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Abstract-We present a probabilistic approach to state estimation and fault diagnosis in complex industrial process. In particular, we adopt a jump markov linear Gaussian (JMLG) model to describe a continuous stirred tank reactor. The parameters of this process are identified with the expectation maximization (EM) algorithm. After identification, particle filtering algorithms are adapted to diagnosis, in real-time, the state of operation of continuous stirred tank reactor. For this application, we compare two particle filtering variants: standard particle filtering and Rao-Blackwellised particle filtering. The particle filtering estimates are then used to drive an automatic control system.
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1 Introduction

Real-time monitoring is important in many areas such as robot navigation or diagnosis of complex industrial systems [1,2]. This paper considers online monitoring of complex industrial processes. The processes have a number of discrete states, corresponding to different combinations of faults. The dynamics can be very different base on the discrete states. Even if there are very few discrete states, exact monitoring is computationally unfeasible as the state of the system depends on the history of the discrete states. However there is a need to monitor these systems in real time to determine what faults could have occurred.

Here, we propose a real-time, automatic strategy for estimating the states of industrial processes from noisy measurements of continuous variables. This approach enables us to reduce the cognitive load experienced by human operators. It also serves to minimize the number of instruments and to open up room for sophisticated control strategies.

In particular, we adopt a jump Markov linear Gaussian (JMLG) model to describe a continuous stirred tank reactor with different linear regimes of operation. A discrete state variable controls the switching between the various linear regimes. The parameters of each regime are identified off-line with the EM algorithm [3]. Once the stationary parameters have been identified, real-time Rao-Blackwellised particle filtering (RBPF) algorithms are used to estimate the continuous and discrete states of the system on-line [4,5]. These estimates are used to determine to control policy of a PID controller.
2 Process Monitored

The main goal of this research is to do real-time diagnosis and state estimation (as an inference task) in dynamic industrial processes. By diagnosis we mean the detection / determination of faults that could occur in the process itself, in its measuring instruments or in its actuators. By state estimation we mean the identification of different operating conditions which the process can be in. For dynamic industrial processes we consider a continuous stirred tank reactor. We are exclusively concerned with dynamic systems characterized by continuous-time operation. If the dynamic system has non-linear behavior, it has to be modeled as a series of linear segments. Let us consider a multi-input multi-output continuous dynamic system, as defined below. 
2.1 Continuous Stirred Tank Reactor
A Continuous Stirred Tank Reactor (CSTR) is a complex nonlinear, multivariable system; see Figure 1. It involves a second-order exothermic reaction 
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Figure 1. Continuous Stirred Tank Reactor
follows the Arrhenius equation (1). According to this equation, the effect of temperature, 
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, on the specific reaction rate k is usually exponential. This exponential temperature dependence represents one of the most severe nonlinearities in chemical engineering systems. The overall reaction rate R is defined as the rate of change of moles of any component per volume due to chemical reaction divided by that component’s stoichiometric coefficient. Because of this reaction, we have 
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 raised to the 2nd power (second-order reaction). As we can see, this term R is highly nonlinear.
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2.2 Modeling
The mathematical model for this CSTR involves a mass balance on A, in which the flow of moles of component A into the system, minus the flow of moles of A out of the system, plus the rate of formation of moles of A component from chemical reactions is equal to time rate of change of moles of A component inside system. This 
Table1. Variables

[image: image8.png]Var Value Units Definitions
Cy 3.5955 b/ ft* Concentration of reactant A in reactor and exit stream
Cai 10.8 b/ ft? Concentration of reactant A in feed
a 2.560 °R Constant in Arrhenius expression for reaction rate
k 0.0278 | ft3/lb—min | Reaction rate constant
ko 143 | ft*/lb—min | Constant in Arrhenius expression
—AH 867 Btu/lbs Heat of reaction
c, 0.9 Btu/l’F Specific heat of reacting mixture
[ 1.0 Btu/l°’F Specific heat of water
A 500 ft? Effective jacket transfer area
P 80 b/ ft* Density of reacting mixture
U 1.2 | Btu/min ft* °F | Heat transfer coefficient
T, 150 °F Input reactants temperature
Tr | 190.0611 °F Reactor temperature
Ty | 190.0611 °F Measured reactor temperature
Tjo 120.0222 °F Outlet Jacket temperature
Tj: 80 °F Inlet Jacket temperature
v 250 ft2 Reactor volume
w 1,000 Ib/min Feed mass flow rate
w; 1,050 Ib/min Water cooling rate at jacket
M, 4,000 b Mass of jacket water





concept is expressed by equation (2), commonly known as a component continuity equation.

