Fast Adder and Subtractor Design for (-1+j) - Base Complex Binary Numbers
Mohammad Ali Awan, Adnan Umer Khan, Shahid A Khan
Comsats Institute of Information Technology Abbottabad, Paksitan
Abstract: Representing a complex number as a single unit was a long desire for hardware engineers to reduce the number of arithmetic operations required to add, subtract and multiply two complex numbers. Efforts in this area introduced a new single unit complex number representation called (-1+j)-Base Complex Binary Number System (CBNS). Number of research papers have recently been published which explore various techniques for performing different arithmetic operations on CBNS based complex numbers. Although it is easy to represent a complex number as a single unit but there were problems regarding its arithmetic operation implementation, as the hardware size and computation speed gave little hope for its feasibility. Recently a size free adder design was proposed in [1] where hardware size was reduced for practical implementation at the cost of speed. Here we have proposed a novel technique for addition and subtraction of (-1+)j-Base complex binary numbers of any size using two bits at a time for speed and size optimization.

Keywords: Complex Numbers, Complex Binary Numbers, Adder, Subtractor, Look Up Table.
1 Introduction

Complex numbers are used in various signal processing applications. Lot of work has been done to efficiently implement complex arithmetic. Most of the complex arithmetic operations are based on “divide-and-conquer” technique, where a complex number is broken up into its real and imaginary parts. Arithmetic operations are then performed on broken parts as if these were real. This way of arithmetic operations requires two adders for complex addition and four multiplications, one subtraction and one addition for complex multiplication. The number of operations could considerably be reduced if complex numbers are represented as a single unit [2]. Single representation of complex numbers with base other than 2 has been proposed in [2]. Design of a nibble adder and subtractor for (-1+j)-base complex number is reported in [3] and [4], respectively. Recent paper [1] proposes a size free adder where any length number could be added using a simple hardware. The drawback of this design is that it requires (n+r) cycles to add any two numbers of n and m bit depths, where n ≥ m and r is the maximum number of carry bits.

Our proposed size free adder and subtractor operate on half-nibbles instead of single bits as reported in [1] thus increasing the speed twice.

Format of the paper is: (-1+j) base complex addition and subtraction are reviewed, after this we have explained our proposed adder and subtractor design, finally results are discussed.
2 (-1+j) Base Complex Binary Operations
n-bit binary number with base (-1+j) can be written in the form of a power series as follows [2]:

an-1(-1+j)n-1+an-2(-1+j)n-2+…+ a1(-1+j)1+a0(-1+j)0
where the coefficients an-1, an-2, …, a2, a1, a0 are binary (either 0 or 1). Further details related to conversion algorithms could be seen in [2].

Arithmetic operations
Addition and Subtraction: Truth-table for (-1+j)-base complex binary addition and subtraction is given in table 1;
	A
	B
	A + B
	A - B

	0
	0
	0
	0

	0
	1
	1
	11101

	1
	0
	1
	1

	1
	1
	1100
	0

Table 1: Truth table for (-1+j)-base complex addition and subtraction.
Apart from 1+1 other addition follows the same rule of ordinary binary addition. For 1 + 1 we have three carries i.e. 110. Subtraction also follows the same rules as for ordinary binary numbers subtraction except 0-1 where four carries i.e. 1110 are generated.

3 Proposed Binary Adder Design
Our design is based on the look-up-table (LUT) approach where results of addition are pre-calculated and stored in a LUT. Similar approach is presented in [1] where a size free adder is proposed. The problem with the design presented in [1] is that it will require (n+r) number of cycles to add two numbers of bit depth m and n, where n≥m, and r is the maximum bit-depth of all possible carries. Here we have proposed an improved version of the design that will require only (n/2) number of clock cycles.

The design is based on using a LUT for storing and dealing with carries instead of using discrete components. This results in more efficient circuit implementation as compared to traditional minimum-delay and carry-lookahead designs found in [4] and [5]. The adder takes two numbers of any sizes, adds two bits at a time and generates the two bit result and the carries for next pair of bits in one cycle. Figure 2 shows the functional diagram of our design consisting of decoder, shift registers and a look up table.
4 Design Details of Full adder

We have found that by adding two half- nibbles can generate up to 15 different carries of at most 8 bit-depth (here addition is based on full adder that is previous carry if any will also be added). This can be seen in the table 2 e.g. two half-nibbles (i.e. 00 + 00) are added along with previous possible carries (other possible cases are also given in the table 2). In table 2 it could be seen that if half-nibbles are added along with previous carries we will have two sum bits and 8 different patterns of next-carries. The 15 different previous carries listed in a table are found after exhaustive computations.

