smaller blocks,

which can interact with each other using the request

-

ack signaling

protocol. Each of the blocks can be considered a

s a stage in the

micropipeline

Define the set of micro

-

components that are required to build the

design. Design each of the micro

-

components using Xilinx FPGA

editor so that they can be inferred as black

-

boxes in the designs.

Some of the components are M

uller

-

C element, Arbiter etc.

These components are time closed and self

-

timed in nature

Implement the design using the basic components and other

conventional gates

Take the design through FPGA design flow

Requirement of

more micro

-

components

Verify us

ing the Gate level simulation or on board

Verify the design as a normal synchronous design

Fig 12 Self-timed system design flow
8.

[image: image7.wmf]

MEM

Sync

Interface

Block

(SIB)

ARBITER

(ARB)

Sync_arb_req_0[1:0]

Sync_arb_req_1[1:0]

Sync_arb_req_2[1:0]

Sync_arb_req_3[1:0]

MUX

Sync_mux_data_0[15:0]

Sync_mux_data_1[15:

0]

Sync_mux_data_2[15:0]

Sync_mux_data_3[15:0]

Sync_mux_rw_n_0[7:0]

Sync_mux_rw_n_1[7:0]

Sync_mux_rw_n_2[7:0]

Sync_mux_rw_n_3[7:0]

ACK GENARATOR

(ACKGEN)

Mux_mem_data[15:0]

Mux_mem_rw_n[1:0]

Mux_mem_wport[7:0]

Ag_sync_rdata[15:0]

Ag_sync

_port[7:0]

Ag_sync_ack

Rdata [7:0]

Ack [3:0]

Req_0

Rw_n_0

wata_0[7:0]

Req_3

Rw_n_3

wata_3 [7:0]

.

.

.

.

Fig 13 Architecture of the memory arbiter block
In synchronous design to achieve predictable timing closure the ASIC design guidelines strictly enforce affinity flopping at inter-module level and memory interfaces. These affinity flopping greatly affect the performance of the design. It takes 15 cycles for the access to complete and for the client to get an ack for a request. This is 150ns in 100 MHz clock. A read-modify-write will get badly affected by this latency. It is evident that the arbiter and affinity flopping become major bottlenecks in arbiter based control path designs where memory access becomes the core of the issue. This introduces unnecessary latency issues, which can bring down the performance well below the maximum possible. The synchronous-asynchronous combination will be tried out to see the improvement in performance. The synchronous-asynchronous architecture was synthesized and fitted in Xilinx Virtex device XCV50. The simulation timing results are shown in the fig below.

[image: image8.wmf]

Request Valid

External Req

Ag_sync_ack

Req All Zeros

Request dual rail

Valid

Sync_arb_req

Req All Zeros

Clocking delay 18ns

Self

-

timed delay 62ns

Ack 2 request zero 4.5ns

Request zero to ack zero

delay 30ns

External Ack

Synchronization

delay

–

 30ns

Fig 14 Timing breakup in synchronous-asynchronous design
9. Performance measurement

1. It can be seen from the fig that the request assertion to ack delay is 18+62+30 = 110ns. Due to additional clocking at client finally it becomes 120ns.
2. This is 30ns or 3 clock cycles lesser than the full synchronous design. In many design the performance is affected in the margin 2 to 3 cycles where this improvement will be a big saving

3. The saving in the number of clock cycles is not a big number. This number is just an indicator of possible savings in bigger designs where the pipelining requirement would be even more.

4. Every pipeline is going to increase latency by one clock cycle. But, adding logic in a self-timed design is going to increase the latency only by the amount of logic delay and routing delay.
10. summary
	Parameters
	Fully Synchronous
	Synchronous-Asynchronous including memory and Muller element logic
	Synchronous-asynchronous excluding memory element
	Synchronous-asynchronous excluding memory element and with special muller-c flops