The first law of thermodynamics puts forward the principle of conservation of energy. The mathematical model must include an enthalpy balance on reaction mass, and an enthalpy balance on jacket (water is flowing through the jacket). In this case, the flow of internal energy into the system, minus the flow of internal energy out of the system, plus the heat added to the system by reaction is equal to the rate of change of internal energy inside the system. The balance on reacting mass is given by equation (3), and the balance on the jacket by equation (4).
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Some assumptions were made to derive these equations. These equations represent a very simplified nonlinear CSTR model (the t functionality was omitted for clarity). Nevertheless, this simpler model captures the nonlinearity we are interested in. we will only measure the following 3 variables: the output 
Table2. CSTR Instrumentation.

[image: image12.png]Tag-name

Functional name

Description

FT-100
FT-200
FV-100
FV-200
TT-100
TT-200
XT-100

Flow sensor/transmitter

Flow sensor/transmitter
Control valve

Control valve

Temperature sensor/transmitter
Temperature sensor/transmitter
Analyzer sensor/transmitter

Input reactants flow

Input water flow

Reactants flow valve

Water flow valve

Reactor temperature

Output water temperature
Output products concentration





concentration 
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. See Table 1 for a complete definition of the variables; Figure 1 conveys their meaning graphically.

Figure 1 also shows some instruments for monitoring and control purposes. Table 2 gives a complete description of this instrumentation.

The nonlinear model described by equations (2-4) was linearized to build the JMLG model. Then 4 discrete modes were tested.
We consider a fouled surface (dirty surface) in the jacket as a possible faulty point (of course, there are many possible faulty points in this system). A fouled surface can be caused by normal operating conditions over an extended time, or by stochastic problems such as cooling water with a high concentration of minerals or salts. Surface fouling reduces the global heat transfer coefficient 
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 in the mathematical model. We defined four of the possible discrete modes for this nonlinear multivariable system, Table 3.
Table3. CSTR Operating conditions

[image: image17.png]Model name Description Variation

Normal Clean heat transfer area none

Fouling-1 Dirty heat transfer area | 5 % fouling

Fouling-2 Dirty heat transfer area | 10 % fouling

Fouling-3 Dirty heat transfer area | 15 % fouling




We obtain the sampled state-space representation using the continuous state-space representation. The continuous state-space is generated by the system of linear differential equations.

For the “normal” discrete mode, 
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Where:
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 are the process and measurement noises; both follow 
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 are fixed for each test. Corresponding results were obtained for each faulty discrete mode 
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The aim of the analysis is to compute the marginal posterior distribution of the discrete states 
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 by standard marginalization. The posterior density satisfies the following recursion: (7)
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This recursion  involves intractable integrals. One, therefore, has to resort to some form of numerical approximation scheme.
3 Problem Solutions 
Most existing model-based fault diagnosis methods use a technique called analytical redundancy [7]. Real measurements of a process variable are compared to analytically calculated values. The resulting differences, named residuals, are indicative of faults in the process. Many of these methods rely on simplifications and heuristics. Here, we propose a principled probabilistic approach to this problem. 

3.1 Particle Filtering

In the PF setting, we use a weighted set of samples (particles) 
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 to approximate the posterior with the following point-mass distribution 
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Where 
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 denotes the Dirac-Delta function. Given N Particles 
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 at time t-1, approximately distributed according to 
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, PF enables us to compute N particles 
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, at time t. since we cannot sample from the posterior directly, the PF update is accomplished by introducing an appropriate importance proposal distribution 
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 from which we can obtain samples. The basic algorithm, Figure 2, consists of two steps: sequential importance sampling and selection (see [5] for a detailed derivation). This algorithm uses the transition priors as proposal distributions;   for the selection step, we used a state-of-the-art minimum variance resampling algorithm [8].
3.2 Rao-Blackwellised Particle Filtering 

By considering the factorization 
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, it is possible to design more efficient PF algorithms. 
The density 
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 is Gaussian and can be computed analytically if we know the marginal posterior density 
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Figure2. Particle Filtering
If equation (7) does not admit a closed-form expression, then equation (8) does not admit one either and sampling-based methods are still required. (Also note that the term 
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 in equation (8) does not simplify to 
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The marginal density of 
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That can be computed efficiently with a stochastic bank of kalman filters. That is, we use PF to estimate the distribution of 
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. This is a basis of the RBPF algorithm that was adopted in [4]. 
4 Results 

We tested the 2 inference algorithms for N=100 and T=50. These simulations were designed using the transition matrix and prior probabilities shown in [9]:
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Figure 3 plots the tracking error for each algorithm. As you can see the RBPF algorithm can track the state better than PF algorithm. If we have several state (for example 3 or 4) Figure 4 will resulted. You can see in this plot that RBPF algorithm is better. Figure 5 and 6 show the states, outputs and discrete modes uses in simulation. Figure 7 and 8 plots the Probability density of PF and RBPF algorithms.
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Figure3. CSTR (1 discrete Mode)
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Figure4. CSTR (several discrete modes)
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Figure5. 1Discrete mode, states, output
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Figure 6. 3discrete modes, states, outputs
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Figure7. Probability distribution (RBPF algorithm), 1 discrete mode
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Figure8. Probability Distribution (RBPF algorithm), 3 discrete modes
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