We have pre-calculated the results of fixed half-nibble additions with all possible combination of carries and stored the results within a memory whose contents contain the sum bits and next-carry bits as shown in the Figure 1. The addition of any two half-nibbles can generate up-to nine possible results for a fixed previous carry (because some additions are similar e.g. 01+00 and 00+01).

Since for each possible addition we have specified a separate memory bank, this leads to 9 different memory banks as shown in the Figure 2. The address bits shown in the figure 1 are the previous carry bits through a decoder. Memory-Select (MS) signal will be generated by the adder circuit. Table 4 shows the status of memory select signals for different input half-nibbles. For the case of A = 00, B = 00, and PC = 0000 0110, MS0 will be activated which will enable memory bank 0, and PC will access the memory contents located at 2. The result of A+B+PC will be placed on a data bus. If we wanted to add a number greater than half-nibble then next carry will be temporary stored in a register and passed to address lines for next addition as shown in the functional block diagram of the adder in figure 2.

Computational speed is further increased by introducing the Carry Out lines in contrast to [1] where carry out is catered for by padding sufficient number of zeros at the MSBs of the input numbers. This requires an extra input signal (Carry Out Enable) whose value can be set after certain number of cycles depending upon the bit depth of the input numbers. As long this signal is 0 the Carry Out lines are 0 and when it is 1 the carry output from the last operation is taken out on these lines. User can control Carry Out Enable signal through a counter.

Example in section 6 gives computational detail of the design.
5 Full-Subtractor Design

For more than single bit numbers the complex binary numbers subtraction differs from ordinary subtraction because in complex numbers there are no borrows instead there are carries which are added to the corresponding bit differences e.g. if we find the difference of bits A and B we need to perform (A - B)+PC operation.

Complex subtractor designed follows the adder design with different memory contents and a different decoder for MS. Memory contents are computed after exhaustive research work. Table 4 lists the memory contents (of memory bank 0 only) for subtractor.

6
Operation

Operation of size free complex binary Addition can be shown with the help of following example.

Example:
A = -2 + 1j = 011111

B = 1 – 3j = 111110

 A + B = -1 – 2j = 11101001

We will use following abbreviation

PC
= Previous Carry

NC
= Next Carry

MS
=Memory Select
SB
=Sum bits
CE
=Carry Out Enable

Step1:
A1A0 + B1B0 = 11 + 10

MS7
= 1

PC
= 00000000
SB0
= 01

NC0
= 00000110

CE
= 0

 Step2:
A3A2 + B3B2 = 11 + 11
MS8
= 1

PC
= 00000110
SB1
= 10

NC1
= 00000000
CE
= 0

Step2:
A5A4 + B5B4 = 01 + 11
MS8
= 1

PC
= 00000110

SB2
= 10

NC2
= 00000011

CE
= 1

Final answer = (NC2)(SB2)(SB1)(SB0)

 = 00000011 10 10 01

Final answer is available after 3 cycles in contrast to previous design which requires 14 cycles for same example.

7 Results and Discussions

Size free complex adder and subtractor based on single representation is proposed. Design divides a complex number into half-nibble chunks before generating results using LUT. This way speed and size optimization is achieved. Hardware requirements are 9 memory banks each of 150 bit capacity. One 4 by 9 decoder and an 8 bit register. Apart from this, for addition and subtraction of numbers greater than half-nibbles, additional memory space is required to store the sum bits. Since the design imposes no restriction over the input number size, as the size of the input number increases the hardware and memory requirements remains the same. This gives the percentage area saving with increasing bit depth of the input numbers.

8
References
[1]
Johnny Goode, Tariq Jamil, and Dale Callahan, "A simple circuit for adding complex numbers," WSEAS Transactions on Information Science and Applications, Vol. 1, No. 1, July 2004, pp. 61-66
[2]
T. Jamil, N. Holmes, and D. Blest “Towards Implementation of a Binary Number system for Complex Numbers”, Proceedings of the IEEE SoutheastCon 2000, Nashville, Tennessee(USA), April 7-9, 2000, pp 268-274.

[3]
Bassel Arafeh, T. Jamil and Amer Alhabsi “ A Nibble Size Ripple Carry adder for (-1+j)-Base Complex Binary Numbers” , Proceedings of 2002 International Arab Conferenec on Information Technology(ACIT 2002), Doha Qatar December 16-19, 2002, Vol. 1,pp.207-211

[4]
T. Jamil, Amir Arshad, Ahmad Al-Maashari “Design of a Nibble Size Subtractor for (-1+j)-Base Complex Binary Numbers”, WSEAS Transaction on Circuits and Systems (ISSN: 1109-2734) Vol. 3 No. 5 July 2004 pp.1067-1072.