	Access Latency at 100Mhz
	150ns
	120ns
	120ns
	120ns

	LUTs
	96
	968
	780
	238

	Flip-flops
	188
	496
	444
	444

	Logic Power (mW)
	14
	13
	13
	13

Table 1 Comparative figures

	
	LUTs
	Flip-flops

	SIB
	116
	149

	ARB
	57
	24

	ACKGEN
	38
	4

	MUX
	576
	268

	MEM
	188
	52

Table 2 Unit-wise Logic breakup

[image: image9.wmf]Comparitive Charts

96

188

14

120

968

780

444

13

238

150

496

13

120

120

444

13

0

200

400

600

800

1000

1200

Access

Latency

Flip-

flops

Paramaters

Numbers

Fully

Synchronous

Synchronous-

Asynchronous

including memory

and Muller

element logic

Synchronous-

asynchronous

excluding memory

element

Synchronous-

asynchronous

excluding memory

element and with

special muller-c

flops

Fig 15 Comparative Charts
The above table gives the comparative figures for fully synchronous and synchronous-asynchronous design of the memory arbiter. It is evident from the above table that the MUX module is the major contributor to the logic. It consumes more that 50% of the total logic. The main reason behind this is the dual rail protocol. An alternate encoding scheme would surely reduce the area to a greater extent. Also there is not much of power saving. The only advantage is the latency improvement as of now. Hence, self-timed with synchronous logic approach would be appropriate in those areas where the cost of performance is much higher than the cost of area. Surely, there are designs, which have this requirement and synchronous-asynchronous approach can be tried in those areas. This approach anyway has to wait for some improvement in area before it will be widely accepted by the design community.
11. Future scope

From the summary quite few improvement areas can be identified, which open gates towards future would work in this line:

1. Reduction in area by coming up with a newer encoding scheme other than dual rail

2. An interpreter that can translate synchronous design to self-timed design

3. Direct self-timed memory and Muller-c flop realization in FPGAs and ASICs
12. Conclusion

It has been shown that it is possible to realize successful mixed synchronous-asynchronous design that can help overcoming performance bottlenecks in the control path designs like arbiters. But, with the huge logic cost the self-timed systems have a long way to go before they get wide acceptance in among the design community. As of now the applicability of such mixed designs can be restricted to areas where performance is more critical than logic increase. Anyway, this thesis work has proven the feasibility of mixed synchronous-asynchronous design, which itself can act as a major encouragement in improving the areas like area reduction and realizing special asynchronous components in ASIC/FPGAs.
Reference:-
	[1] Scott Hauck, Asynchronous design methodologies, Processdings of the IEEE, Vol. 83, No.1. pp.69-93, January, 1995

	[2] Erik Brunvand, Using FPGAs to Implement Self-Timed Systems, Computer Science Dept., University of Utah, January 8, 1992

	[3] Narinder Pal Singh, A Design Methodology for Self-timed systems, massachusetts Institute of Technology

	[4] Chris Myers, Asynchronous Circuit Design, by Chris Myers, JOHN WILEY & SONS

	[5] D. A. Edwards W. B. Toms, The Status of Asynchronous Design in Industry, Information Society Technologies (IST) Programme Concerted Action Thematic Network Contract IST-1999-29119 2nd Edition, Feb 2003

	[6] Ivan E. Sutherland, MICROPIPELINES, Communications of the ACM, June 1989, Volume 32, Number 6

	[7] Al Davis and Steven M. Nowick, An Introduction to Asynchronous Circuit Design, September 19, 1997

	[8] Erik Brunvand, Introduction to Asynchronous Circuits and Systems, University of Utah, USA

	[9] H. (Kees) van Berkel, Mark B. Josephs, and Steven M. Nowick Scanning the Technology: Applications of Asynchronous Circuits, C

	[10] Fu-Chiung Cheng, Practical Design and Performance Evaluation of Completion Detection Circuits, Department of Computer Science, Columbia University

	[11] David A. Rennels and Hyeongil Kim, Concurrent Error Detection in Self-Timed VLSI Computer Science Department, USC, LA. Using Custom VLSI components. Gives a good account on testability of self-timed designs.

	[12] Robert M Dept. Symbolic Hazard-Free Minimization and Encoding of Asynchronous Finite State Machines of Computer Science Columbia University New York, NY 10027, Fuhrer Bill Lin IMEC Laboratory Kapeldreef 75 B-3001 Leuven, Belgium, Steven M. Nowick Dept. of Computer Science Columbia University New York, NY 10027

	[13] Speculative Completion for the Design of High-Performance Asynchronous Dynamic Adders, IEEE Async97

	[14] Scott Hauck, Steven Burns, Gaetano Borriello, Carl Ebeling,AN FPGA FOR IMPLEMENTING ASYNCHRONOUS CIRCUITS, Department of Computer Science and Engineering, University of Washington, Seattle, WA 98195

	[15] Christian D.Nielsan and Alain J.Martin, A Delay Insensitive Multiply-Accumulate Unit, Computer Science Department, Cal Tech, Feb 12, 1992

	[16] Karl M. Fant, Scott A. Brandt, Null Convention logic, Theseus Logic, Inc.

