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Abstract: - The separation of unobserved sources from mixed observed data is a fundamental signal processing problem. Most proposed techniques for solving this problem rely on independence or at least uncorrelation assumption of source signals.

    This paper introduces a novel technique for cases that source signals are correlated with each other. The method uses Wold decomposition principle for extracting desired and proper information from the predictable part of the observed data, and exploits approaches based on second-order statistics to estimate the mixing matrix and source signals. Simulation results are provided to illustrate the effectiveness of the method.
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1   Introduction

Blind source separation (BSS) consists of recovering source signals from several observed noisy mixtures of them. The observations are obtained from a set of sensors, each receiving a different combination of the source signals. The problem is called “blind” because no information is available about the mixture, i.e. recovering of source signals is achieved without the knowledge of the characteristics of the transmission channel.

    The lack of prior information can be compensated by considering particular source statistics assumptions. The most popular condition  used by BSS techniques is the statistically strong assumption of independence between the source signals. These techniques assume that the primary sources are statistically independent, and therefore the goal in these techniques is to achieve a separation process that  produces outputs as independent as possible[1],[2]. A less stringent condition is uncorrelation of sources. These techniques exploit temporal correlation of each source signal (second-order blind identification), and use a joint diagonalization method of several correlation matrices[3],[4].

    Other techniques and algorithms introduced for BSS use special source signals structures, e.g. CMA(Constant Modulus Algorithm) or special structure for combination  system such as MUSIC and ESPIRIT[5],[6].

    In this paper, the aim is to propose a solution to BSS problem for correlated source signals without imposing special structures on signals or mixing matrix. This paper is organized as follows:  In section 2, the problem of  BSS is  stated  along with  the related  assumptions. Proposed pre-separation procedure is introduced in section 3. Section 4 expresses BSS algorithm, and simulation results are presented in section 5. Concluding remarks are given in section 6.
2   Problem Formulation

Assume that  d  signals  
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 are transmitted from d sources at different locations. By considering a narrowband time-invariant channel, what we receive at m sensors (antennas) will be instantaneous linear combinations of these signals that construct observation data:
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Thus the model is as follows:
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where 
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 is the observed data vector from  m  sensors, 
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 is the signal vector, composed of  d  unknown source signals, 
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 characterizes the unknown channel and is referred to as  “mixing  matrix”, 
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is the additive noise vector at the sensor array. Following assumptions are considered in the model:

A1) Each element of  
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 (source signals) is a zero-mean, stationary process.

A2) The additive noise  
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 is assumed as a stationary, white zero-mean random process, independent of  source signals. 

A3) Mixing matrix  
[image: image10.wmf]A

 has full column rank.

A4) The number of sensors (m) must be greater or equal to  d  (the number of sources).

    It must be emphasized here that we don’t impose any assumption about independence or uncorrelation of source signals. In other words, the source signals can be correlated, and only the following assumption is considered:

A5)Source signals are jointly stationary.

    The aim of blind source separation (BSS) is to identify the mixing matrix 
[image: image11.wmf]A

 (and consequently recovering the source signals from the observations).

    It must be noted that Complete identification of the mixture matrix is impossible because the exchange of a fixed scalar factor between a given source signal and the corresponding column of 
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 doesn’t affect the observations(scaling indeterminacy). 
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where 
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is an arbitrary factor , and 
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denotes the k-th column 
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.

Another indeterminacy is in the order of the separated signals(permutation indeterminacy).
3   Pre-Separation  Procedure
The main step in our approach for correlated sources is a pre-separation process. The observed data is decomposed into regular and predictable components, using Wold decomposition. In the predictable component, the combination of uncorrelated contributions of source signals is identified on whose basis 
[image: image17.wmf]A

 (and consequently the source signals) is estimated using second order statistics.

3.1  Wold  Decomposition
An arbitrary process  can be written as a sum:
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where 
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 are regular and predictable processes. This expansion is called Wold decomposition. In [7] it has been proved that the processes 
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 is comprised of complex exponentials: 
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where 
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’s are orthogonal zero-mean random variables. Hence, 
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 has a line spectrum:
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but 
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 has a smooth spectrum.

3.2  Observation Decomposition
In this subsection a method is proposed for extracting and decomposing some information from the regular and predictable parts of the observation data. For simplicity ,a special case of model (2) with d=2 & m=2 is considered, that can be extended to general cases. So, we have the following model satisfying conditions expressed in section 2:
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where 
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    Regular and predictable parts of source signal are indicated by  
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where,
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in which {
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} are sets of orthogonal random variables, and {
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Using (7) , (8) and the fact that regular and predictable parts in each signal are orthogonal ,we get:
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where
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From (9),(10),(12) obtains:
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where {
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    From these equations, each observation signal has regular and predictable components, each corresponding to the combination of individual regular and predictable parts of source signals. A spectral method for separating these parts follows.

    The correlation functions of the observation data  are given by: (i,j = 1,2)
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where 
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Hence power spectral density(psd) and cross spectral density(csd) functions of observations have the forms:
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where,
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As expected, the spectra of the predictable parts are pure impulsive. So, it is possible to detect and separate these components in the observation spectra. Consequently, correlation functions (
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) of the predictable parts are obtained that will be used next.