[5]
T. Jamil, Bassel Arafeh and Amer AlHabsi “Hardware implementation and Performance Evaluation of Complex Binary adder designs”, 7th World Multiconference on Systemics, Cybernatics, and Informatics, Orlando Florida(USA). July 27-30, 2003 Vol. II,pp.68-73.

	A
	B
	Previous-Carry (PC)
	A + B + PC =

NextCarry-Sum Bits

	00
	00
	0000 0000
	0000 0000-00

	
	
	0000 0011
	0000 0000-11

	
	
	0000 0110
	0000 0001-10

	
	
	0001 1101
	0000 0111-01

	
	
	0000 0001
	0000 0000-01

	
	
	0000 0111
	0000 1111-11

	
	
	0000 1110
	0000 0011-10

	
	
	1110 1001
	0011 1010-01

	
	
	0111 0100
	0001 1101-01

	
	
	0000 0010
	0000 0000-10

	
	
	0000 0100
	0000 0001-00

	
	
	0011 1010
	0000 1110-10

	
	
	1110 1011
	0011 1010-11

	
	
	0001 1100
	0000 0111-00

	
	
	0111 0101
	0001 1101-01

	
	
	
	

	00

01
	01

00
	0000 0000
	0000 0000-01

	
	
	0000 0011
	0000 0011-10

	
	
	0000 0110
	0000 0001-11

	
	
	0001 1101
	0000 0000-00

	
	
	0000 0001
	0000 0011-00

	
	
	0000 0111
	0000 1110-10

	
	
	0000 1110
	0000 0011-11

	
	
	1110 1001
	0000 0001-00

	
	
	0111 0100
	0001 1101-01

	
	
	0000 0010
	0000 0000-11

	
	
	0000 0100
	0000 0001-01

	
	
	0011 1010
	0000 1110-11

	
	
	1110 1011
	0000 0001 10

	
	
	0001 1100
	0000 0111-01

	
	
	0111 0101
	0000 0010-00

	
	
	
	

	00

10
	10

00
	0000 0000
	0000 0000-10

	
	
	0000 0011
	0000 0110-01

	
	
	0000 0110
	0000 0111-00

	
	
	0001 1101
	0000 0111-01

	
	
	0000 0001
	0000 0111-11

	
	
	0000 0111
	0000 0111-01

	
	
	0000 1110
	0001 1101-00

	
	
	1110 1001
	0011 1010-11

	
	
	0111 0100
	0001 1101-10

	
	
	0000 0010
	0000 0110-00

	
	
	0000 0100
	0000 0001-10

	
	
	0011 1010
	0000 0000-00

	
	
	1110 1011
	0000 0100-01

	
	
	0001 1100
	0000 0111-10

	
	
	0111 0101
	0001 1101-11

	
	
	
	

	00

11

10

01
	11

00

01

10
	0000 0000
	0000 0000-11

	
	
	0000 0011
	0001 1101-00

	
	
	0000 0110
	0000 0001-10

	
	
	0001 1101
	0000 0111-01

	
	
	0000 0001
	0000 0000-10

	
	
	0000 0111
	0000 0011-10

	
	
	0000 1110
	0000 0000-00

	
	
	1110 1001
	0000 0001-10

	
	
	0111 0100
	0001 1101-11

	
	
	0000 0010
	0011 1010-10

	
	
	0000 0100
	0000 0110-01

	
	
	0011 1010
	0000 0001-11

	
	
	1110 1011
	0000 0111-00

	
	
	0001 1100
	0000 0111-11

	
	
	0111 0101
	0000 0010-10

	
	
	
	

	01
	01
	0000 0000
	0000 0011-00

	
	
	0000 0011
	0000 0011-11

	
	
	0000 0110
	0000 1110-10

	
	
	0001 1101
	0000 0000-01

	
	
	0000 0001
	0000 0011-01

	
	
	0000 0111
	0000 1110-11

	
	
	0000 1110
	0111 0100-10

	
	
	1110 1001
	0000 0001-01

	
	
	0111 0100
	0000 0010-00

	
	
	0000 0010
	0000 0011-10

	
	
	0000 0100
	0000 1110-00

	
	
	0011 1010
	0111 0101-10

	
	
	1110 1011
	0000 0001-11

	
	
	0001 1100
	0000 0000-00

	
	
	0111 0101
	0000 0010-01

	
	
	
	

	01

11
	11

01
	0000 0000
	0000 0011-10

	
	
	0000 0011
	0001 1101-00

	
	
	0000 0110
	0000 0000-00

	
	
	0001 1101
	0000 0000-11

	
	
	0000 0001
	0000 0011-11

	
	
	0000 0111
	0000 0000-01

	
	
	0000 1110
	0000 0010-00

	
	
	1110 1001
	0000 0001-11

	
	