	[17] Tak Kwan Lee, A General Approach to Performance Optimization of Asynchronous Circuits, Thesis , Cal Tech, May 1995

	[18] Alain J.Martin, Robustness in Asynchronous VLSI Techniques, Department of Computer Science, Cal Tech, June 1994

	[19] Henrik Hulgard, Steven M. Burns and Gactano Borriello,Testing the Asynchronous Circuits: A Survery, Dept of Computer science and Engineering, March 1994

	[20] Kip C.Killpack, Analysis and Characterization of a Locally Clocked Module, Thesis by University of Utah, May 2002

Asynchronous Interface

Combo latency

Sync to async interface

CLIENTS

.

.

.

CLIENTS

CLIENTS

Self-timed Memory

Self-timed Arbiter

AFFINITY FLOPPING

ARB LATENCY

CLIENTS

.

.

.

CLIENTS

CLIENTS

MEMORY

ARBITER

_1163861804.doc

OUTD

IN1D

IN2D

IN1D

D

D

OUTD

D

SELD

IN2D

SELD

_1171470769.doc

SENDER

RECEIVER

REQUEST

ACK

_1171483098.doc
[image: image1.bmp][image: image2.bmp]

Sync Interface Block

(SIB)

ARBITER

(ARB)

Sync_arb_req_0[1:0]

Sync_arb_req_1[1:0]

Sync_arb_req_2[1:0]

Sync_arb_req_3[1:0]

MUX

Sync_mux_data_0[15:0]

Sync_mux_data_1[15:0]

Sync_mux_data_2[15:0]

Sync_mux_data_3[15:0]

Sync_mux_rw_n_3[7:0]

Sync_mux_rw_n_2[7:0]

Sync_mux_rw_n_1[7:0]

Sync_mux_rw_n_0[7:0]

MEM

ACK GENARATOR

(ACKGEN)

Mux_mem_data[15:0]

Mux_mem_rw_n[1:0]

Mux_mem_wport[7:0]

Ag_sync_rdata[15:0]

Ag_sync_port[7:0]

Ag_sync_ack

Rdata [7:0]

Ack [3:0]

Req_0

Rw_n_0

wata_0[7:0]

wata_3 [7:0]

Rw_n_3

Req_3

.

.

.

.

_1171482328.xls
Chart1

		Access Latency at 100Mhz		Access Latency at 100Mhz		Access Latency at 100Mhz		Access Latency at 100Mhz

		LUTs		LUTs		LUTs		LUTs

		Flip-flops		Flip-flops		Flip-flops		Flip-flops

		Logic Power (mW)		Logic Power (mW)		Logic Power (mW)		Logic Power (mW)

Fully Synchronous

Synchronous-Asynchronous including memory and Muller element logic

Synchronous-asynchronous excluding memory element

Synchronous-asynchronous excluding memory element and with special muller-c flops

Paramaters

Numbers

Comparitive Charts

150

120

120

120

96

968

780

238

188

496

444

444

14

13

13

13

Sheet1

		

												150ns		120ns		120ns		120ns

												96		968		780		238

												188		496		444		444

												14		13		13		13

										Access Latency at 100Mhz		LUTs		Flip-flops		Logic Power (mW)

								Fully Synchronous		150		96		188		14

								Synchronous-Asynchronous including memory and Muller element logic		120		968		496		13

								Synchronous-asynchronous excluding memory element		120		780		444		13

								Synchronous-asynchronous excluding memory element and with special muller-c flops		120		238		444		13

Sheet1

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

Fully Synchronous

Synchronous-Asynchronous including memory and Muller element logic

Synchronous-asynchronous excluding memory element

Synchronous-asynchronous excluding memory element and with special muller-c flops

_1171093763.doc

Define the requirements of the design

Isolate the synchronous and self-timed blocks properly. Proper synchronization will be required in the synchronous domain for signals from self-timed domain. Similarly, the synchronous domain should follow the dual data signaling protocol with the self-timed domain.

In Self-timed domain break the functionality into smaller blocks, which can interact with each other using the request-ack signaling protocol. Each of the blocks can be considered as a stage in the micropipeline

Define the set of micro-components that are required to build the design. Design each of the micro-components using Xilinx FPGA editor so that they can be inferred as black-boxes in the designs. Some of the components are Muller-C element, Arbiter etc.

These components are time closed and self-timed in nature

Implement the design using the basic components and other conventional gates

Take the design through FPGA design flow

Requirement of more micro-components

Verify using the Gate level simulation or on board

Verify the design as a normal synchronous design

_1164052495.doc
[image: image1.bmp]

Request Valid

Self-timed delay 62ns

Clocking delay 18ns

Req All Zeros

Synchronization delay – 30ns

Sync_arb_req

External Req

Ag_sync_ack

Request dual rail Valid

Req All Zeros

External Ack

Request zero to ack zero delay 30ns

Ack 2 request zero 4.5ns

_1159556356.doc

Z

Y

X

Z

Y

X

C