3.3  Extracting Desired Information From

 Predictable Part
Rewriting predictable parts of source signals (9)-(10), considering {
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} as the common frequency set, we obtain:
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where:

1)Random variables 
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2)Correlation of predictable signals  
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 arises from correlation of random variables 
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3)Removing common frequency components of source signals from 
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Hence,(for  i=1,2 )
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and relation (18) can be rewritten as:
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Removing the terms corresponding to common frequency components detected from frequencies that their peaks are greater than the average of the common peaks in the self and cross spectral density functions of the observations:
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from which the desired correlation functions are obtained: (for  i = 1,2 )
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 denotes complex conjugate transpose, and
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It is seen that in (27) the matrix which is related to source signals is diagonal (a desired condition). This representation is the basis of an algorithm for estimating mixing matrix 
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4 Blind Source Separation Algorithm
In this section, an algorithm for estimating 
[image: image91.wmf]A

(and recovering source signals) is proposed which is based on the model embedded in eq.(23) and restated in (29) using second order statistics. 
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Steps of the algorithm are following:  

4.1 Orthogonalization 
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Also from (27),(30),(32), it is seen that :
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This equation shows that matrix 
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4.2  Estimation of  
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where matrix 
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    The essential aim is finding a unique unitary matrix 
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. A method for attaining this aim, as used in most BSS approaches that exploit statistical properties, is joint diagonalization(JD) method which operates as simultaneous diagonalization of the set 
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of K orthogonal correlation matrices and is described in the following theorem[3]: (In our case n=2)

THEOREM. Let  
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 be  K  nonzero time lags, and let 
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then:

- 
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 is essentially equal to 
[image: image132.wmf]U

(desired     unique unitary matrix)

- A permutation can be operated on diagonal elements of 
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which states that a unique unitary matrix 
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can be determined if for at least a 
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 are distinct, a condition that is surely satisfied for sources with different spectra.
4.3  Computing  
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After determination of a unique unitary matrix 
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 can be computed from 
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It is important to  note that for computing 
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,  we use observation data 
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5  Simulation   Results

In this section, the performance of the proposed method is investigated via computer simulation results.

    Source signals 
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 are composed of regular and predictable parts. Regular component in each source consists of a zero-mean normal process (independent from the other) and a uniform process (common between two sources). Predictable parts consist of random amplitudes sinusoidal functions with some common frequency and correlated amplitude components. These signals are mixed by an arbitrary 
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, and corrupted by AWGN, to obtain the observation signals 
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. Then algorithm is applied on observed data and the estimation of 
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 , is obtained.

This procedure is repeated for G=500 independent trials.

    For evaluate the approach, the following performance index (PI) is introduced,
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where
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 is the Frobenius norm.

    Two experiments we performed and compared: without pre-separation process (experiment #1) and with pre-separation process (experiment #2). The experiments were executed under noise free and  SNR=3,5,8,10 (dB) conditions for various number of correlation matrices used in JD algorithm, and with different correlation coefficient of original source signals. Some results are illustrated in  Figures 1-6.

Figures 1 & 2 show performance index(PI)(in dB) versus the number of jointly diagonalized correlation matrices for experiments #1 and #2. In figures 3 & 4, corresponding to experiment #1 and #2, the performance indexes (in dB) versus several SNR (in dB) have been plotted for some constant number of jointly diagonalized correlation matrices with correlation coefficient  0.5. In figures 5 & 6, SNR and the number of jointly diagonalized correlation matrices have been kept constant, and correlation coefficient of source signals has been varied from 0.1 to 0.9.

    Almost  in all figures, better performance of proposed algorithm is evident. In figures 1 & 2, it is obvious that the performances of two experiments become better as the number of the jointly diagonalized correlation matrices is increased, but this has a limit (as it is seen from small different between PI for K=5 and K=6). Figures 3 & 4 , show improvement in performance by increasing SNR. From figures 5 & 6, it is revealed that the performance index of two experiments is close for small correlation coefficients, and as the correlation coefficient is increased, the PI of two experiments is decreased, but the performance in experiment #2 is better than that in experiment #1, particularly for intermediate correlation coefficients.

6  Conclusion

In this paper, an approach for solving BSS problem in cases where source signals are correlated, is introduced without additional assumptions on signal or mixing matrix structures. 

    An important step of this BSS algorithm is a pre-separation procedure where based on Wold decomposition principle, the information of predictable part of source signals (i.e. uncorrelated parts of predictable signals) is derived. The diagonal structure of the correlation matrix of this parts is essential for next step of algorithm where using second-order based method and JD technique,  separation process is completed by estimating 
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 and recovering 
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. Simulation results show effectiveness of  algorithm.
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Fig.1. Performance versus number of JD covariance             matrices:[ Noise Free]&[Correlation Coef.=0.5]
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Fig.2. Performance versus number of JD covariance             matrices:[SNR=3 dB]&[Correlation Coef.=0.5]
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Fig. 3. Performance versus SNR  for Experiment  #1: 

[K(No. of JD Covariance Mat.)=2,4,6]&[Correlation coef.=0.5]

[image: image159.wmf]3

4

5

6

7

8

9

10

-12

-11

-10

-9

-8

-7

-6

-5

SNR  (dB)  

Performance Index (PI) -- dB 

K=2

K=4

K=6


Fig. 4. Performance versus SNR  for Experiment  #2:

[K(No. of JD Covariance Mat.)=2,4,6]&[Correlation Coef.=0.5]
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Fig. 5. Performance  versus  Correlation Coefficient:

[Noise Free]&[K(No. of JD Covariance Mat.)=6]

[image: image161.wmf]0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

Correlation  Coeficient 

Performance Index (PI) -- dB 

Exper. #1

Exper #2


Fig. 6. Performance  versus  Correlation Coefficient:

[SNR=3 dB]&[K(No. of JD Covariance Mat.)=6]
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