	0111 0100
	0000 0010-10

	
	
	0000 0010
	0001 1101-00

	
	
	0000 0100
	0000 1110-10

	
	
	0011 1010
	0000 0011-00

	
	
	1110 1011
	0000 0111-01

	
	
	0001 1100
	0000 0000-10

	
	
	0111 0101
	0000 0010-11

	
	
	
	

	10
	10
	0000 0000
	0000 0110-00

	
	
	0000 0011
	0000 0110-11

	
	
	0000 0110
	0000 0111-10

	
	
	0001 1101
	1110 1001-01

	
	
	0000 0001
	0000 0110-01

	
	
	0000 0111
	0000 0111-11

	
	
	0000 1110
	0001 1101-10

	
	
	1110 1001
	0000 0100-01

	
	
	0111 0100
	1110 1011-00

	
	
	0000 0010
	0000 0110-10

	
	
	0000 0100
	0000 0111-00

	
	
	0011 1010
	0000 0000-10

	
	
	1110 1011
	0000 0100-11

	
	
	0001 1100
	1110 1001-00

	
	
	0111 0101
	1110 1011-01

	
	
	
	

	10

11
	11

10
	0000 0000
	0000 0110-01

	
	
	0000 0011
	0001 1101-10

	
	
	0000 0110
	0000 0111-11

	
	
	0001 1101
	0000 0110-00

	
	
	0000 0001
	0001 1101-00

	
	
	0000 0111
	0000 0000-10

	
	
	0000 1110
	0001 1101-11

	
	
	1110 1001
	0000 0111-00

	
	
	0111 0100
	1110 1011-00

	
	
	0000 0010
	0000 0110-11

	
	
	0000 0100
	0000 0111-01

	
	
	0011 1010
	0000 0000-11

	
	
	1110 1011
	0000 0111-10

	
	
	0001 1100
	1110 1001-01

	
	
	0111 0101
	0001 1100-00

	
	
	
	

	11

	11

	0000 0000
	0001 1101-00

	
	
	0000 0011
	0001 1101-11

	
	
	0000 0110
	0000 0000-10

	
	
	0001 1101
	0000 0110-01

	
	
	0000 0001
	0001 1101-01

	
	
	0000 0111
	0000 0000-11

	
	
	0000 1110
	0000 0010-10

	
	
	1110 1001
	0000 0111-01

	
	
	0111 0100
	0001 1100-00

	
	
	0000 0010
	0001 1101-10

	
	
	0000 0100
	0000 0000-00

	
	
	0011 1010
	0000 0011-10

	
	
	1110 1011
	0000 0111-11

	
	
	0001 1100
	0000 0110-00

	
	
	0111 0101
	0001 1100-01

Table 2: Contents of memory banks MB0-MB1 for adder design.

	A
	B
	Previous-Carry (PC)
	A - B + PC =

NextCarry-Difference Bits

	00
	00
	0000 0000
	0000 0000-00

	
	
	0000 0011
	0000 0000-11

	
	
	0000 0110
	0000 0001-10

	
	
	0001 1101
	0000 0111-01

	
	
	0000 0001
	0000 0000-01

	
	
	0000 0111
	0000 1111-11

	
	
	0000 1110
	0000 0011-10

	
	
	1110 1001
	0011 1010-01

	
	
	0111 0100
	0001 1101-01

	
	
	0000 0010
	0000 0000-10

	
	
	0000 0100
	0000 0001-00

	
	
	0011 1010
	0000 1110-10

	
	
	1110 1011
	0011 1010-11

	
	
	0001 1100
	0000 0111-00

	
	
	0111 0101
	0001 1101-01

Table 3: Contents of memory bank MB0 for subtractor design.
	A
	B
	Memory Select

	00
	00
	MS0

	00
	01
	MS1

	00
	10
	MS2

	00
	11
	MS3

	01
	00
	MS1

	01
	01
	MS4

	01
	10
	MS3

	01
	11
	MS5

	10
	00
	MS2

	10
	01
	MS3

	10
	10
	MS6

	10
	11
	MS7

	11
	00
	MS3

	11
	01
	MS5

	11
	10
	MS7

	11
	11
	MS8

Table 4: Memory-select truth table.

 Figure 1: Block diagram of memory bank 0.

[image: image1]
Figure 2: Functional description of complex adder and subtractor.

Shift-Register

Shift-Register

Input- Memory B

Input- Memory A

Address

Output

Register

Memory Bank-9

Memory Bank-2

Memory Bank-1

Memory Bank-0

Decoder

MS0

MS2

MS1

MS8

Carry Out

0

Carry Out Enable

0001 1101-01

0000 0000-11

0000 0000-00

 next carry- sum

Memory-Select

Address-Bits

Data-Out

